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1 Introduction

This report focuses on the inverted echo sounder (IES) data collected as part of the Sub-

Antarctic Flux and Dynamics Experiment (SAFDE) during March 1995 – March 1997. The col-

lection, processing and calibration of the IES data are described herein. The measurements were

made under the support of the National Science Foundation. Other instruments moored as part

of the experiment included horizontal electric field recorders (HEF) and current meter moorings

(CM). The HEF and CM data sets are not documented in this report.

The moored instrument locations are shown in Figure 1. The IES sites were spaced about 30 km

apart along two lines spanning the Subantarctic Front (SAF). The two lines were separated zonally

by approximately 50 km, and their orientation was chosen to be perpendicular to the mean path of

the SAF. The IESs were positioned so that groups of three sites formed triangles within which the

two-dimensional horizontal gradients of geopotential could be estimated from the measurements.

Table 1 summarizes the deployment locations of the IESs. Theinstruments were deployed on

a cruise aboard the R/V Melville (ML9511) during March 18 – April 14, 1995. The instruments

were recovered during March 8 – April 5, 1997 aboard the R/V Meville (ML9706).

All IESs were successfully recovered, although several difficulties were encountered with IES

16. Initially, the instrument would not accept the release command. We noticed that a second return

accompanied every beacon ping which we determined was an echo off a nearby cliff. IES 16 finally

accepted the release command after the ship was repositioned to avoid the bottom interference.

Subsequently, IES 16 did not leave the bottom in the usual amount of time. We left the site to

do other work and returned about 22 hours later. The IES was nolonger on the bottom. The

instrument had drifted about 8 nm from the site. Subsequent data processing revealed that the IES

had left the bottom 10 hours after the release command was issued. We found tiny mussel-like

creatures on the instrument, so it is possible that they interfered with the release mechanism.

Two of the instruments suffered partial data losses. IES 4 had severe tape recorder problems

which resulted in substantial data loss. Only the initial 130 days of data, which had better quality,

have been retained. The travel time data of IES 12 were exceptionally noisy during an 155-day

period in the austral winter/spring 1995. After processingthe record through the standard steps, it
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Figure 1: Locations of 18 IESs (diamonds), 14 HEFs (stars), and 7 CMs (large and small circles)
deployed across the Subantarctic Front. Only recovered instruments are shown. The solid bold
line indicated the WOCE SR3 hydrographic line. Geopotential height (m2 s−1) is contoured to
show the mean SAF baroclinic structure (φ0−2000 calculated from the gridded data set of Olbers et
al. [1992]). The colorbar indicates the shading of the bottom topography.
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Table 1:SAFDE IES Location Information

Site Latitude(S) Longitude(E) Transducer Size

IES 1 47◦59.92′ 144◦40.40′ Big

IES 2 49◦36.50′ 143◦56.00′ Big

IES 3 49◦53.05′ 144◦33.85′ Small

IES 4 49◦53.05′ 143◦48.30′ Small

IES 5 50◦08.75′ 144◦27.35′ Big

IES 6 50◦09.62′ 143◦40.12′ Big

IES 7 50◦26.15′ 144◦17.80′ Small

IES 8 50◦24.85′ 143◦32.15′ Small

IES 9 50◦42.27′ 143◦24.38′ Small

IES 10 51◦00.05′ 143◦15.15′ Big

IES 11 51◦15.85′ 143◦54.25′ Small

IES 12 51◦15.70′ 143◦07.65′ Small

IES 13 51◦32.30′ 143◦46.60′ Small

IES 14 51◦32.10′ 142◦59.20′ Big

IES 15 51◦48.85′ 143◦38.00′ Big

IES 16 51◦48.50′ 142◦50.65′ Big

IES 17 52◦05.47′ 143◦29.55′ Big

IES 18 52◦04.88′ 142◦42.10′ Big
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was determined that the character of the record during that time period was distinct from all other

IES records. Thus, the data during that time period have beenexcluded.

2 Inverted Echo Sounder Description

The inverted echo sounders used in the SAFDE experiment werebuilt at URI. Chaplin and

Watts [1984] provide a description of the IES circuitry and mooring configuration.

