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TESTING THE ACCURACY OF EMPLOYEE-REPORTED DATA: 

AN INEXPENSIVE ALTERNATIVE APPROACH TO 

TRADITIONAL METHODS 
 

ABSTRACT 
 

Although Information Technology (IT) solutions improve the collection and validation of 
operational data, Operations Managers must also rely on self-reported data from workers to make 
decisions. The problem with this data is that they are subject to intentional manipulation, thus 
reducing their suitability for decision-making. A method of identifying manipulated data, digital 
analysis, addresses this problem at low cost.  In this paper, we demonstrate how one uses this 
method in real-world companies to validate self-reported data from line workers.  The results of 
our study suggest that digital analysis estimates the accuracy of employee reported data in 
operations management, within limited contexts.  These findings lead to improved operating 
performance by providing a tool for practitioners to exclude inaccurate information. 
 
Keywords 
Digital Analysis, Benford's Law, Plastics Industry, Operations Management, Fraud Detection  
 
 

INTRODUCTION 

In 2002, we conducted a quality audit for a manufacturing firm to discover the source of an 

uncharacteristic increase in the number of customer returns.  The firm employs Statistical 

Process Control (SPC) to track performance of its production process.  After review of the SPC 

charts, we found no patterns that indicated the level of defects observed in the returned goods, 

thus suggesting a product design flaw or error in specifications, which were transmitted into the 

equipment setup and charts.  However, further investigation indicated that an experienced line 

worker (machine operator) fabricated product weight data on the SPC chart, which was 

discovered after 10 days production were shipped, rejected, and returned from the customer.  The 

operator failed to perform weight check on production runs and randomly assigned fraudulent 

weights within the SPC limits in a pattern that appeared to be genuine.  This meant that SPC did 



 3 

not detect the product defects.  This single incident cost the company an estimated $300,000 

(US) of which only $40,000 was recoverable. 

 This issue presented an interesting problem to managers.  Since managers rely on 

employee reported data to make decisions, how can they estimate the accuracy of the 

information without reinstituting traditional quality control inspection and sampling procedures 

for which they worked hard to replace?  Additionally, since the company's managers prided 

themselves on trusting employees, how could they ensure data accuracy without instilling a sense 

of distrust among machine operators?  After all, this problem occurred with only one of 21 

operators employed at this facility.  If managers, in this example, had an inexpensive tool to 

validate the data reported by the dishonest operator, the problem could have been identified 

earlier. 

 The purpose of this study is to provide operations managers with a tool to validate self-

reported data from line workers, where the reports are the only source of information, or where 

secondary sources are difficult or expensive to obtain.  The problem with employee reported data 

is that it provides the opportunity for individuals to manipulate the results, thus reducing its 

suitability for decision-making.  Managers who do not have a secondary source for verifying the 

accuracy of employee reported data, may find decreased performance in activities and processes 

that rely on this information.  Hence, we identified how other disciplines address this issue.  We 

found that financial auditors commonly employ a method called digital analysis to identify 

suspect data.  One purpose of this study is to apply this method in two companies and industries 

to evaluate its ability to detect fraudulent data in the context of operations.  A second purpose is 

to extend the use of digital analysis to data types not considered in previous studies, i.e. to 

distributions previously considered inappropriate for digital analysis. 
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LITERATURE REVIEW 

The literature is replete with methods for gathering and evaluating data from manufacturing 

processes, most notably Statistical Process Control, statistical (acceptance) sampling, and post-

process quality control inspection (Deming, 1986).  While powerful, these techniques rely 

heavily on the integrity of the workers collecting the data – which at times prove to be 

problematic (Hales et al., 2004).  To combat fraud in self-reported data, managers rely on 

duplicate measurements and post-process inspections to validate information.  The main problem 

with these approaches is that they are expensive to execute and run counter to many 

contemporary business techniques of trusting workers and eliminating waste through duplicate 

efforts (Deming, 1986).  In reviewing how other disciplines detect fraudulent data, we found 

digital analysis.           

