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Abstract 
 
The purpose is to introduce the demand for the quality movement practice in the supply chain 
environment. We show both the need and application of these measures, especially the need for 
multivariate quality concepts to reduce the costs of operating supply chains, to control the flow 
throughout the supply chain. The purpose is to reduce costs in the supply chain system and 
improve the probability of meeting the “due time.”  
 

Key Terms: 
“Due Time’ 
Expected Total Cost per Unit in the Supply Chain System 
Supply Chain System 
Statistical Process Control 
SPC, MPC 
Multivariate Process Control  
Auto correlated time series 
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Introduction 
 
Supply chain management involves the leveraging of channel wide integration to better serve 

customer needs.  Increases in productivity and quality control and improvement will follow when 

firms will implement and coordinate quality management activities upstream.  When corporate 

management recognizes the aspects of supply chain management, quality control and quality 

assurance two duties should be undertaken. The first refers to the process whereby measures are 

taken to make sure defective products and services are not part of the final output, and that the 

product design meets the quality standards set out at the initiation of the project. One may 

observe that quality assurance entails overlooking all aspects, including design, production, 

development, service, installation, as well as documentation. The Quality movement is the field 

that ensures that management maintains the standards set and continually improves the quality of 

the output. According to Lee and Wang (2003, p 26): 

“The quality movement has offered us sound lessons that can be very 

powerful to address supply chain security lessons. Instead of final, end-

product source inspection, the quality movement emphasizes prevention, 

total quality management, source inspection, profess control and a 

continuous improvement cycle. These are all ingredients for successful and 

effective ways to manage and mitigate the risks of supply chain security.” 

The philosophy and design of quality improvement is to achieve the best economic results of 

production and supply chain management.  Stated differently goal of the quality movement is to 

reduce the expected total costs per unit in the supply chain system and increase the probability of 

meeting the “due time” without sacrificing the quality of the supplier’s output. This enables 

suppliers to fully satisfy their customers. This manuscript focuses on supply chain planning with 

quality control in an environment with multiple manufacturing centers and multiple customers.  

We first discuss the needs for quality planning in the supply chain environment to focus on 

where the notion of statistical process (or quality) control (SPC) fits and why it is so vital to the 

performance of supply chain environment to focus on where the notion of SPC fits and why it is 

so vital to the performance of supply chains in the global environment. In turn, we introduce and 
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discuss the desire for more sophisticated methods to insure that quality and improvement is 

maintained in production processes involving more and greater sophisticated production method.  

 
While supply chains are so crucial to the health of business enterprises, these supply chains must 

be sustained by both preventative and emergency measures.  Zhang, Yu and Huang (2009) 

propose several sophisticated strategies for dealing with SPC strategies in the supply chain 

environment.  Their study presents principle agent models regarding the customer’s quality 

evaluation and the supplier’s quality prevention level decisions. Studies such as this may produce 

results not heretofore examined by the practioner’s of SPC in the supply chain environment. In 

addition, threats to supply chains are real and many and measures must be developed to indicate 

when supply chains are not operating in an efficient and productive manner.  These measures 

include those of SPC which will indicate when risks are present in the supply chain.  Since 

supply chains are increasingly globalized, these SPC measures must be appropriately placed in 

the supply chain and the choice of the particular SPC procedure is critical in developing an 

optimal plan. 

Furthermore Sun et al. (2006 and 2008) proposed control chart systems in the supply chain 

management system to improve customer satisfaction of suppliers br . Their purpose was to 

show the mathematical foundation to study the relationships between Univariate control chart 

limits and the expected total cost per unit time in the arrival of (due) time for the product in the 

supply chain. Their study gave evidence as to the use simple univarte control on how the process 

of SPC can reduce shipping costs and make certain that due time for arrivals are met. Their study 

was limited to simple control charts and not to the important question of whether SPC systems 

can vary due to whether simple control chart design is the basis of the system or whether more 

sophisticated models for SPC systems should be utilized.  