The instruments were moored one meter above the ocean floor and sampled at hourly intervals

throughout the deployment period. At the designated sampling time, a burst of 24 acoustic pulses

(10 KHz) were transmitted at 10 second intervals, and the time each ping took to travel the round

trip distance to the sea surface was measured and recorded onthe internal cassette tape.

For typical deployment depths of 3000–5000 m, the full travel times (τ ) range between 4–7 s;

thus with a resolution of 0.05 ms, each measurement would require a storage space of 18 bits on the

cassette tape. However since the variability of the travel time signal in major current regions such

as the Subantarctic Front is only 0.03–0.06 s, it is not necessary to record the fullτ measurement.

By recording just the 13 least significant bits, variabilityof up to 0.4 s can be resolved, with only a

constant integer multiple of 0.4 s excluded. The constant can be determined a priori by knowing the

bottom depth at the instrument site to within 300 m; it may be added back into the recorded travel

times after the instrument is recovered. The advantage of recording only the variable part of theτ

measurements is that space is conserved on the cassette tape, allowing the length of deployment to

be extended. The appropriate constant has been added to eachhourly record.

3 Data Processing

3.1 Time Base

Timing of each sample period is referenced to the transmission time of the first travel time

ping in the sample burst as it is easily observed. The midpoint of the burst of 24 measurements is

located at 115 s, since the pings were sent at 10 s intervals. The date and time were assigned to the

midpoint of each sampling period and these are listed in the data files.
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3.2 Travel Time Processing

The basic steps in the IES data processing included transcription from the cassette tape, editing

to remove data spikes, and conversion of the recorded countsinto round trip travel times (τ ). From

the 24 travel times taken during each sampling period a single representativeτ was chosen by

seeking the first quartile value of a windowed Rayleigh distribution [Watts and Rossby, 1977;

Fieldset al., 1991]. After removing data spikes, the hourlyτ records were low-pass filtered using

a fourth-order Butterworth filter with a cutoff period of 72 hours. The filter was passed forward and

backward in time to avoid introducing phase shifts. Twenty hours of data at each end of the filtered

series were discarded to avoid startup transients. After filtering, the timeseries were subsampled

at daily intervals centered at 1200 UT. Subsequently, the travel times were adjusted by the series

of processing steps described next to project them on to a common pressure level. The initial data

processing was accomplished by a set of MATLAB [The MathWorks, Inc., 1992] routines adapted

from previously-developed FORTRAN routines [Fieldset al., 1991]. Projection on to the common

pressure level was done using a set of MATLAB codes written byC. Sun.

3.2.1 Instrument Depth

The bottom depth at each IES site was measured on board ship during the deployment cruise.

While the accuracy of this measurement is adequate for determining the unrecorded travel time

constant (τc) it is insufficient for projecting onto a common pressure level. A more accurate pres-

sure depth estimate was obtained by using hydrographic casts to calculate and integrate sound

speed profiles

τ = 2
∫ PB

0

dp

ρgc
(1)

where gravityg depends on the latitude andPB is the deep pressure limit of integration. A hy-

drocast was used for these calculations if its position was within 3 km of an IES site if it occurred

no more than 31 hours prior to the instrument deployment or after the recovery. The sound speed

profile between the sea surface and a preliminary IES pressure estimate was calculated for each

cast. Because CTD casts, even going near the bottom, do not typically quite reach the pressure

of the IES on the bottom, we linearly extrapolated the sound speed profile to the preliminary IES
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pressure. The mean sound speed(1/ρgc) was then combined with the concurrently measuredτ

by the IES (a 3-hour mean value, includingτc, excluding a 0.003 s internal detection delay, and

divided by two) to determine an accurate pressure for the IES. The final pressure (PIES) of each

IES was calculated as the average of the estimates obtained by this procedure for all hydrocasts

(usually 2–4) at that site. The rms uncertainty ofPIES ranged from a low of 0.07 dbar for IES 6

to a high of 1.97 dbar for IES 11. The overall mean rms uncertainty PIES for the 18 IESs was

0.63±0.42 dbar. The largest uncertainties were obtained at four sites which had small transducers

as well as at IES 4 which had tape problems. Excluding these five records reduces the mean rms

uncertainty to 0.45±0.21 dbar for the remaining 13 records.

