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ABSTRACT

A variety of approaches have been proposed in the lit-
erature to detect spoofing of Global Navigation Satel-
lite Systems (GNSS). These approaches vary widely
based upon the assumed capabilities and a priori
knowledge of the spoofer. This paper considers a

method to detect spoofing based on comparing the
relative (not absolute) platform trajectory estimated
by the GNSS receiver to the relative trajectory devel-
oped from IMU measurements (specifically pitch and
roll from a gyro compass).

The primary contribution of this paper is the devel-
opment and analysis of a GNSS spoofing detection al-
gorithm that exploits the unknown (to the spoofer)
“high” frequency pitch/roll motion of the ship as seen
by a commercial-off-the-shelf (COTS) receiver and an
inertial measurement unit (IMU) that may already be
in use onboard ships. We focus on generalized likeli-
hood ratio tests using simple models of the GNSS and
gyro measurements. Further, we avoid using a naviga-
tion filter, such as the extended Kalman filter, on the
measurements; instead, the algorithm directly employs
the instantaneous trajectories.

Experimental results are shown using a commercial
GNSS receiver with data from a GNSS simulator with
IMU capability. The length of time and amount of
motion required to achieve low probabilities of false
alarm and missed detection are analyzed.

INTRODUCTION

GNSS are well known to be accurate providers of po-
sition information across the globe; as such, they are
commonly used to locate and navigate craft in vari-
ous transportation modes (e.g. land vehicles, boats
and ships, and aircraft). Because of high signal avail-
abilities, capable/robust receivers, and well-populated
satellite constellations, operators typically believe that
the location and time information provided by their
GNSS receiver is correct. More sophisticated users are
concerned with the integrity of the derived informa-
tion; RAIM algorithms were developed to address the
possible failure of a single satellite.

Recent demonstrations have highlighted another
threat to GNSS integrity, so called “spoofing” [1].
Spoofing is the intentional creation of RF signals to
provide counterfeit information to the GNSS receiver.
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Since spoofing might be undetected by a conventional
receiver, this type of attack is considered more dan-
gerous than a jamming attack in which the receiver
is unable to provide any position, navigation, and/or
time (PNT) solution.

A variety of approaches have been proposed in the
literature to recognize spoofing and can vary widely
based upon the assumed capabilities and a priori
knowledge of the spoofer. Possible methods to de-
tect a spoofing event at a single GNSS receiver in-
clude monitoring the power levels of the GNSS sig-
nals (absolute, relative, and across satellites), checking
that the observed constellation is correct for the given
time (e.g. number of and IDs of the satellites), test-
ing the accuracy of the clock component, and checking
the computed position against that derived from some
non-GNSS source (e.g. an INS) [2]. Other methods
include correlating the P(Y) code at the RF level [3],
looking for vestigial peaks in the correlator outputs [4],
comparing to trusted reference signals [5], using an an-
tennae array to spatially locate and identify signals [6],
and other multi-antenna methods [7].

This paper considers a method to detect spoofing
based on comparing the relative (not absolute) plat-
form trajectory estimated by the GNSS receiver to
the relative trajectory developed from IMU measure-
ments (specifically heading, pitch, and roll from a
gyro). The motivation for this approach is three-fold:
(1) the recent development of a spoof detection ap-
proach in which the GNSS antenna is intentionally
wiggled so as to create carrier phase characteristics
that would highlight the existence of a single point
emitter spoofer [8], (2) our recognition that the combi-
nation of intended vessel motion and sea state interfer-
ence (wind and current) cause the GNSS antennas on
ships to move (wiggle) in unpredictable ways, and (3)
the fact that existing Coast Guard vessels are equipped
with a high performance IMU (a Sperry Mark 39 gyro
compass).

The primary contribution of this paper is the devel-
opment and analysis of a GNSS spoofing detection al-
gorithm that exploits the unknown (to the spoofer)
pitch/roll motion of the ship as seen by a commercial-
off-the-shelf (COTS) receiver and an IMU that may
already be in use onboard ships. While ad-hoc meth-
ods to test similarity of object movement (trajectory
matching) have appeared in the computational geom-
etry literature [9], we focus on generalized likelihood
ratio tests using simple models of the GNSS and gyro
measurements. Further, we avoid using a navigation
filter, such as the extended Kalman filter, on the mea-
surements; instead, the algorithm directly employs the
instantaneous trajectories.

THE MEASUREMENTS

We concentrate on two dimensional (horizontal) mo-
tion of a ship and will use the variables e and n to
indicate east and north position, respectively, in some
coordinate frame. The pair (e·,k, n·,k) will be used to
represent the location of some point on the ship as gen-
erated by some specific sensor; additional subscripts
will be added to define the sensor and/or the loca-
tion. The indexing by k recognizes that the ship is con-
stantly moving, due to both its desired course as well
as motion caused by the action of the waves and wind,
and that the sensors are sampled over time.

In this work, the movement of the ship is recorded
via two sets of measurements: actual location as de-
termined by a GNSS receiver and relative movement
(pitch and roll) as described by an inertial measure-
ment unit (IMU) unit on the ship. The GNSS mea-
surements are

eG,k = es,k + ea,k and nG,k = ns,k + na,k

in which the subscripts s correspond to the position
of the center of mass of the ship and the subscripts
a correspond to the GNSS antenna’s position rela-
tive to that center. Similarly, the IMU measurements
are

eI,k = ea,k and nI,k = na,k

Specifically, we imagine that the IMU sees the iden-
tical antenna motion, but not the basic ship motion.
Strictly one might think of the IMU measurements as
pitch and roll; we assume that heading is also avail-
able and that the proper functional transformation to
east/north as seen at the GNSS antenna’s location is
already accomplished. Further, we assume that the
origin of the coordinate frame for the IMU measure-
ments is at the center of mass of the ship.