 

Quality Control and Improvement Methodology 
 
In the twenty-first century, competition no longer relies on the economic efficiency of one 

economic entity versus another or others. The global environment requires managers to analyze 

the supply chain of one system versus the supply chain of another system or systems. Quality 

management including SPC is to positively impact the supply chain to reduce the total costs of 
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manufacture and distribution and to meet the expectation of “end-of-the-line” customers who 

require that due dates be met and the product delivered is fit for use. We propose in this 

manuscript that supply chain systems become both more efficient by reducing costs of unfit 

product which result in greater costs to both suppliers and customers and to meet the constraints 

on the system by “due times” and the loss of faith of customers who depend on supplies 

conforming to the goals of other methods such as “just-in-time,” optimal production scheduling 

and other methods to streamline manufacture and distribution. 

 Most SPC methodologies assume a steady state process behavior where the influence of 

dynamic behavior is ignored.  In the steady state system, dynamic behaviors are assumed not 

present and the focus I only the control of only one variable at a time.  Specifically, SPC control 

for changes in either the measure of location or dispersion or both.  SPC procedures as practiced 

do disturb the flow of the production process and operations.  In recent years, the use of SPC 

methodologies to address the process where behavior is characterized by more than one variable 

is emerging. The purpose of this next section is to review the basic Univariate procedures in 

order to see how they may be improved by more sophisticated methods having the same goal. 

 

Univariate Control Charts 
 
A Shewhart control chart which is the central foundation of Univariate SPC has one major 

shortcoming which we recognize now. The major drawback of the Shewhart chart is that it 

considers only the last data point and does not carry a memory of the previous data.  As a result, 

small changes in the mean of a random variable are less likely to be detected rapidly.  

Exponentially weighted moving average (EWMA) chart improves upon the detection of small 

process shifts.  Rapid detection of small changes in the quality characteristic of interest and ease 

of computations through recursive equations are some of the many good properties of the 

EWMA chart that make it attractive [See  the Appendix for a discussion of the development of 

the EWMA control chart] 

 
Although very useful, more recent studies indicate that misplaced control limits are present in 

many applications as discussed in the next section. These are the methodologies commonly scene 

in quality management programs. For example Kuei et al., (2008) indicated that quality 
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management practices are “closely associated” with better supply chain performance and greater 

capabilities. Flynn and Flynn (2005) also supported by empirical evidence the desire for 

integration of quality management with supply chain management. In addition Kaynak and 

Hartly (2008) provided empirical data and analysis by statistical methods the relationships 

between quality management and performance measures to futher the improvement of customer 

relations and other constructs. Finally, Jarrett (2012) produced information suggestion that  

Simple Univariate control charts were often not the best method for quality management in the 

supply chain and managers should consider additional methods for the merging or quality 

management with supply chain management systems. Whereas EWMA charts may produce 

better control charts than simple Univariate control charts, you will l see in the later sections that 

more sophisticated control charts will be easier to use and produce more efficient results. 

Processes with Dynamic Inputs  
 
In an extensive survey, Alwan and Roberts (1995) found that more than 85% of industrial 

process control applications resulted in charts with possibly misplaced control limits. In many 

instances, the misplaced control limits result from autocorrelation of the process observations, 

which violates a basic assumption often associated with the Shewhart Control chart (Woodall 

(2000)). Autocorrelation of process observations has been reported in many industries, 

including cast steel (Alwan, 1992), blast furnace operations (Notohardjono and Ermer 1986), 

wastewater treatment plants (Berthouex, Hunter, and Pallesen, 1978), chemical processes 

industries (Montgomery and Mastrangelo, 1991), semiconductor manufacturing (Kim and May, 

1994), injection molding (Smith 1993), and basic rolling operations (Xia, Rao, Shan and Shu, 

1994). 

Several models have been proposed to monitor processes with auto correlated observations. 

Alwan and Roberts (1988) suggest using an autoregressive integrated moving average (ARIMA) 

residuals chart, which they referred to as a special cause chart. For subsample control 

applications, Alwan (1992) describe a fixed limit control chart, where the original observations 

are plotted with control limit distances determined by the variance of the subsample mean 

series. Montgomery and Mastrangelo (1991) use an adaptive exponentially weighted moving 

average (EWMA) centerline approach, where the control limits are adaptive in nature and 



7 
 

determined by a smoothed estimate process variability. Lu and Reynolds (2001) investigate the 

steady state average run length of cumulative sum (CUSUM), EWMA, and Shewhart control 

charts for auto correlated data modeled as a first order autoregressive process plus an 

additional random error term. 