Digital analysis refers to a technique for estimating the distributions of certain digits, 0 – 

9, in naturally occurring data (i.e. data that is not intentionally manipulated).  The premise of the 

technique is that naturally occurring data have different distributions than manipulated data.  One 

estimates probabilities for these occurrences and then compares them to actual process data.  If 

there are differences between the actual and estimated distributions, then the data is said to have 

a probability of containing systematic error or statistical bias (Nigrini, 1996a, 1998, 1999, 2000; 

Nigrini and Mittermaier, 1997).  Other applications include detecting fraud in areas such as 

declaration records (Browne, 1998), and the feasibility of outputs from computer simulations and 

logistics models (Hill, 1995, 1996, 1998).  While the procedure is not applicable in all situations, 

it does provide an inexpensive alternative to other forms of validation procedures such as 

statistical sampling or duplicate measurement.  In the only Operations application found, Becker 

(1982) used the method to estimate the degree to which machine failure rate lists, based on 

Mean-Time-To-Failure calculations had systematic error, indicating intentional manipulation or 
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defects in measurement processes.  

 The literature suggests the type of data appropriate for digital analysis.  The primary 

qualifications are that they be from large data sets with preferably large ranges, generated 

naturally without pre-set limits or breakpoints, and without intervention.  Evidence suggests that 

the larger the range, the smaller the required data set.  The distributions are Weibull-like in shape 

and hold true for populations and representative samples (Brown, 2005; Nigrini, 1996b; Hill, 

1995).  These assumptions require that a test for appropriateness be conducted using values 

known to be generated without intervention.  If the observed probability distribution matches that 

predicted by the analysis, then the data set is considered appropriate for testing.  In terms of 

digits, this means that each digit's place in a numerical value has a distinct probability of having 

a value 1 – 9 for a first place digit, and 0 – 9 for a second place and subsequent place digits. 

 In investigating the theoretical support for digital analysis, we discovered a principle 

called Benford's Law (hereafter Law).  The phenomenon on which the Law is based was first 

discovered in 1881 by astronomer Simon Newcomb (Newcomb 1881), and then independently in 

1938 by General Electric physicist Frank Benford (Benford 1938), for whom it is named.  The 

Law states that digits of data generated under certain assumptions do not occur randomly, but in 

distinct patterns.  For example, the so called first digit pattern can be determined using equation 

1.1 below: 

 Pr(X=x) = Log[10] (1+1/x), where x = 1,2,…,9 (Newcomb 1881).   1.1 

The distribution predicted by equation 1.1 is summarized in Table 1.  

  

------------------------------- 

Insert Table 1 about here 

-------------------------------- 
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This model has been used to accurately predict many empirically-based distributions 

(Hill, 1996b).  Since Benford’s discovery of the phenomenon, researchers found that 

probabilities can be estimated for digits occurring as ‘second’, ‘third’, ‘fourth’ and ‘fifth’ places 

(Nigrini, 1999).  A general formula for finding these probabilities is known as the General 

Significant-Digit Law (Hill, 1995).  It takes the form presented in equation 1.2, 

 

for all k є N, all di1 є {1,2,…,9} and all di2  є {0,1,2,…,9}, j = 2,…,k, 

  P(∩i=1{Di = di1}) = log10 [1 + ( Σ di2 * 10k-i)-1]    1.2  

 

 Equation 1.2 allows us to determine the expected frequencies, which are useful to detect 

potentially fraudulent patterns by means of a statistical comparison of the expected frequencies 

and the observed frequencies (i.e. Chi-square Analysis).  If there is interference in data 

generations, the distributions are not likely to match.  Thus, if the actual data do not conform to 

expectations, the probability of systematic error exists (Nigrini and Mittermaier, 1997).  It is 

important to note here that systematic error occurs from two sources; first, by intentional 

manipulation of data, and second, by faulty measurement instruments.  In an operations context, 

discovering the true cause of systematic error before assigning blame is crucial. 

 

 

METHODOLOGY 

Digital Analysis involves two steps.  The first step is to verify that the distribution of accurate 

data from a process operating under controlled conditions conforms to the expected distribution 

determined based on equation 1.2 above.  It serves to establish applicability of the methodology. 

Second the expected distribution is compared to actual data from operations, thus testing for 
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manipulation or fraud.  To test the applicability of digital analysis in operations, we chose to 

examine data gathered at two manufacturing firms.  To compare observed and expected 

distributions we use Chi-square analysis.  A similar approach was used by Nigrini (1996), Hill 

(1996b), and others on the basis that since data conforming to digital analysis are not normally 

distributed the use of distribution-free techniques is appropriate.  However, it is important to note 

that Chi-square tests are only appropriate for data sets with fewer than 10,000 observations – 

because above this level the calculated statistic almost always exceeds the critical value (Nigrini, 

2000).  As a prerequisite to the publication of our findings, we agreed to protect the identity of 

one of the firms.  The first company (company A) is a plastics manufacturer owned, at the time 

of this study, by Constar Inc. – a fortune 500 company.  Company B is a manufacturer of small 

storage units owned, at the time of this study, by MWI Inc. 