THE HYPOTHESES

Our goal here is to test for spoofing which we define
as the existence of GNSS signals that would result in
an erroneous position solution at the GNSS receiver.
We consider two situations, the null hypothesis, H0,
in which no spoofer is present, and the alternative hy-
pothesis, H1, in which a spoofer is present:

H0: With no spoofer present each individual measure-
ment is an accurate estimate of the action of the
ship and its antenna:

êG,k = es,k + ea,k + wGe,k

n̂G,k = ns,k + na,k + wGn,k

and

êI,k = ea,k + wIe,k n̂I,k = na,k + wIn,k
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in which we use hats to indicate noisy measure-
ments and the w·,k are measurement errors (the
first subscript identifies the sensor and direction)
for k = 0, 1, 2, . . . N − 1. Vectors of N such mea-
surements will be denoted as êG, etc.

H1: With a spoofer present we assume that the GNSS
measurements are corrupted, but that the IMU
measurements are not:

êG,k = uk + wGe,k n̂G,k = vk + wGn,k

and

êI,k = ea,k + wIe,k n̂I,k = na,k + wIn,k

in which uk and vk describe the (unknown)
spoofed location.

We will assume that the noise terms are independent,
zero mean Gaussian random variables. The variances
for the GNSS and IMU measurements will be σ2

G and
σ2
I , respectively.

HYPOTHESIS TESTING

Our goal is detection, to estimate which hypothesis
is true based upon a set of measurements. We use
a Neyman-Pearson formulation for this problem and
wish to develop a binary hypothesis test with fixed
probability of false alarm (the probability of decid-
ing H1 when H0 is true) and maximum probability
of detection (the probability of deciding H1 when H1

is true). Hypothesis testing is usually implemented by
computing a scalar function of the vector observation
data, L (êG, n̂G, êI , n̂I), called the test statistic, and
comparing this value to a constant called the thresh-
old. If the test statistic exceeds the threshold, we de-
cide H1; if not, we decide H0. Symbolically, we write
this as

L (êG, n̂G, êI , n̂I)
H1

>
<
H0

λ

The optimum test statistic for the Neyman-Pearson
formulation is well known to be the likelihood ratio
[10]:

L (êG, n̂G, êI , n̂I) =
f (êG, n̂G, êI , n̂I |H1)

f (êG, n̂G, êI , n̂I |H0)

which is the ratio of the conditional probability density
functions (pdfs) of the measurements under the two
hypotheses. Substituting our models under the two
hypotheses the test statistic is

L =
∏
k

1

2πσGσI
e
− 1

2σ2
G

(êG,k−uk)2

e
− 1

2σ2
I

(êI,k−ea,k)2

1

2πσGσI
e
− 1

2σ2
G

(êG,k−es,k−ea,k)2

e
− 1

2σ2
I

(êI,k−ea,k)2

×
∏
k

1

2πσGσI
e
− 1

2σ2
G

(n̂G,k−vk)2

e
− 1

2σ2
I

(n̂I,k−na,k)2

1

2πσGσI
e
− 1

2σ2
G

(n̂G,k−ns,k−na,k)2

e
− 1

2σ2
I

(n̂I,k−na,k)2

(we have dropped the arguments of L for brevity).
Canceling common terms (the constants and the pdfs
of the IMU measurements), this is

L =
∏
k

e
− 1

2σ2
G

(êG,k−uk)2

e
− 1

2σ2
G

(n̂G,k−vk)2

e
− 1

2σ2
G

(êG,k−es,k−ea,k)2

e
− 1

2σ2
G

(n̂G,k−ns,k−na,k)2

Taking a logarithm and removing more constants, the
equivalent test (l instead of L) is

l =
∑
k

êG,k (uk − es,k − ea,k)

+
∑
k

n̂G,k (vk − ns,k − na,k)

Not surprisingly, a spatial correlator. Of great use be-
low is the following observation – that the correlators
for east and north are additive!

Unfortunately, some of the parameters of this test are
unknown; specifically uk, vk, es,k, ns,k, ea,k, and na,k.
A common approach, the generalized likelihood ratio
test (GLRT), replaces each of these with its maximum
likelihood estimate (MLE). Unfortunately, as defined
thus far, there are too many unknowns here for the
GLRT to provide a useful result (this is demonstrated
in the next section). To move forward, we constrain
the underlying ship motion to be constant velocity.
As the algebra is lengthy, we start by recasting the
problem as one dimensional and employ vector-matrix
notation.

THE ONE-DIMENSIONAL VERSION

Imagine that we have two sets of n observations, yk
and zk (k = 0, 1, . . . N−1), and three sets of constants
xk, ak, and ck, all indexed by k. (Think of x as the
underlying ship movement, a the antenna movement,
c the spoofed movement, y the GNSS measurement,
and z the IMU measurement, all in one dimension.)
Let y and z be the vectors of measurements with com-
ponents x, a, and c. Under the two hypotheses these
are related by:

H0:
y = x + a + wy z = a + wz

H1:
y = c + wy z = a + wz

in which wy and wz are the measurement noise vec-
tors. The unusual characteristic of this problem for-
mulation is that y varies with the hypothesis while z
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does not; however, z carries information about y un-
der hypothesis H0. We assume that the noise terms
wy and wz are composed of independent, zero mean
Gaussian random variables with variances σ2

y and σ2
z ,

respectively.