A problem with all these control models is that the estimate of the process variance is sensitive 

to outliers which is especially import in supply chain applications. If assignable causes are 

present in the data used to fit the model, the model may be incorrectly identified and the 

estimators of model parameters may be biased, resulting in loose or invalid control limits 

(Boyles (2000)). To justify the use of these methods, researchers have made the assumption 

that a period of “clean data” exists to estimate control limits. Therefore, methods are needed 

to assure that parameter estimates are free of contamination from assignable causes of 

variation. Intervention analysis, with an iterative identification of outliers, has been proposed 

for this purpose. The reader interested in more detail should see Alwan (2000, pp 301-307), 

Atienza, et al. (1998), and Box, Jenkins, and Reinsel (1994, pp. 473-474). Atienza et al. 

recommend the use of a control procedure based on an intervention test statistic, λ, and show 

that their procedure is more sensitive than ARIMA residual charts for process applications with 

high levels of positive autocorrelation. They limit their investigation of intervention analysis, 

however, to the detection of a single level disturbance in a process with high levels of first 

order autocorrelation. Wright, Booth, and Hu (2001) propose a joint estimation method 

capable of detecting outliers in an auto correlated process where the data available is limited to 

as few as 9 to 25 process observations. Since intervention analysis is crucial to model 

identification and estimation, we investigate varying levels of autocorrelation, autoregressive 

and moving average processes, different types of disturbances, and multiple process 

disturbances. 

The ARIMA and intervention models are appropriate for auto correlated processes whose input 

streams are closely controlled. However, there are quality applications, which we refer to as 

“dynamic input processes,” where this is not a valid assumption. The treatment of wastewater 

is one example of a dynamic process that must accommodate highly fluctuating input 

conditions. In the health care sector, the modeling of emergency room service must also deal 
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with highly variable inputs. The dynamic nature of the input creates an additional source of 

variability in the system, namely the time series structure of the process input. For these 

applications, modeling the dynamic relationship between process inputs and outputs can be 

used to obtain improved process monitoring and control as discussed by Alwan (2000, pp. 675-

679). 

 

When processes violate the assumptions of simple Univariate control charts, another method for 

SPC must be found [Woodall (2000)]. Earlier we learned that the placement of quality control 

limits (Sun and Matsui, 2006 and 2008) cause changes in the expected total cost per unit in the 

supply and the “due time” as well, misplacement of control by the convention simple control 

charts will have great effects on the economic efficiency of the supply chain management 

system. In turn, the implication is that if a manager does not recognize the dynamics of the SPC 

system, the consequential effect will like be to make the prevailing supply chain system 

noncompetitive. If this is so, we should examine what other SPC systems should be utilized to 

make the supply chain system competitive. Last, a question remains as to whether the poalsoals 

of reducing cost of the supply and improvement in meeting the “due time” will be met by the 

Always and Roberts method/ Since , we have noted that control limits of simple control charts 

correlated with goals, more efficient methods that reduce the likelihood of false signals from 

control charts will reduce the number of product requiring additional effort to rework 

nonconforming unts, a manger can only expect  reduce costs and increase the probability of 

meeting “due time” requirements. One additional model proposed  by West, Delana and Jarrett 

(2002) follows a transfer function model to solve problems having dynamic behavior. The result 

is to design a SPC system to produce dynamic control charts having control limits that do not 

violate the assumption of no autocorrelation in the various time series of data. Their model is 

based on one  and follows a by Chen and Liu (1993a,1993b). and follows the transfer function 

model of Box and Tiao (1975). Specific applications of the last model are given by Box, Jenkins 

and Reinsel (1994, p 392, or 2008) for the development of the transfer function term, and Box, 

Jenkins and Reinsel (1994, p 462, or 2008) for details of the intervention term. Other examples 

are seen in Chang, Tiao, and Chen (1988) who extended the model of Box and Tiao (1975) Also, 

Chen and Liu (1993a,1993b) discussed both autocorrelation and intervention disturbances in 

time series. These modelers, in addition, defined procedures for detecting innovational outliers 



9 
 

and additive outliers and for jointly estimating time series parameters. Their work also 

demonstrates the need for future study of the nature of outliers. However, further research into 

the relation of these methods for determining control chart limits and their correlation with the 

probability of meeting the “due time” requirement and minimizing the expected cost per unit in 

the supply chain when such disturbance arise. 

