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Van der Waals equation of state [tsl10]

with spinodal curve

with coexistence curve



Law of corresponding states [tln30]

Use the critical-point values, pc, Vc, Tc, ρc, for the thermodynamic variables
and introduce reduced quantities:

p̄ ≡ p

pc

, V̄ ≡ V

Vc

, T̄ ≡ T

Tc

, ρ̄l ≡
ρl

ρc

, ρ̄g ≡
ρg

ρc

.

Empirical fact: Near the critical point, the relations between (reduced) ther-
modynamic quantities are universal.

Experimentally:

Guggenheim plot of liquid-vapor coexistence curves:

1

2
(ρ̄l + ρ̄g) ' 1 +

3

4
(1− T̄ ), ρ̄l − ρ̄g '

7

2
(1− T̄ )1/3.

Theoretically:

Van der Waals equation:

(
p +

an2

V 2

)
(V − nb) = nRT .

Critical point condition:

(
∂p

∂V

)
T

=

(
∂2p

∂2V

)
T

= 0.

Critical-point values: pc =
a

27b2
, Vc = 3nb, Tc =

8a

27bR
.

VdW equation in reduced units:

(
p̄ +

3

V̄ 2

)
(3V̄ − 1) = 8T̄ .



Maxwell construction [tln31]

Goal: Study the liquid-gas transition for a fluid system described by the van
der Waals equation of state.

Consider an isotherm at T < Tc with roadmarks A–I as shown in [tsl11].
Determine the variation of the Gibbs potential along the subcritical isotherm:

dG = −SdT + V dp = V dp ⇒ G(T, p) = G(T, pA) +

∫ p

pA

dp V (p).

Consider the self-intersecting curve in the plot G versus p.
G(T, pC) = G(T, pG) implies that area 1 = area 2.

Discuss stability of thermodynamic state along all segments of the curve A–I:

• Segments ABC, GHI:

(
∂p

∂V

)
T

< 0, G(T, p) is either the only branch

or the lowest branch of a multi-valued function. The state is stable.

• Segments CD, FG:

(
∂p

∂V

)
T

< 0, G(T, p) is not the lowest branch of

a multi-valued function. The state is metastable.

• Segment DEF:

(
∂p

∂V

)
T

> 0. This implies that the state is unstable.

The physical isotherm includes only stable states. It is described by the curve
ABCGHI in the plot G versus p.

Stability requires that the Gibbs potential G(T, p) is a concave function p
and that the Helmholtz potential A(T, V ) is a convex function of V :(

∂p

∂V

)
T

< 0 ⇒
(

∂2G

∂p2

)
T

< 0,

(
∂2A

∂V 2

)
T

> 0.

Variation of the Helmholtz potential along the subcritical isotherm:

dA = −SdT − pdV = −pdV ⇒ A(T, V ) = A(T, VA)−
∫ V

VA

dv p(V ).

In the unstable and metastable regions, A(T, V ) can be made smaller if we
replace the homogeneous system by a system with two coexisting phases.

Note: the (shaded) metastable region is bounded by the coexistence curve
(solid line) and the spinodal curve (dashed line).



Gibbs and Helmholtz free energies
of the van der Waals fluid at T < Tc [tsl11]



Condensation and evaporation [tln32]

Supersaturated gases and superheated liquids
owe their metastable existence to the surface
tension σ. Consider a liquid droplet in equi-
librium with the surrounding vapor, implying
Tl = Tg, µl = µg, and pl > pg because of sur-
face tension.

For a vapor bubble surrounded by liquid, the
argument proceeds along analogous lines.

Vg Tg

Vl

Tl

pg

pl
2R

Work done if droplet expands or contracts: δW = −pldVl − pgdVg + σdA.

Grand potential: Ω(T, V, µ) = −plVl − pgVg + σA.

⇒ Ω(T, V, µ) = −4π

3
R3pl −

(
Vtot −

4π

3
R3

)
pg + 4πR2σ.

Mechanical equilibrium: (∂Ω/∂R)T,V,µ = 0 ⇒ 4πR2(pg − pl) + 8πRσ = 0.

Excess pressure in droplet: pl − pg = 2σ/R.

Gibbs-Duhem equations (with dT = 0), Nldµl = Vldpl, Ngdµg = Vgdpg.

Chemical equilibrium: dµl = dµg ⇒ (Vl/Nl)dpl = (Vg/Ng)dpg.