 The event described in the introduction occurred in Company A.  The data in question 

pertained to the weights of plastic bottles manufactured with extrusion blow molding.  As bottle 

weight stability is a key indicator of process performance, controlling its variation is important to 

assuring quality products.  The company tracked bottle weights using SPC charts (X-bar chart) to 

monitor process performance.  We propose that these charts could be checked for systematic 

error by using digital analysis.  In addition to studying bottle weight data, we examined SPC 

charts used to control the length stability of wood components at Company B.  As a benchmark, 

we investigate the applicability of the digital analysis method in an additional manufacturing 

firm with different products and specifications.  Company B manufactures components for and 

assembles small wooden storage buildings.  Length stability (consistency of cutting equipment) 

of these components is a key indicator of process stability. 

   Once the data were validated, Company A afforded the researchers the opportunity to 

study the possible benefits of implementing digital analysis in one of the company’s production 
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plants.  To do so, we conducted a follow-up study to estimate the benefits of discovering 

systematic bias in bottle weight reports.  Since news of the fraudulent operator was public 

knowledge, we waited six months before conducting the follow-up study.  With the concurrence 

of the General Manager of the company, we conducted the follow-up study as an experiment.  To 

prevent line operators from biasing the collection of baseline data, they were not initially 

informed of the purpose of our study.  To begin the experiment, we examined data from SPC 

charts that were generated over the previous 10 days.  Then, operators were notified that the 

researchers would be reviewing SPC charts to examine the accuracy of weight check data.  After 

10 days we compared the “before” and “after” results.   

 

The Empirical Studies in Companies A and B 

First, we tested the suitability of digital analysis for the bottle weight data in Company A.  We 

found the actual distribution of weights not to conform to that predicted by digital analysis.  This 

occurred because the first two or three digits of bottle weights were nominal and dictated by 

customer specification. Therefore, they could not randomly take on any value between 1-9, and 

0–9 respectively.  For example, quart bottles are produced so that the average weight is at 53.00 

grams, with an accepted variation of ± 3.00 grams.  This means that the process is designed to 

produce quart bottles between the values of 50.00 – 56.00 grams, with two decimal place 

sensitivity.  This characteristic traditionally disqualified the data as appropriate for digital 

analysis because the first digit is always 5 and the second digit can vary only between 0 and 6. 

However, we observed an interesting phenomenon in the digits following the decimal place.  

While examining a sample of 515 quart bottles, we recognized that the third and fourth digits 

vary according to the pattern predicted for the third and fourth digits by digital analysis.  Next, 

we randomly examined samples of 523 one-gallon bottles and 576 pint bottles and found a 



 9 

similar phenomenon in the latter digits.  The sample sizes were conservatively chosen because 

there are no useful guidelines for the minimum number of observations needed for digital 

analysis in the literature. Further, we found no existing study with less than 100 data points.  

Based on this exploratory finding, we formulated two hypotheses for quart weights.  While each 

hypothesis is individually listed in Table 2, all of them take the general form where the null 

hypothesis is that the observed and expected frequencies are the same [Ho: Observed distribution 

= Expected distribution] and the alternative is [Ha: Observed distribution ≠ Expected 

distribution] the distributions are not the same.  For digital analysis to apply, the null will not be 

rejected.  

 The results were surprising in that the quart weights had the characteristics predicted by 

digital analysis for the third and fourth place digits.  While the results provide justification for 

using digital analysis for further testing, it represents only a single test case involving one SKU, 

in one industry.  Therefore, we formulate two additional hypotheses to test gallon-size bottles 

with weight specification 300 ± 10.00 grams, and found the third and fourth digits conformed to 

the expected distributions.  Last, we tested pint-size bottles with weight specification 22 ± 2.00 

grams.  These also conformed to the expected distributions for the third and fourth digits.  These 

data and the statistical results are shown in Table 2. 

 

 ----------------------------- 

Insert Table 2 about here 

------------------------------- 

 

For all six hypotheses, the Chi-square test indicates that at p<.01, (Chi-sq. Critical Value 

= 21.67) we fail to reject the null hypothesis.  Therefore, we propose that digital analysis can be 
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used to estimate the accuracy of self-reported data even when nominal values occupy the first 

and/or second digits.  This finding supports the extension of the application to distributions 

previously deemed inappropriate.  