 

Multivariate Control Charts (MPC) 
 
Charts having only one limit to determine signals as to whether the process is in control or not 

would be additionally beneficial to supply chain systems managers. By having a single control 

limit based on the average run length (ARP), one can determine more easily the ability to control 

the “due time” and the expected total supply chain costs. 

A multivariate analysis utilizes the additional information due to the relationships among the 

variables and these concepts may be used to develop more efficient control charts than 

simultaneously operated several univariate control charts. The most popular multivariate SPC 

charts are the Hotelling’s T2 (see Sullivan and Woodall (1996) and multivariate exponentially 

weighted moving average (MEWMA) (Elsayed and Zhang, 2007). Multivariate control chart for 

process mean is based heavily upon Hotelling’s T2 distribution, which was introduced by 

Hotelling (1947). Other approaches, such as a control ellipse for two related variables and the 

method of principal components, are introduced by Jackson (1956) and Jackson (1959). A 

straightforward multivariate extension of the Univariate EWMA control chart was first 

introduced in Lowry Woodall, Champ and Rigdon (1992) and Lowry and Montgomery (1995) 

developed a multivariate EWMA (MEWMA) control chart. It is an extension to the Univariate 

EWMA. 

Interpretation of Multivariate Process Control Control Charts 
 

Multivariate quality control (MPC) charts (Hotelling, 1947, Jackson, 1956, 1959 and 1985, 

Hawkins, 1991, and 1993, Kalagonda and Kulkarni, 2003 and 2004, Wierda, 1994, and Jarrett 

and Pan, 2006, 2007a and 2007b, and Mastrangelo and Forrest, 2002) have several advantages 

over creating multiple Univariate charts for the same business situation 
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1. The actual control region of the related variables is represented. In the bivariate case the 

representation is elliptical. 

2. You can maintain a specific probability of a Type 1 error (the risk or α). 

3. The determination of whether the process is out of or in control is a single control limit. 

Currently, there is a gap between theory and practice and this is the subject of this manuscript. 

Many practitioners and decision-makers have difficulty interpreting multivariate process control 

applications although the book by Montgomery (2005) addresses many of the problems of 

understanding not discussed in the technical literature noted before. For example, the scale on 

multivariate charts is unrelated to the scale of any of the variables, and an out-of-control signal 

does not reveal which variable (or combination of variables causes the signal). 

Often one determines whether to use a univariate or multivariate chart by constructing and 

interpreting a correlation matrix of the pertinent variables. If the correlation coefficients are 

greater than 0.1, you can assume the variables correlate, and it is appropriate to construct a 

multivariate quality control chart. 

The development of information technology enables the collection of large-size data bases with 

high dimensions and short sampling time intervals at low cost. Computational complexity is now 

relatively simple for on-line computer-aided processes. In turn, monitoring results by automatic 

procedures produces a new focus for quality management. The new focus is on fitting the new 

environment. SPC now requires methods to monitor multivariate and serially correlated 

processes existing in new industrial practice. 

Illustrations of processes which are both multivariate and serially correlated are numerous in the 

production of industrial gasses, silicon chips and highly technical computer driven products and 

accessories. In optical communication products manufacturing, the production of fiber optic is 

based on SiO2 rods made from condensation of silicon and oxygen gasses. The preparation of 

SiO2 rods need to monitor variables such as temperature, pressure, densities of different 

components, and the intensity of molecular beams. Similar processes exist in chemical and 

semiconductor industries where materials are prepared and made. In service industries, the 

correlation among processes are serial because due to the inertia of human behaviors, and also 

cross-sectional because of the interactions among various human actions and activities. As an 

example, the number of visits to a restaurant at a tourist attraction may be serially dependent and 

also related to (1) the room occupation percentage of nearby overnight residences and (2) the 
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cost and convenience of transportation. Furthermore, the latter factors are also auto correlated 

and cross-sectionally correlated to each other. Business management and span of control 

problems relate unit sales to internal economic factors such as inventory, accounts receivable, 

labor and materials costs, and environmental factors such as outputs, competitors’ prices, 

specific demands, and the relevant economy in general. These problems are multivariate and 

serially correlated because one factor at one point in time is associated with other factors at other 

points in time (past, present and future). 