For this simpler problem the likelihood ratio is

L (y, z) =

1

(2π)N/2σNy
e
− 1

2σ2y
(y−c)T (y−c)

1

(2π)N/2σNy
e
− 1

2σ2y
(y−x−a)T (y−x−a)

×

1

(2π)N/2σNz
e
− 1

2σ2z
(z−a)T (z−a)

1

(2π)N/2σNz
e
− 1

2σ2z
(z−a)T (z−a)

= e
1
σ2y

(c−x−a)Ty
e
− 1

2σ2y
cT c

e
1

2σ2y
(x+a)T (x+a)

Taking a logarithm and ignoring the constants, the
log-likelihood test is

l (y, z) = (c− x− a)Ty

The result in one dimension is still a correlator that
ignores z, and depends upon unknown movement vec-
tors (c, x, and a).

The GLRT for the General Case

Let’s imagine that c, x, and a are all unknown
and employ the GLRT; specifically, replace these un-
knowns with their MLEs. Since the problem is lin-
ear and Gaussian, the MLEs are characterized as fol-
lows:

H0: The likelihood function is

1

(2π)NσNy σ
N
z

e
− 1

2σ2y
(y−x−a)T (y−x−a)

e
− 1

2σ2z
(z−a)T (z−a)

Maximizing over the choice of a and x yields

â = z x̂ = y − a = y − z

H1: The likelihood function is

1

(2π)NσNy σ
N
z

e
− 1

2σ2y
(y−c)T (y−c)

e
− 1

2σ2z
(z−a)T (z−a)

Maximizing over the choice of a and c yields

â = z ĉ = y

Substituting these estimates in, the GLRT is

lGLRT (y, z) = (y − (y − z)− z)y = 0 !

What happened? The GLRT is a constant (zero); in
order to get a fixed probability of false alarm the detec-
tion result is always a decision for H0 and the GLRT
approach fails to yield a useful result. While the noisy
observation z seems to tell us something about y un-
der H0, the fact that x is any vector eliminates the
information contained in z.

A Linear Model for Gross Motion

Let’s imagine that the movement observed in the yk,
but not in the zk corresponds to a linear model (i.e.
constant velocity ship movement), different under the
two hypotheses

xk = m0k + b0 ck = m1k + b1

In this formulation b0 and b1 are the intercepts (offsets)
and m0 and m1 are the slopes (velocities per unit time)
under the two hypotheses, respectively. In vector form,
these are

x = m0v + b01 c = m1v + b11

in which we define v = [0, 1, 2, . . . N − 1]
T

as a count-

ing vector and 1 = [1, 1, . . . 1]
T

as the vector of all
ones. Under H0 the MLEs for m0, b0, and the ak
jointly maximize

1
(2π)NσNy σ

N
z

e
− 1

2σ2y
(y−m0v−b01−a)T (y−m0v−b01−a)

×e−
1

2σ2z
(z−a)T (z−a)

Clearly the MLE for a is still â = z, so we want to
maximize

e
− 1

2σ2y
(y−m0v−b01−z)T (y−m0v−b01−z)

Taking logarithms and ignoring irrelevant terms the
MLEs for m0 and b0 are defined by{

m̂0, b̂0

}
= arg min

m0,b0
(y − z−m0v − b01)

T

(y − z−m0v − b01)

= arg min
m0,b0

∑
k

(yk − zk −m0k − b0)
2

Similarly, under H1 the MLEs for m1 and b1 are de-
fined by{

m̂1, b̂1

}
= arg min

m0,b0
(y −m1v − b11)

T

(y −m1v − b11)

= arg min
m1,b1

∑
k

(yk −m1k − b1)
2

The second line of each of these expressions shows that
m and b are the coefficients of a least squares linear fit
of the respective data, yk − zk and yk.
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The GLRT for the Linear Case

Normally one would find the MLEs above by taking
derivatives and setting them to zero, etc.; the precise
development of expressions for the four parameters ap-
pears in Appendix 1. The resulting GLRT is

l (y, z) = (ĉ− x̂− â)Ty

=
∑
k

(ĉk − x̂k − âk)yk

=
∑
k

(
m̂1k + b̂1 − m̂0k − b̂0 − zk

)
yk

= (m̂1 − m̂0)
∑
k

kyk +
(
b̂1 − b̂0

)∑
k

yk

−
∑
k

zkyk

Define the N -by-N symmetric matrix A with elements
Ajk

Ajk =
12

N(N − 1)(N + 1)
jk +

2(2N − 1)

N(N + 1)

− 6

N(N + 1)
j − 6

N(N + 1)
k − δjk

where δjk is a Kronecker delta. Using the results from
Appendix 1 we can write the test statistic in matrix
form as

l (y, z) = zTAy

Since it is scalar, we can also write it as l (y, z) =
yTAT z = yTAz.

Analysis of the Result

Under the two hypotheses the measurement vectors
can be written as

y = mv + b1 + g + wy and z = a + wz

in whichm = m0, b = b0, and g = a under H0 andm =
m1, b = b1, and g = 0 under H1 (0 being the all zero
vector). Note that y and z are both Gaussian random
vectors; hence, the test statistic is non-Gaussian due
to it containing sums of products over these vectors.
To proceed, two approaches come to mind:

• Invoke the central limit theorem and characterize
the test by its mean and variance.

• Imagine that the IMU measurements (the zk) are
essentially perfect, i.e. let wz = 0 , so that the
test statistic reduces to a Gaussian variable.

We initially pursue the first option.