 To test this approach in a benchmark industry, we examined the variation in component 

lumber lengths used to manufacture small storage buildings in Company B.  These lengths are 

important because excessive variation in cut lengths increases difficulty in assembly, as well as 

harms aesthetics and functionality of the unit in the field.  While specifications allow variation of 

± 1.27 cm (i.e. 2.54 centimeters) in lengths, components are segregated in batches for assembly 

in groups with variation less than .64 cm.  These lengths are tracked using SPC charts and, like 

plastic bottles in Company A, carried nominal values for the first, second, and sometimes third 

digits.  We examined three different lengths of lumber with the following specifications 243.84 ± 

1.27 cm (8 feet ± .5 in.); 304.80 ± 1.27 cm (10 feet ± .5 in.); and 609.60 ±1.27 cm (20 feet ± .5 

in.).  The resulting data, hypotheses, and results of the analysis are shown in Table 3.   

 

------------------------------ 

Insert Table 3 about here 

------------------------------ 

Results of the Chi-square tests indicate that at p<.01 (Chi-sq. Crit. Value = 21.67), we fail 

to reject four of six hypotheses, i.e. for lengths 243.84 cm and 304.80 cm.  This means that the 

observed distributions are not different than the expected distributions for these two lengths and, 

therefore, digital analysis is useful in evaluating the accuracy of data even in the presence of 

some nominal digits.  The null hypotheses were rejected for 609.60 cm lengths.  The sparse 

sample size, (n< 100), and/or measurement error may account for these inconclusive results.  

Another factor could be the inordinate number of 0's, 1's, and 2's that was characteristic of this 
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sample.  This distorts the observed distribution.  Only additional data analysis could resolve this 

issue. 

 

The Experimental Study in Company A 

To estimate the benefits that digital analysis could provide to the firm, we conducted a 

randomized experiment.  The experiment involved collecting baseline data on five line operators 

(chosen at random), then introducing the treatment factor (our visible supervision of weight 

checks), and collecting follow-up data.  As part of the baseline data, we conducted digital 

analysis for a period of ten days, segregated by operator and bottle type.  Since no minimum 

sample size requirement has been established in the literature, we examined the data in 

aggregate, by product type.  This meant that there were approximately 2200 weight checks 

examined per bottle-type.  This is four times that used in our preliminary study to qualify the 

bottle weight data for digital analysis.   

Out of the five operators, two showed strong bias toward systematic error and one had 

mixed results.  The other two operators did not have Chi-square values that exceeded the critical 

value for rejection of the null hypotheses.  The results were consistent across product types, in 

the sense that the observed patterns were not different from the expected patterns but inconsistent 

across operators.  Within bottle types we detected systematic error only when segregated by 

operator.  This indicated that the systematic error was caused by the line operators and provided 

strong evidence that two of the five line operators were manipulating data.   

We then applied the experimental treatment by notifying the line operators that we will 

be observing them performing weight checks.  Next, we conducted a follow-up analysis of their 

SPC data sheets.  Since the five operators worked only on first shift, we were able to periodically 

observe their behavior and make our supervision obvious.   
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 During the first day of observation, the two operators with systematic errors were 

extremely busy, and as such were not able to perform weight checks on time.  In fact, two of the 

production lines were down during some weight checks.  When these two operators asked us 

how they should complete their reports, we instructed them to perform weight checks on startup 

and note the time discrepancy.  While the remaining three operators were also busy, they had 

time to complete weight checks as scheduled.  This same phenomenon was repeated on day two 

and three.   

At the end of day three we met with the General Manager and informed him that two of 

the line operators did not complete their weight checks during the three days of observation; 

however, according to their reports, they had completed them during the pervious ten days.  In 

addition, the operators asked us how to conduct weight checks when they were busy or a line 

was down at the time the check was to be conducted, which appeared odd to us.  A question 

arose as to what procedure they, and the other operators, were following prior to our experiment 

when production lines were down.   

After some investigation, the General Manager discovered that line operators were 

reprimanded by supervisors when SPC charts were incomplete.  The standard procedure was to 

have another operator conduct weight checks if a line operator was tied up.  Since down 

production lines were extremely costly, operators were required to make restarting them a 

priority over all other responsibilities in their jobs.  Another finding was that the two operators in 

question were responsible for lines which were soon to be overhauled as part of scheduled 

maintenance (at the end of their maintenance cycle) and thus, required a great deal of what was 

referred to in Constar Inc. as "hand-holding" or "baby-sitting" to keep them running.  In fact, the 

supervisor informed us that the two lines were well beyond their maintenance cycle, but were 

kept in service due to unexpected demand spikes.  In addition, when questioning the other three 
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operators on why they had not assisted the two busy operators, the supervisor found an apparent 

personal conflict between them.  To avoid airing the personal conflicts to the supervisor and 

receiving reprimands due to incomplete reports, the two operators were filling in numbers on 

SPC charts. 