3.2.2 Seasonal Correction

Watts et al. [2001] determined the annual cycle of acoustic travel time through the upper

300 dbar. The signal varied by less than 0.8 ms, with the maximum occurring in August and the

minimum in March. “De-seasoned”τ were calculated by subtracting the annual cycle shown in

their Figure A1b from the lowpass filtered values.

3.2.3 Conversion to Dynamic Travel Time

The IESτ measurements areused together with GEM fields [Wattset al., 2001] to determine

the vertical structure of temperature, salinity, and specific volume anomaly in the overlying water

column. These two-dimensional GEM fields were generated from hydrographic data as functions

of pressure and travel time, whereτ was integrated between constant pressure limits instead of

metric depths. Travel time calculated in this manner becomes a function of density(ρ) and gravity

(g) as well as sound speed (c). Because gravity changes with latitude (from 9.78 m s−2 at the

equator to 9.83 m s−2 at the pole), the travel time associated with a water column of constant

3000 dbar would differ by 0.8 ms for the 2-degree latitude change across the SAFDE array. This

difference is the same magnitude as the seasonal variation just discussed.

A simple solution is to calculate ‘dynamic travel time’ (τ ∗) independent of latitude by specify-

ing gravity (in Equation 1) as a constant. We usedg = go = 9.8 m s−2. GEM fields parameterized

by τ ∗ are also independent of latitude. This procedure offers thesame advantage toτ calculations
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as ‘dynamic height’ offers to heightz calculations (which otherwise would depend ong).

The IESτ measurements must be converted toτ ∗ in order to interpret them with the GEM

fields. A good empirical relation is

τ ∗ =
g(λIES, 0)

go(1−
PIES

1.015R
)
τIES

where the earth’s radiusR = 6.371 × 106 m, PIES is the pressure of the IES (withPIES/1.015 a

representation of the IES depth adequate for these purposes) , andg(λIES, 0) is gravity at the sea

surface at the latitude of the IES site.

3.2.4 Calibration to τ3000

The IES-measuredτs depend on the bottom depth as well as on the water propertiesabove

the instrument. However, bottom depths vary from site to site and never exactly coincide with the

3000 dbar integration limit used for the GEM field parameterizations. Thus, the measured travel

times must be projected onto the 3000 dbar pressure level.

The projections were empirically derived using the hydrographic data collected along the

WOCE SR3 line by S. Rintoul and during the SAFDE launch and recovery cruises. Each hy-

drocast was integrated from a suite of pressure levels (p) to the surface to simulate dynamic travel

time (τ ∗p ). For this study,τ ∗p was simulated forp = 2000–4500 dbar at 50 dbar intervals. Figure 2

shows examples of the relationships for travel times at 3000dbar (τ ∗3000) versusτ ∗p obtained for

pressures of 2000 and 4000 dbar.

Second order polynomials were fitted to these relationships. However because the variations in

τ ∗p were on the order of tens of milliseconds while the magnitudes were on the order of several sec-

onds, large errors could have arisen when determining the coefficients. To minimize the errors, the

coefficients were obtained using only theτ ∗p variability, determined by removing a large constant

from the travel times. This constant,τso(p), was defined as the round trip travel time that would be

measured if the sound speed in the ocean was fixed at 1500 m s−1:

τso(p) =
2p

1500

The coefficients of the second-order polynomials differed for each pressure level as shown in Fig-

ure 3.
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Figure 2: Comparison of the round trip travel time for a bottom pressure of 3000 dbar with the
travel times for bottom pressures of 2000 dbar (top) and 4000dbar (bottom).

Finally, the travel times measured by each IES were projected onto the 3000 dbar level as

τ3000 = A(p)τ ′2 +B(p)τ ′ +C(p) + τso(3000)

whereτ ′ = τ ∗p − τso(p) andp = PIES.

Contributing to the uncertainty inτ3000 are the accuracy of the travel time measurements,ǫτ =

1.0 ms [Chaplin and Watts, 1984], and the accuracy of the bottom pressure of about 0.5 dbar

which is equivalent to aǫp = 0.7 ms error in travel time. Additional error inτ3000 arises from the

projection to 3000 dbar from the actual bottom pressure. These errorsǫproj are estimated to be

0.2 ms. Thus the total error inτ3000 is estimated as(ǫ2τ + ǫ2p + ǫ2proj)
1

2 = 1.2 ms.
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