To employ the Central Limit Theorem it is necessary
to compute the mean and variance of the test statistic.
We begin with the mean

µ ≡ E {l} = E
{
zTAy

}

Using the fact that y and z are independent random
vectors, we have

µ = E
{
zT
}
AE {y}

Each of these expectations can be computed sepa-
rately

E
{
zT
}

= E
{
aT + wT

z

}
= aT

and

E {y} = E {mv + b1 + g + wy} = mv + b1 + g

in which the zero means of both wy and wz have been
employed. The result is

µ = aTA (mv + b1 + g)

= maTAv + baTA1 + aTAg

In Appendix 2 it is shown that Av = 0 and A1 = 0,
so

µ = aTAg

Under H0 we have g = a and

µ0 ≡ E {l|H0} = aTAa

a quadratic form. In Appendix 2 is is shown that A
is negative semi-definite; hence, µ0 ≤ 0 for all antenna
motion vectors a. Under H1 we have g = 0 and

µ1 ≡ E {l|H1} = 0

Next, let’s address the variance. After involved algebra
(detailed in Appendix 3) the variance of the GLRT can
be shown to be

Var {l} = (N − 2)σ2
yσ

2
z − σ2

ya
TAa− σ2

zg
TAg

Under H0 we have g = a so

Var {l} = (N − 2)σ2
yσ

2
z −

(
σ2
y + σ2

z

)
aTAa

while under H1 we have g = 0 so

Var {l} = (N − 2)σ2
yσ

2
z − σ2

ya
TAa

With these parameters the false alarm probability
is

Pfa = Prob {l > λ|H0}

= Q

(
λ− µ0

σ0

)

= Q

 λ− aTAa√
(N − 2)σ2

yσ
2
z −

(
σ2
y + σ2

z

)
aTAa


(Q (·) being the Gaussian tail probability). We could,
of course, solve this expression for the threshold

λ = aTAa+
√

(N − 2)σ2
yσ

2
z −

(
σ2
y + σ2

z

)
aTAaQ−1 (Pfa)
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Figure 1: Typical ROC to verify the CLT assumption.

The detection probability is

Pd = Prob {l > λ|H1}

= Q

(
λ− µ1

σ1

)

= Q

 λ√
(N − 2)σ2

yσ
2
z − σ2

ya
TAa


As expected, this is an increasing function of −aTAa,
the power in the antenna motion. As an example, Fig-
ure 1 shows a typical receiver operating characteric
(ROC). The figure compares simulation results (the
blue circles) with the theoretical results to validate the
Central Limit Theorem assumption.

Figure 2 shows the detection probability versus the
false alarm probability for two different test durations
and two different antenna distances from the ship’s
centroid. A mild sea state was assumed: sinusoidal
roll with an amplitude of 5.14 degrees at 0.35 Hertz
and sinusoidal pitch of 2.29 degrees at 0.7 Hertz. The
standard deviation for the GNSS measurements was
assumed to equal 0.4 meters; the IMU measurements’
standard deviation was assumed to be 1.7 arc minutes.
As expected, the detection performance improves as
the antenna height increases or as the number of sam-
ples used in the test increases.

A Perfect IMU

Let’s reconsider these results if the IMU is perfect so
that σz = 0. The means are unchanged

µ0 ≡ E {l|H0} = aTAa

and

µ1 ≡ E {l|H1} = 0
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Figure 2: Typical ROC – antenna height of 5 or 10
meters, mild sea state, and a 5 or 10 second
observation period (GNSS and gyro data at
1 Hz).

and the variances are equal under both hypothe-
ses

Var {l|perfect IMU} = −σ2
ya
TAa

(the minus sign is fine since A is negative semi-
definite). Further, the test statistic is Gaussian since
it is linear in y. The performance (Pd as a function of
Pfa) is

Pd = Q

(√
−aTAa

σy
+Q−1 (Pfa)

)

EXTENDING TO 2 (or 3) DIMENSIONS

Under the assumption that the noise in the East and
North components are independent and identically dis-
tributed, then we saw at the beginning of this paper
that the log-likelihood ratio test reduced to the sum of
the tests in each individual direction. Modifying the
notation from the one dimensional analysis above, the
resulting test would be of the form

l = êI
TAêG + n̂I

T
An̂G

where ê and n̂, with appropriate subscripts, are vec-
torized East and North measurements. A similar ex-
tension could be made to three dimensions, although
the GNSS noise variance in the Up direction is com-
monly assumed to be greater than either East or
North.
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Figure 3: GNSS measurements for ship heading al-
most due north showing pitch and roll
motion until spoofing event starts halfway
through scenario.

EXPERIMENTATION

The original intent of this project was to test po-
tential algorithms with actual data collected from a
Coast Guard cutter, recording both GNSS data and
wind/sea related measurements from a MK-39 gyro.
Unfortunately, we were unable to do so during the
project’s timeline, so instead we collected data from
a GNSS simulator. The Spirent GSS-8000 allows for
the creation of scenarios that include pitch and roll to
vessel motion (mostly via setting the sea state). Typ-
ical gyro roll and pitch accuracy is 0.08 degrees RMS
and the typical accuracy for the Novatel GPS receiver
used in the tests is 0.4 meters RMS.

Figure 3 shows the GNSS measurements for the sce-
nario considered here. The vessel is heading on a
course of 003 degrees true with a mild sea state of
4.7 degrees of roll at 0.1 Hz and 3 degrees of pitch
at 0.06 Hz. The GNSS antenna location was offset
(2,5,15) meters from the ship’s centroid. The spoofing
event begins about halfway into the scenario in which
the spoofer knew the nominal ship location and move-
ment but did not have knowledge of the pitch and roll
of the GNSS antenna.