SPC emphasizes the properties of control for decision making while it ignores the complex 

issues of process parameter estimation. Estimation is less important for Shewhart control charts 

for serially independent processes because the effects of different estimators of process 

parameters are nearly indifferent to the criterion of average run length (ARL). Processes’ having 

serial correlation, estimation becomes the key to correct construction of control charts. Adopting 

workable estimators is then an important issue. 

Research on quality control charts for correlated processes focused on Univariate processes. Box, 

Jenkins, and Reincil (1974) and Berthouex, Hunter and Pallesen (1978) noticed and discussed 

the correlated observations in production processes. Alwan and Roberts (1988) proposed a 

general approach to monitor residuals of Univariate auto correlated time series where the 

systematic patterns are filtered out and the special changes are more exposed. Other studies 

include Montgomery and Friedman (1989), Harris and Ross (1991), Montgomery and 

Mastrangelo (1991), Maragah and Woodall (1992), Wardell, Moskowitz and Plante (1994), Lu 

and Reynolds (1999), West, Delana and Jarrett (2002) and West and Jarrett (2004), English and 

Sastri (1990), Pan and Jarrett (2004) suggested state space methodology for the control of auto 

correlated process. Further, additional technologies implemented by Testik (2005), Yang and 

Rahim (2005) and Yeh, Huang and Wu (2004) provide newer methods for enabling better MPC 

methods. 

To consider how the MPC system works the author collected data from a manufacturing process 

to exemplify the system. Note, in Figure 1, the simplicity of interpretation. The control charts, 

each containing a different multivariate algorithm, produces results simple to interpret. There 

exists on either control chart only one control limit in which a manager would have to interpret. 

The lower control limit (LCL) does not exist one upper chart and the LCL equals zero on the 

lower chart. Hence, only points (observations) above the upper control limit (UCL)  yeield a 
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signal that the process is out of control. The supply management system manager can more 

easily determine the total costs per unit of the supply chain management system and the 

likelihood of meeting the “due time” by the methods developed by Sun et al. noted before. 

Hence, the mathematics of MPC is more difficult for some to understand, the resulting control 

charts give rise to s system that a manager can meet the primary goals of the supply chain 

management system 

--Insert Figure 1-- 

Conclusions 

This manuscript discusses the control chart usage and illustrate why better procedures are 

available to supply chain managers. For example, we illustrated methods developed by Alwan 

and Roberts’ utilizing residual chart analysis. Later we explored methods such as West et. al. 

transfer function application and traditional Multivariate Hotelling T2 chart to monitor 

multivariate and multivariate serially correlated processes (those with dynamic inputs). The 

scheme can be viewed as a generalization of Alwan and Roberts’ special cause approach to 

multivariate cases. The guideline and procedures of the construction of VAR residual charts are 

detailed in this paper. Molnau et.al. (2001) produces a method for calculating ARL for 

multivariate exponentially weighted moving average charts (2001). Mastrangelo and Forrest 

(2002) simulated a VAR process for SPC purposes. However, the general study on VAR residual 

charts is heretofore not reported.  In addition, more recent studies by Kalagonda and Kulkarni 

(2003 and 2004), and Jarrett and Pan, (2006, 2007a and 2007b) indicate additional ways in which 

one can improve upon the multivariate methods currently available in commercial quality control 

software such as Minitab® and others.  These newer techniques provide more statistically 

accurate and efficient methods for determining when processes are in or not control in the 

multivariate environment.  When these methods become commercially available, practitioners 

should be able to implant these new statistical algorithms for multivariate process control charts 

(MPC) using ARL measure to control and improve output. 

These new methods provide methods for MPC charts focusing on the average run length.  The 

purpose is to indicate how useful these techniques are in the supply chain environment where 

processes are multivariate, dynamic or both.  Simple SPC charts though very useful in simple 



13 
 

environments may have limited use in the supply chain.  In any event, future research should 

focus on exploring the characteristics of the supply chain and finding the best model to 

implement quality planning and improvement programs. Multivariate analysis should provide 

many of the new tools for adaption in improving supply chain management. Further we have 

seen from Sun and Matsui (2006, 2008) that supply chain systems managers can minimize 

supply chain costs and in, turn have a system that is more competitive. Efficient supply chains 

are what both customers and suppliers need. The costs of security , stoppages and threats to the 

supply chain will diminish when managers explore the usefulness of multivariate methods noted 

before. Last, these supply managers much be trained, retrained and continually trained in those 

methods that best fit the supply chain environment. In the future, we expect that examples of the 

efficiency of MPC in the supply chain system will occur such as Pan and Jarrett (2013, who 

utilized methods of operations research on stable time series to improve the construction of 

control chart construction. Hence, the future is bright if these process control systems become a 

central part of the supply chain management system,. 
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Appendix 