 While we were not able to identify a priori the cause of the systemic errors in the reports 

from two of the operators, digital analysis revealed the bias.  We thought we would improve the 

data accuracy by informing the operators we were checking their work; however, we found solid 

reasons why the data were being manipulated.  This corroborates our earlier remark that digital 

analysis should not be the sole basis for assigning blame, but instead it provides a basis for 

further investigation.  In addition, the one operator that had mixed results prior to revealing our 

intentions to supervise the weighing procedure also had mixed results during our observations.  

We could find no reasonable cause for the indication of manipulation at times, and no 

manipulation at other times.  The operator appeared to conduct the weight measurements 

properly. 

 

RESULTS AND IMPLICATIONS 

Based on our findings, the company decided to change the way it conducted SPC analysis.  

While disappointed with the way the operators failed to cooperate, the General Manager saw the 

effects of keeping equipment in service well beyond its maintenance cycle and the reliance of the 

current system on perfect cooperation between line operators – which is unreasonable to expect 

from a human behavior perspective.  To correct the problem, the company spent $2,000 (US) per 

production line on a system that would automatically report bottle weight results to a quality 

department computer as soon as the operator placed the bottles on a scale.  The system would 

then automatically generate SPC reports.  The operator, supervisors, and others could monitor 
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these reports to detect out-of-specification conditions.  This system would signal the line 

operator when to perform the weight checks, and would record the results directly from the 

scales, saving the operator approximately 45 minutes per day in paperwork.  If a weight check 

was missed, the supervisor was notified.  The supervisor would then take corrective action.  

Except for occasional incidents, this new system afforded line operators the time to perform 

proper routine adjustment on machines, and weight checks as long as equipment is not operated 

outside of its maintenance cycle.  Based on managerial cost estimates of past quality problems 

attributed to similar failures of the system, Constar estimated a savings of $300,000 (US) per 

month.          

  

CONCLUSIONS AND LIMITATIONS 

This study demonstrates how to conduct digital analysis, and suggests potential benefits from its 

use in operations management.  We qualified two types of manufacturing line measures as 

appropriate for digital analysis and, in doing so, found it could be extended to data types 

previously considered inappropriate.  We found no previous study applying digital analysis in 

this manner.  In addition, we used an experiment to demonstrate how to detect systematic 

problems and provide cost benefits to an adopting firm. 

 A significant benefit of this application is that it is relatively easy and inexpensive to use, 

making it a preferable method even in the presence of other verification options.  In addition, it 

can be performed without the knowledge or assistance of line workers who generate the data.  

Other techniques find this difficult to accomplish.  In our example given in the introduction 

section, one may catch the fraudulent reports early, thus preventing a loss of customer goodwill 

and the scrapping of ten days production. However, following the lead of others, we propose its 

use as a tool for identifying suspect data, and not as final evidence of fraud or non-systematic 
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error.  Lastly, we propose that digital analysis be extended to data containing some degree of 

nominal values.  We suggest that the minimum criteria is that at least one digits place must 

contain random values that are appropriate for digital analysis.   

 

Limitations of this Study and Digital Analysis  

Although promising as an analytical tool, digital analysis does not determine fraud, but it may 

suggest fraud.  For example, Hill (1995) warns that its reliability in detecting accounting fraud is 

dubious, since it provides a large number of false positives.  It is logical to assume that false 

positives would also occur in an operations context – especially in extreme digits.  However, 

Nigrini, et al. (1998, 1999), have ambitiously promoted its use in auditing.  They argue that 

while digital analysis is not deterministic of fraud or manipulation, it provides a solid basis for 

segregating suspect data – data with a high probability of manipulation - from data with an 

extremely low probability of manipulation.  This process can be used as a tool to focus scarce 

firm resources.  In addition, the identification of suspect data may be important to managers who 

rely on the information for making decisions. 

 Another limitation of this study is its examination of distributions of digits in extreme – 

where the patterns begin to approach randomness.  This means that the higher the placement of a 

digit in a numerical value, the closer the distributions become to random patterns – especially at 

the extremes of fifth digits.  There is a paucity of research validating the use of digital analysis at 

such extreme values with large data sets.  This calls into question the veracity of using digital 

analysis for these extreme values and highlights the need for further empirical testing before 

generalizations can be made.        