The test statistic used for the detection of spoofing
was defined earlier as

l (y, z) = zTAy.

The removal of linear motion is accomplished in the
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E
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Linear Motion Removed (East; window=20 samples)

Figure 4: East motion of ship using GNSS measure-
ments after linear motion is removed using
the A matrix.

Ay portion of the test statistic and shown in Figure 4
for the East motion of the ship. The value of the test
statistic over time is shown in Figure 5 using 10 sec-
onds of GNSS and IMU data. We note that the de-
tector was able to quickly spot the spoofing, the value
of the test statistic jumping in value soon after the
spoofing begins. Figure 6 shows the improvement in
the test statistic’s response (the size of the spacing be-
tween no spoofing and spoofing) when the test time is
doubled to 20 seconds.

A MORE REALISTIC MODEL

Let’s assume that due to averaging, the GNSS receiver
low pass filters the observed position:

H0:

yk = LPF {xk + ak}+wy,k zk = ak+wz,k

H1:

yk = LPF {ck}+ wy,k zk = ak + wz,k

Since filtering has no effect on the linear model of gross
ship motion, this is

H0:

yk = xk+LPF {ak}+wy,k zk = ak+wz,k

H1:
yk = ck + wy,k zk = ak + wz,k
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Figure 5: Value of spoof detection test statistic using
10 seconds of GNSS and IMU data at 1 Hz
with spoofing event starting about halfway
through the scenario at the red line.
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Figure 6: Value of spoof detection test statistic using
20 seconds of GNSS and IMU data at 1 Hz
with spoofing event starting about halfway
through the scenario at the red line.

and the resulting log-likelihood test would be

l (y, z) = LPF {z}T Ay

CONCLUSION

Using pitch and roll data from an IMU is an effective
method to detect GNSS spoofing aboard ships. Moti-
vated by recent work related to spoof detection using
moving antennas, this paper developed and analyzed
a GNSS spoofing detection algorithm that exploits the
relative “high frequency” pitch/roll motion of the ship
that is assumed to be unknown to the spoofer. In-
stead of using a navigation filter such as the Extended
Kalman Filter, the algorithm presented here directly
employs the instantaneous trajectories.

The analysis provides a method to identify the test du-
ration for effective detection performance and showed
that it provides for a short time to alarm. Mild seas
provide enough ship motion for successful detection.
Data from a GNSS simulator was used to provide ex-
perimental results.

This work can be extended to employ filtered data, in
which the GNSS and IMU sensors have different time
constants on their internal data processing. Other fu-
ture work includes using real ship data and considering
the impact of IMU errors (e.g. bias and/or drift) on
both the test and its performance.

APPENDIX 1 – INTEGER LINEAR
REGRESSION

Imagine a data sequence tk for k = 0, 1, 2, . . . N − 1.
The integer linear regression problem is to find con-
stants m and b of the best straight line fit of the data
under a mean-squared error criterion

E =
N−1∑
k=0

(tk −mk − b)2

in which m and b are the slope and intercept solutions,
respectively. Taking derivatives

∂E

∂m
= −2

N−1∑
k=0

(tk −mk − b) k

and

∂E

∂b
= −2

N−1∑
k=0

(tk −mk − b)

Setting both to zero and manipulating yields a pair of
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simultaneous equations
N−1∑
k=0

k2
N−1∑
k=0

k

N−1∑
k=0

k N


[
m
b

]
=


N−1∑
k=0

ktk

N−1∑
k=0

tk


with solutions

m =

N
N−1∑
k=0

ktk −
N−1∑
k=0

k
N−1∑
k=0

tk

N
N−1∑
k=0

k2 −

(
N−1∑
k=0

k

)2

and

b =

N−1∑
k=0

k2
N−1∑
k=0

tk −
N−1∑
k=0

k
N−1∑
k=0

ktk

N
N−1∑
k=0

k2 −

(
N−1∑
k=0

k

)2

Using the facts

N−1∑
k=0

k =
N(N − 1)

2

and
N−1∑
k=0

k2 =
N(N − 1)(2N − 1)

6

these are

m =

12

N−1∑
k=0

ktk − 6(N − 1)

N−1∑
k=0

tk

N(N − 1)(N + 1)

and

b =

2(2N − 1)
N−1∑
k=0

tk − 6
N−1∑
k=0

ktk

N(N + 1)

or

m =
12

N(N − 1)(n+ 1)

N−1∑
k=0

ktk −
6

N(N + 1)

N−1∑
k=0

tk

and

b =
2(2N − 1)

N(N + 1)

N−1∑
k=0

tk −
6

N(N + 1)

N−1∑
k=0

ktk

For our two problems of interest in this paper we have
for the H0 regression tk = yk−zk while for H1 tk = yk.