 
EWMA chart achieves faster detection of small changes in the mean.  The EWMA chart is used 

extensively in time series modeling and forecasting for processes with gradual drift (Box and 

Draper, 1998) It provides a forecast of where the process will be in the next instance of time.  It 

thus provides a mechanism for dynamic process control (Hunter, 1986). 

 

The EWMA is a statistic for monitoring the process that averages the data in a way that gives 

exponentially less and less weight to data as they are further removed in time. 

 

The EWMA statistic is defined by 
 

Z𝑖=  𝜆𝑋𝑖 + (1 − 𝜆)𝑍𝑖−1    with  0 ≤ λ < 1,  Z𝑜  =  𝜇𝑜              (1) 
 

can be used as the basis of a control chart.  The procedure consists of plotting the EWMA 

statistic Z𝑖 versus the sample number on a control chart with center line 𝐶𝐿 = 𝜇𝑜 and upper and 

lower control limits at  

 

𝑈𝐶𝐿 = 𝜇𝑜 + 𝑘ō �̅��
𝜆

2−𝜆
  [1 − (1 − 𝜆)2𝑖]                            (2) 

 

𝐿𝐶𝐿 = 𝜇𝑜 + 𝑘ō �̅��
𝜆

2−𝜆
  [1 − (1 − 𝜆)2𝑖]                            (3) 

 
The term [1 − (1 − 𝜆)2𝑖] approaches unity as i get larger, so after several time periods, the 

control limit will approach steady state values. 

 

𝑈𝐶𝐿 = 𝜇𝑜 + 𝑘ō �̅��
𝜆

2−𝜆
         (4) 

 

𝐿𝐶𝐿 = 𝜇𝑜 + 𝑘ō �̅��
𝜆

2−𝜆
         (5) 

 
The design parameters are the width of the control limits k and the EWMA parameter 𝜆. 

Montgomery (2005) gives a table of recommended values for these parameters to achieve certain 

average run length (ARL) performance.  
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In many situations, the sample size used for process control is n = 1; that is, the sample consists 

of an individual unit (Montgomery and Runger,2003). In such situations, the individuals control 

chart is useful. The control chart for individuals uses the moving range of two successive 

observations to estimate the process variability. The moving range is defined as MRi = abs ( Xi – 

Xi-1) an estimate of б is 

         
   б =    𝑀𝑅

�����

𝑑2
 = 𝑀𝑅�����/1.128          (6)                                                   

 
Because 𝑑2 = 1.128 when two consecutive observations are used to calculate a moving range. It 

is also possible to establish a control chart on the moving range using D3 and D4 for n = 2. The 

parameters for these charts are defined as follows: 

The central line (CL) upper and lower control limits for a control chart for individual are 

                                                                                       

UCL = 𝑋� + 3 𝑀𝑅 𝑑2 =  𝑋� + 3   
𝑀𝑅
1.128

,   

  CL = 𝑋�      
and LCL = 𝑋� – 3 𝑀𝑅/𝑑2=  𝑋� - 3   𝑀𝑅 1.128     (7) 

 
For a control chart for moving ranges 
 

UCL = D4 𝑀𝑅����� = 3.267 𝑀𝑅����� 
 

                                                                              CL = 𝑀𝑅�����    
 

UCL = D3 𝑀𝑅����� = 0                          (8) 
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Figure 1 
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 Result of MPC Using Minitab®  Quality Software 
 

Note: Upper chart contains five points out of control and seventeen points almost out of 
control in T-Squared Chart. Lower chart (generalized variance) denotes eight points out of 

control and a large number nearly out of control. Only one control limit for ARL, to determine 
whether a is in control or not. This is a specific advantage for supply chain system managers. 

Last, MPC models of this type are more efficient in controlling the Probability of a Type 1 
error and should have far less false signals. 
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