 As only 131 articles exist on the topic, its application is still exploratory and requires 

further testing.  This study only examined 12 products, comprising two data types in two 
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industries.  A much larger data set is required to verify our extension of the analysis to new data 

types previously considered inappropriate.   



 17 

REFERENCES 

Becker, P., 1982, Patterns in listings of failure and MTTF values and listings of other data, IEEE 
Transactions on Reliability, R-31, pp 132-134 
 
Benford, F., 1938, The Law of Anomalous Numbers, Proceedings of the American Philosophical 
Society, 78, pp 551-572 
 
Brown, R.J.C., 2005, Benford’s Law and the screening of analytical data: the case of pollutant 
concentrations in ambient air, Analyst, v130, i9, pp 1280 -1285. 
 
Browne, M., 1998, Following Benford’s Law or Looking Out for Number 1, New York Times, 
147, i51239, F4 
 
Deming, W.E., 1986, Out of the Crisis, Cambridge Press, Cambridge. 
 
Hales, D., Sridharan, V, Radhakrishnan, A., Siha, S., 2004, Testing the Accuracy of Employee 
Reported Data, Proceedings of the Decision Sciences Institute, pp 3901-3906.  
 
Hill, T., 1995, A Statistical Derivation of the Significant-Digit Law, Statistical Science, 10, 4, pp 
354-363 
 
Hill T., 1996, A Note on the Distribution of True vs. Fabricated Data, Perceptual & Motor Skills, 
v83, i3, pp 776-778 
 
Hill, T., 1998, The First-Digit Phenomenon, American Scientist, 86, pp 358-363 
 
Newcomb, S., 1881, Note on the Frequency of Use of the Different Digits in Natural Numbers, 
American Journal of Mathematics, v4, 1 of 4, pp 39-40 
 
Nigrini, M., 1996a, A Taxpayer Compliance Application of Benford’s Law, Journal of the 
American Taxation Association, 18, 72-91  
 
Nigrini, M., 1996b, Using Digital frequencies to Detect Fraud, The White Paper, Apr/May,pp3-6 
  
Nigrini, M., Mittermaier, L., 1997, The Use of Benford’s Law as an Aid in Analytical 
Procedures, Auditing: A Journal of Practice and Theory, 16, pp 52-67 
 
Nigrini, M., 1998, Numerology for Accountants, Journal of Accountancy, 186, p 15  
 
Nigrini, M., 1999, I’ve Got Your Number, Journal of Accountancy, 187, pp 79-83 
 
Nigrini, M., 2000, Digital Analysis Using Benford’s Law, ACL Publishing 
    
 

 



 18 

TABLES 

 
Table 1 – Probability of first-digits using Newcomb’s formula 

Numerical value Probability 

1 30.1% 
2 17.6% 
3 12.5% 
4 9.7% 
5 7.9% 
6 6.7% 
7 5.8% 
8 5.1% 
9 4.6% 
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  Table 2- Data Analysis for Company  A   
3rd Digit for Quarts Specification = 53+-3.00 grams 4th Digit for Quarts    
Probability Digit Observed Expected Chi-Sq  Probability Digit Observed Expected Chi-Sq 

0.10178 xx.0 65 52.42 3.02  0.10018 xx.x0 48 51.59 0.25 
0.10138 xx.1 66 52.21 3.64  0.10014 xx.x1 46 51.57 0.60 
0.10097 xx.2 51 52.00 0.02  0.1001 xx.x2 59 51.55 1.08 
0.10057 xx.3 64 51.79 2.88  0.10006 xx.x3 66 51.53 4.06 
0.10018 xx.4 50 51.59 0.05  0.10002 xx.x4 52 51.51 0.00 
0.09979 xx.5 45 51.39 0.79  0.09998 xx.x5 66 51.49 4.09 
0.09940 xx.6 43 51.19 1.31  0.09994 xx.x6 42 51.47 1.74 
0.09902 xx.7 45 51.00 0.70  0.0999 xx.x7 38 51.45 3.52 
0.09864 xx.8 48 50.80 0.15  0.09986 xx.x8 44 51.43 1.07 
0.09827 xx.9 38 50.61 3.14  0.09982 xx.x9 54 51.41 0.13 

  515 515 
17.52 
(.041)    515 515 

16.50 
(.05) 