So, the MLEs are

m̂0 =
12

N(N − 1)(N + 1)

N−1∑
k=0

k (yk − zk)

− 6

N(N + 1)

N−1∑
k=0

(yk − zk)

b̂0 =
2(2N − 1)

N(N + 1)

N−1∑
k=0

(yk − zk)

− 6

N(N + 1)

N−1∑
k=0

k (yk − zk)

m̂1 =
12

N(N − 1)(N + 1)

N−1∑
k=0

kyk −
6

N(N + 1)

N−1∑
k=0

yk

and

b̂1 =
2(2N − 1)

N(N + 1)

N−1∑
k=0

yk −
6

N(N + 1)

N−1∑
k=0

kyk

Finally, we note that

m̂1 − m̂0 =
12

N(N − 1)(n+ 1)

N−1∑
k=0

kzk

− 6

N(N + 1)

N−1∑
k=0

zk

and

b̂1 − b̂0 =
2(2N − 1)

N(N + 1)

N−1∑
k=0

zk −
6

N(N + 1)

N−1∑
k=0

kzk

APPENDIX 2 – FACTS ABOUT THE
MATRIX A

The matrix A is defined to have elements

Ajk =
12

N(N − 1)(N + 1)
jk +

2(2N − 1)

N(N + 1)

− 6

N(N + 1)
j − 6

N(N + 1)
k − δjk

where δjk is a Kronecker delta. Note that A is sym-
metric. This appendix develops some algebraic facts
about this matrix. Several of these facts are just te-
dious algebra and rely upon the relations

N−1∑
k=0

k =
N(N − 1)

2
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and

N−1∑
k=0

k2 =
N(N − 1)(2N − 1)

6

• Fact 1: The vector of ones, 1, is in the null space
of A

A1 = 0

Equivalently, column sums of A equal zero. And
since A is symmetric, both of these statements
also hold for AT .

Proof: We explicitly show this fact by demon-
strating that the jth element of A1 is zero.

[A1]j

=
N−1∑
k=0

Ajk × 1

=

N−1∑
k=0

[
12

N(N−1)(N+1)jk −
6

N(N+1)j

+ 2(2N−1)
N(N+1) −

6
N(N+1)k − δjk

]

=

[
12j

N(N − 1)(N + 1)
− 6

N(N + 1)

]N−1∑
j=0

k

+

[
2(2N − 1)

N(N + 1)
− 6j

N(N + 1)

]
N − 1

=

[
12k

N(N − 1)(N + 1)
− 6

N(N + 1)

]
N(N−1)

2

+

[
2(2N − 1)

N(N + 1)
− 6k

N(N + 1)

]
N − 1

= 0

• Fact 2: The vector, v = [0, 1, 2, . . . N − 1]
T

, is
also in the null space of A

Av = 0

And since A is symmetric, it also hold for AT .

Proof: Again we explicitly show that the jth el-

ement of this product is zero.

[Av]j

=
N−1∑
k=0

k Ajk

=
N−1∑
k=0

k

[
12

N(N−1)(N+1)jk −
6

N(N+1)j

+ 2(2N−1)
N(N+1) −

6
N(N+1)k − δjk

]

=
[

12j
N(N−1)(N+1) −

6
N(N+1)

]N−1∑
k=0

k2

+
[

2(2N−1)
N(N+1) −

6k
N(N+1)

]N−1∑
k=0

k −
N−1∑
k=0

kδjk

=
[

12j
N(N−1)(N+1) −

6
N(N+1)

]
N(N−1)(2N−1)

6

+
[

2(2N−1)
N(N+1) −

6j
N(N+1)

]
N(N−1)

2 − j
= 0

The next several facts concern the negative of the ma-
trix; defined as B = −A with elements

Bjk = − 12

N(N − 1)(N + 1)
jk − 2(2N − 1)

N(N + 1)

+
6

N(N + 1)
j +

6

N(N + 1)
k + δjk

• Fact 3: The matrix B satisfies BB = B; in other
words, B is a projection matrix.

Proof: We accomplish this by showing that every
element of BB is the corresponding element of B.
Consider the j, k element of the product

[BB]j,k

=
∑
m

Bj,mBm,k

=
∑
m

[
− 12jm
N(N−1)(N+1)+ 6j

N(N+1)−
2(2N−1)
N(N+1) + 6m

N(N+1)+δjm

]
[
− 12mk
N(N−1)(N+1)+ 6m

N(N+1)−
2(2N−1)
N(N+1) + 6k

N(N+1)+δmk

]
=
∑
m

[
12jm

N(N−1)(N+1)−
6j

N(N+1)+ 2(2N−1)
N(N+1)−

6m
N(N+1)

]
[

12mk
N(N−1)(N+1)−

6
N(N+1)m+ 2(2N−1)

N(N+1)−
6k

N(N+1)

]
−2
[

12jk
N(N−1)(N+1)−

6j
N(N+1)+ 2(2N−1)

N(N+1)−
6k

N(N+1)

]
+δjk

= 6j+6k−6N+12jk−6jN−6kN+4N2+2
N(N−1)(N+1)

+−24jk+12(N−1)j−4(N−1)(2N−1)+12(N−1)k
N(N−1)(N+1) +δjk

=−12jk+6j(N−1)−2(2N−1)(N−1)+6k(N−1)
N(N−1)(N+1) + δjk

=− 12jk
N(N−1)(N+1)+ 6j

N(N+1)−
2(2N−1)
N(N+1) + 6k

N(N+1)+δjk

=Bj,k
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• Fact 4: The matrix B is positive semi-definite.

Proof: By definition the eigenvalues of a projec-
tion matrix are all equal to either zero or one.
Further, one test for positive semi-definiteness is
having all eigenvalues being non-negative. Hence,
B is positive semi-definite.

• Related Fact 5: The matrix A is negative semi-
definite.

Proof: By definition of being positive semi-
definite, B satisfies

aTBa ≥ 0

for all vectors a. Substituting for B

aT (−A)a ≥ 0 or aTAa ≤ 0

and A is negative semi-definite.

• Related Fact 6:

AA = −A

Proof: Since B is a projection we have BB = B.
Substituting the definition that B = −A, this is

(−A) (−A) = −A or AA = −A

• Fact 7: Not only is B a projection, but exactly
N − 2 of its eigenvalues are equal to unity; the
two zero eigenvalues correspond to the vectors 1
and v.

Proof: We do this in two steps: first, construct-
ing a vector x that is orthogonal to both 1 and v,
and second, showing that B preserves this vector
exactly.

Defining x

Consider an arbitrary vector x =
[x0, x1, . . . xN−1]

T
. So as to be perpendicu-

lar to both 1 and v the elements of the vector
must satisfy two equations

1Tx = 0 and vTx = 0

Since these are linear equations, they constrain
the values of two of the components of x. The
first equation is

1Tx =
N−1∑
s=0

xs = x0 +
N−1∑
s=1

xs = 0

so, without loss of generality we can write x0 in
terms of the other components

x0 = −
N−1∑
s=1

xs

The second equation is

vTx =
N−1∑
s=0

sxs = 0 · x0 + 1 · x1 +
N−1∑
s=2

sxs

= x1 +
N−1∑
s=2

sxs = 0

so we have

x1 = −
N−1∑
s=2

sxs

With these selections the other N − 2 elements of
x are arbitrary.

Projecting x

Let’s consider the application of B to this vector
x, calling the result r

r = Bx

and examine the individual elements of r, the rj .

rj =
N−1∑
k=0

Bjkxk

= Bj0x0 +Bj1x1 +

N−1∑
k=2

Bjkxk

= Bj0

(
−
N−1∑
s=1

xs

)
+Bj1

(
−
N−1∑
s=2

sxs

)

+
N−1∑
k=2

Bjkxk

= Bj0

(
−
N−1∑
s=1

xs

)
+Bj1

(
−
N−1∑
s=2

sxs

)

− 12

N(N − 1)(N + 1)
j

(
N−1∑
k=2

kxk

)

+
6

N(N + 1)

(
N−1∑
k=2

kxk

)

−2(2N − 1)

N(N + 1)

(
N−1∑
k=2

xk

)

+
6

N(N + 1)
j

(
N−1∑
k=2

xk

)
+
N−1∑
k=2

xkδjk
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Reordering terms

rj = Bj0

(
−
N−1∑
s=1

xs

)

−2(2N − 1)

N(N + 1)

(
N−1∑
k=2

xk

)

+
6

N(N + 1)
j

(
N−1∑
k=2

xk

)

+Bj1

(
−
N−1∑
s=2

sxs

)

− 12

N(N − 1)(N + 1)
j

(
N−1∑
k=2

kxk

)

+
6

N(N + 1)

(
N−1∑
k=2

kxk

)
+
N−1∑
k=2

xkδjk

or

rj = −Bj0x1

+

(
N−1∑
s=2

xs

)[
−Bj0 − 2(2N−1)

N(N+1) + 6
N(N+1)j

]
+

(
N−1∑
s=2

sxs

)[
−Bj1 − 12

N(N−1)(N+1)j + 6
N(N+1)

]
+
N−1∑
k=2

xkδjk

Filling in the values of Bj0 and Bj1 in the terms
in brackets

Bj0 =
6

N(N + 1)
j − 2(2N − 1)

N(N + 1)
+ δj0

Bj1 =
6(N − 3)

N(N − 1)(N + 1)
j − 4(N − 2))

N(N + 1)
+ δj1

and simplifying

rj = −Bj0x1 +

(
N−1∑
s=2

xs

)
[−δj0]

+

(
N−1∑
s=2

sxs

)[
− 6N−6
N(N−1)(N+1)j + 4N−2

N(N+1) − δj1
]

+
N−1∑
k=2

xkδjk

Plugging in for the two components of the first

product

rj = −
[

6
N(N+1)j −

2(2N−1)
N(N+1) + δj0

](
−
N−1∑
s=2

sxs

)

+

(
N−1∑
s=2

xs

)
[−δj0]

+

(
N−1∑
s=2

sxs

)[
− 6N−6
N(N−1)(N+1)j + 4N−2

N(N+1) − δj1
]

+
N−1∑
k=2

xkδjk

or

rj = −

(
N−1∑
s=2

xs

)
δj0 +

(
N−1∑
s=2

sxs

)
[δj0 − δj1]

+
N−1∑
k=2

xkδjk

Interpreting this expression for the different val-
ues of j

r0 = −

(
N−1∑
s=2

xs

)
+

(
N−1∑
s=2

sxs

)

r1 = −

(
N−1∑
s=2

sxs

)
= x1

and
rj = xj

for j > 1. This is almost done, r matches x for
elements 1 through N − 1; we need only further
manipulate r0.

r0 = −

(
N−1∑
s=2

xs

)
+

(
N−1∑
s=2

sxs

)

=

(
x1 − x1 −

N−1∑
s=2

xs

)
+

(
N−1∑
s=2

sxs

)

= x1 −

(
N−1∑
s=1

xs

)
+

(
N−1∑
s=2

sxs

)
= x1 + x0 − x1 = x0

and all of the components match, Bx = x.