Ho: 3rd digit (Quarts-OBS) = 3rd digit (Quarts-EXP)  Ho: 4th digit (Quarts-OBS) = 4th digit (Quarts-EXP) 
Ha: 3rd digit (Quarts-OBS) /= 3rd digit (Quarts-EXP)  Ha: 4th digit (Quarts-OBS) /= 4th digit (Quarts-EXP) 
           
3rd it for Gallons Specification = 300+-10.00 grams 4th Digit for Gallons   
Probability Digit Observed Expected Chi-Sq  Probability Digit Observed Expected Chi-Sq 

0.10178 xx0. 63 53.23 1.79  0.10018 xxx.0 43 52.39 1.68 
0.10138 xx1. 64 53.02 2.27  0.10014 xxx.1 60 52.37 1.11 
0.10097 xx2. 56 52.81 0.19  0.1001 xxx.2 60 52.35 1.12 
0.10057 xx3. 57 52.60 0.37  0.10006 xxx.3 57 52.33 0.42 
0.10018 xx4. 52 52.39 0.00  0.10002 xxx.4 55 52.31 0.14 
0.09979 xx5. 55 52.19 0.15  0.09998 xxx.5 35 52.29 5.72 
0.09940 xx6. 33 51.99 6.93  0.09994 xxx.6 61 52.27 1.46 
0.09902 xx7. 44 51.79 1.17  0.0999 xxx.7 44 52.25 1.30 
0.09864 xx8. 49 51.59 0.13  0.09986 xxx.8 66 52.23 3.63 
0.09827 xx9. 50 51.40 0.04  0.09982 xxx.9 42 52.21 2.00 

  523 523 
14.38 
(.019)    523 523 

18.59 
(.029) 

Ho: 3rd digit (Gallons-OBS) = 3rd digit (Gallons-EXP)  Ho: 4th digit (Gallons-OBS) = 4th digit (Gallons-EXP) 
Ha: 3rd digit (Gallons-OBS) /= 3rd digit (Gallons-EXP)  Ha: 4th digit (Gallons-OBS) /= 4th digit (Gallons-EXP) 
           
3rd it for Pints Specification = 22+- 2.00 grams 4th Digit for Pints    
Probability Digit Observed Expected Chi-Sq  Probability Digit Observed Expected Chi-Sq 

0.10178 xx.0 54 58.63 0.36  0.10018 xx.x0 38 57.70 6.73 
0.10138 xx.1 45 58.39 3.07  0.10014 xx.x1 70 57.68 2.63 
0.10097 xx.2 63 58.16 0.40  0.1001 xx.x2 62 57.66 0.33 
0.10057 xx.3 48 57.93 1.70  0.10006 xx.x3 68 57.63 1.86 
0.10018 xx.4 60 57.70 0.09  0.10002 xx.x4 57 57.61 0.01 
0.09979 xx.5 57 57.48 0.00  0.09998 xx.x5 57 57.59 0.01 
0.09940 xx.6 62 57.25 0.39  0.09994 xx.x6 50 57.57 0.99 
0.09902 xx.7 42 57.04 3.96  0.0999 xx.x7 72 57.54 3.63 
0.09864 xx.8 72 56.82 4.06  0.09986 xx.x8 53 57.52 0.36 
0.09827 xx.9 73 56.60 4.75  0.09982 xx.x9 49 57.50 1.26 

  576 576 
17.47 
(.042)    576 576 

17.82 
(.037) 

Ho: 3rd digit (Pints-OBS) = 3rd digit (Pints-EXP)  Ho: 4th digit (Pints-OBS) = 4th digit (Pints-EXP) 
Ha: 3rd digit (Pints-OBS) /= 3rd digit (Pints-EXP)  Ha: 4th digit (Pints-OBS) /= 4th digit (Pints-EXP) 
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  Table 3 – Data Analysis for Company  B   
4th Digit for 243.84 cm (8 ft.) lengths    5th Digit for 243.84 cm     
Probability Digit Obsrvd Expected ChiSq  Probability Digit Obsrvd Expcted ChiSq 

0.10018 xxx.0 25 21.44 0.59  0.10002 xxx.x0 19 21.80 0.36 
0.10014 xxx.1 24 21.43 0.31  0.100018 xxx.x1 28 21.80 1.76 
0.1001 xxx.2 24 21.42 0.31  0.100016 xxx.x2 14 21.80 2.79 

0.10006 xxx.3 6 21.41 11.09  0.100006 xxx.x3 20 21.80 0.15 
0.10002 xxx.4 31 21.40 4.30  0.100001 xxx.x4 26 21.80 0.81 
0.09998 xxx.5 21 21.40 0.01  0.099999 xxx.x5 27 21.80 1.24 
0.09994 xxx.6 17 21.39 0.90  0.099996 xxx.x6 11 21.80 5.35 
0.0999 xxx.7 22 21.38 0.02  0.099993 xxx.x7 16 21.80 1.54 