Since x was an arbitrary vector orthogonal to both
1 and v (in other words, x falls within an N − 2
dimensional subspace) and since B is an identity
operator for any such x, then B must have N − 2
eigenvalues equal to unity.
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APPENDIX 3 – Variance Computation

By definition the variance is the difference between the
second moment and the square of the mean

Var {l} = E
{
l2
}
− E {l}2

As we have already solved for the mean, let’s concen-
trate on the second moment. In matrix form, this
is

E
{
l2
}

= E
{(

zTAy
) (

zTAy
)}

Taking the transpose of the first term (a scalar), we
can regroup matrix multiplications and focus on the
term in z

E
{
l2
}

= E
{(

zTAy
)T (

zTAy
)}

= E
{(

yTAT z
) (

zTAy
)}

= E
{
yTAT zzTAy

}
= E

{
yTAT

(
zzT

)
Ay
}

The combined expectation (over y and z) can be ac-
complished by first taking a conditional expectation
over z with y fixed and then taking the expectation
with respect to y

E
{
l2
}

= Ey
{
Ez|y

{
yTA

(
zzT

)
Ay
}}

= Ey
{
yTAEz|y

{
zzT

}
Ay
}

We have

zzT = (a + wz) (a + wz)
T

= aaT + awT
z + wza

T + wzw
T
z

Taking the z expectation

Ez|y
{
zzT

}
= Ez|y

{
aaT+awT

z +wza
T+wzw

T
z

}
= aaT + σ2

zI

which uses the fact that the elements of wz are inde-
pendent and all have variance σ2

z . Substituting back
to the second moment

E
{
l2
}

= Ey
{
yTAT

(
aaT + σ2

zI
)
Ay
}

= Ey
{
yTATaaTAy

}
+σ2

zEy
{
yTATAy

}
To simplify these two terms, we consider them sepa-
rately.

The First Term

The goal of this subsection is to simplify

Ey
{
yTATaaTAy

}

As a first step, recognize that we again have a product
of scalars and can transpose both

Ey
{
yTATaaTAy

}
= Ey

{(
yTATa

) (
aTAy

)}
= Ey

{(
yTATa

)T (
aTAy

)T}
= Ey

{(
aTAy

) (
yTATa

)}
= Ey

{
aTAyyTATa

}
= aTAEy

{
yyT

}
ATa

Now

yyT = (mv + b1 + g + wy) (mv + b1 + g + wy)
T

= (mv+b1+g) (mv+b1+g)
T
+ (mv+b1+g+wy)wT

y

+wy (mv + b1 + g)
T

+ wyw
T
y

Taking the expectation

Ey
{
yyT

}
= (mv + b1 + g) (mv + b1 + g)

T
+ σ2

yI

which uses the fact that the wy are independent with
individual variances all equal to σ2

y. The first term is
then

Ey
{
yTATaaTAy

}
= aTAT

[
(mv + b1 + g) (mv + b1 + g)

T
+ σ2

yI
]
Aa

= aTAT (mv + b1 + g) (mv + b1 + g)
T
Aa

+σ2
ya
TAT IAa

= aT
[
AT (mv + b1 + g)

]︸ ︷︷ ︸
first part

[
(mv + b1 + g)

T
A
]

︸ ︷︷ ︸
second part

a

+σ2
ya
TATAa

where we have added brackets for emphasis of the two
parts. The first of these parts can be reduced since
both v and 1 are in the null space of A

AT (mv + b1 + g) = mATv + bAT1 + ATg = ATg

The second part is similar

(mv + b1 + g)
T
A = gTA

So the first term in the second moment is

Ey
{
yTATaaTAy

}
= aTATggTAa + σ2

ya
TATAa

The Second Term

The goal of this subsection is to simplify

Ey
{
yTATAy

}
Using the definition of y

yTATAy

= (mv + b1 + g + wy)
T
ATA (mv + b1 + g + wy)

= (g + wy)
T
ATA (g + wy)
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using the facts that both 1 and v are in A’s null space.
Expanding

yTATAy = gTATAg + wT
yA

TAg

+wT
yA

TAg + wT
yA

TAwy

Taking the expectation

Ey
{
yTATAy

}
= gTATAg + Ey

{
wT
yA

TAwy

}

Back to the Variance

Putting things back together

E
{
l2
}

= aTATggTAa + σ2
ya
TATAa

+σ2
zg

TATAg + σ2
zEy

{
wT
yA

TAwy

}
Recalling that the mean is µ = aTAg, subtracting µ2

yields the variance as

Var {l} = σ2
ya
TATAa + σ2

zg
TATAg

+σ2
zEy

{
wT
yA

TAwy

}
Recalling that ATA = AA = −A (see Appendix 2
again)

Var {l} = σ2
zEy

{
wT
yA

TAwy

}
− σ2

ya
TAa− σ2

zg
TAg

All that’s left is one expectation.

The Final Expectation

To complete the variance calculation we need to com-
pute Ey

{
wT
yA

TAwy

}
. Grouping terms, the argu-

ment of the expectation is an inner product

wT
yA

TAwy =
(
wT
yA

T
)

(Awy)

= (Awy)
T

(Awy)

which can be computed as the trace of the outer prod-
uct

wT
yA

TAwy = Tr
(

(Awy) (Awy)
T
)

= Tr
(
Awyw

T
yA

T
)

Taking the expectation

Ey
{
wT
yA

TAwy

}
= Ey

{
Tr
(
Awyw

T
yA

T
)}

= Tr
(
AEy

{
wyw

T
y

}
AT
)

= Tr
(
Aσ2

yIA
T
)

= σ2
yTr

(
AAT

)
Using the notation of Appendix 2, AAT = −A = B
so

Ey
{
wT
yA

TAwy

}
= σ2

yTr (B)

Since the trace of a matrix is equal to the sum of its
eigenvalues (and from Appendix 2, B has N − 2 equal
to unity and two equal to zero

Ey
{
wT
yA

TAwy

}
= (N − 2)σ2

y

Combining this final result

Var {l} = (N − 2)σ2
yσ

2
z − σ2

ya
TAa− σ2

zg
TAg
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