0.09986 xxx.8 19 21.37 0.26  0.099989 xxx.x8 33 21.80 5.76 
0.09982 xxx.9 25 21.36 0.62  0.099985 xxx.x9 24 21.80 0.22 

  214 214 
18.43 

(.03)    218 218 
19.98 
(.018) 

Ho: 4th digit (8 ft.OBS) = 4th digit (8 ft.EXP)   Ho: 5th digit (8 ft.OBS) = 5th digit (8 ft.EXP)  
Ha: 4th digit (8 ft.OBS) /= 4th digit (8 ft.EXP)   Ha: 5th digit (8ft.OBS) /= 5th digit (8 ft.EXP)  

           
4th Digit for 304.8 cm (10 ft.) lengths    5th Digit for 304.80 cm (10 ft.)   
Probability Digit Obsrvd Expected ChiSq  Probability Digit Obsrvd Expcted ChiSq 

0.10018 xxx.0 14 10.02 1.58  0.10002 xxx.x0 8 10.00 0.40 
0.10014 xxx.1 13 10.01 0.89  0.100018 xxx.x1 0 10.00 10.00 
0.1001 xxx.2 9 10.01 0.10  0.100016 xxx.x2 16 10.00 3.60 

0.10006 xxx.3 12 10.01 0.40  0.100006 xxx.x3 14 10.00 1.60 
0.10002 xxx.4 11 10.00 0.10  0.100001 xxx.x4 13 10.00 0.90 
0.09998 xxx.5 12 10.00 0.40  0.099999 xxx.x5 9 10.00 0.10 
0.09994 xxx.6 0 9.99 9.99  0.099996 xxx.x6 11 10.00 0.10 
0.0999 xxx.7 11 9.99 0.10  0.099993 xxx.x7 9 10.00 0.10 

0.09986 xxx.8 9 9.99 0.10  0.099989 xxx.x8 12 10.00 0.40 
0.09982 xxx.9 9 9.98 0.10  0.099985 xxx.x9 8 10.00 0.40 

  100 100 
13.80 
(.013)    100 100 

17.60 
(.040) 

Ho: 4th digit (10 ft.OBS) = 4th digit (10 ft.EXP)   Ho: 5th digit (10 ft.OBS) = 5th digit (10 ft.EXP)  
Ha: 4th digit (10 ft.OBS) /= 4th digit (10 ft.EXP)   Ha: 5th digit (10 ft.OBS) /= 5th digit (10 ft.EXP)  
           
4th Digit for 609.6 cm (20 ft.) lengths    5th Digit for 609.60 cm (20 ft.)   
Probability Digit Observed Expected ChiSq  Probability Digit Obsrvd Expctd ChiSq 

0.10018 xxx.0 12 5.11 9.29  0.10002 xxx.x0 0 5.10 5.10 
0.10014 xxx.1 3 5.11 0.87  0.100018 xxx.x1 0 5.10 5.10 
0.1001 xxx.2 7 5.11 0.70  0.100016 xxx.x2 10 5.10 4.71 

0.10006 xxx.3 1 5.10 3.30  0.100006 xxx.x3 2 5.10 1.88 
0.10002 xxx.4 0 5.10 5.10  0.100001 xxx.x4 10 5.10 4.71 
0.09998 xxx.5 0 5.10 5.10  0.099999 xxx.x5 1 5.10 3.30 
0.09994 xxx.6 9 5.10 2.99  0.099996 xxx.x6 13 5.10 12.24 
0.0999 xxx.7 9 5.09 2.99  0.099993 xxx.x7 4 5.10 0.24 

0.09986 xxx.8 3 5.09 0.86  0.099989 xxx.x8 9 5.10 2.98 
0.09982 xxx.9 7 5.09 0.72  0.099985 xxx.x9 2 5.10 1.88 

  51 51 
31.94 
(.000)    51 51 

42.14 
(.000) 

Ho: 4th digit (20 ft.OBS) = 4th digit (20 ft.EXP)   Ho: 5th digit (20 ft.OBS) = 5th digit (20 ft.EXP)  
Ha: 4th digit (20 ft.OBS) /= 4th digit (20 ft.EXP)   Ha: 5th digit (20 ft.OBS) /= 5th digit (20 ft.EXP)  
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