Differential excess pressure: d(pl − pg) =
Vg/Ng − Vl/Nl

Vl/Nl

dpg = d

(
2σ

R

)
.

Use
Vg
Ng

� Nl

Vl
,
Vg
Ng

' kBT

pg
⇒ kBT/pg

Vl/Nl

dpg = d

(
2σ

R

)
.

Integrate
dpg
pg

=
Vl

NlkBT
d

(
2σ

R

)
from ∞ to R.

⇒ ln
pg(R)

pg(∞)
=

2σVl
RNlkBT

=
2σm

RρlkBT
⇒ pg(R) = pg(∞) exp

(
2σm

RρlkBT

)
.

Only liquid droplets of a particular radius Rc coexist with the supersaturated
gas phase. Droplets with R < Rc will shrink. Droplets with R > Rc will
grow. Hence the condensation process at pressure p = pg(Rc) can be initiated
by the presence of droplets with radius R > Rc.

Metastability depends on the absence of droplets with radius R > Rc. The
boundary of the metastable region (spinodal line) corresponds to a value of
Rc comparable to the molecular radius. Supersaturation cannot be pushed
beyond that point.



[tex34] Dieterici equation of state

The Dieterici equation of state of a fluid system reads

p =
nRT

V − nb
exp

(
− an

RTV

)
,

where a, b are phenomenological constants.
(a) Show that the pressure, volume, and temperature at the critical point are

pc =
a

4b2e2
, Vc = 2nb, Tc =

a

4Rb
.

(b) Rewrite the Dieterici equation of state as a relation between the dimensionless quantities
p̄ ≡ p/pc, V̄ ≡ V/Vc, T̄ ≡ T/Tc (law of corresponding states).

Solution:



Helium liquids [tln33]

Helium has a small atomic mass and a weak interatomic interaction. This
enhances quantum effects. Solid helium exists only at high pressure. Helium
at low T and moderate p is a quantum liquid with peculiar features.

The two helium isotopes, 3He and 4He, are chemically similar but physically
very different. The physical difference is governed by the difference in nuclear
spin (1

2
versus zero).

4He Features

• The liquid-vapor coexistence line terminates in a critical point.

• The solid-liquid transition line is monotonic and ends at T = 0 and
p ' 25atm with zero slope (dp/dt = ∆S/∆V = 0).

• The λ-line separates the normal fluid (He I) from the superfluid (He II)
via a continuous transition.

• Each end of the λ-line is a triple point.

• 4He was first liquefied in 1908 by Kamerlingh Onnes (at 4.2K, 1atm).

• The λ-transition has been interpreted microscopically as the condensa-
tion of interacting bosons.

3He Features

• The relative abundance of 3He in natural helium is 10−6.

• 3He can be produced artificially from tritium (3H) via β-decay.

• 3He has not been available in large quantities until 1940 (Manhattan
project).

• 3He was first liquefied in 1948.

• A superfluid transition in 3He was first observed in 1971.

• The superfluid phase in 3He is akin to the superconducting phase. It
is described by bound pairs of quasi-particles with spin 1

2
.

• The A-phase and the B-phase differ by the orientation of the bound
pairs.

• The negative slope in the solid-liquid coexistence curve is attributable
to an entropy effect of nuclear spins (dp/dt = ∆S/∆V < 0).



Phase diagram of 4He [tsl13]



Phase diagram of 3He [tsl14]

[from Enss and Hunklinger 2005]



Exotic Properties of helium II [tln34]

Helium II behaves like a mixture of normal fluid and superfluid. The su-
perfluid portion increases with decreasing temperature at the expense of the
normal fluid portion. The superfluid has no viscosity and no entropy.

Consider two vessels A and B with rigid insulating walls, connected by a
capillary that allows unimpeded superfluid flow but prevents any normal
fluid flow.

In general, the thermal equilibrium of that system is characterized by the
following relations between intensive variables:

TA 6= TB, pA 6= pB, µA(TA, pA) = µB(TB, pB).

Consider situations in which system B is very large compared to system A.
Any process in which a change of pA or TA is forced in the smaller system
must then satisfy µA(TA, pA) = µB(TB, pB) = const i.e. dµA = 0.

⇒
(

∂µA

∂TA

)
pA

dTA +

(
∂µA

∂pA

)
TA

dpA = − SA

NA

dTA +
VA

NA

dpA = 0.

⇒ dpA =
SA

VA

dTA.

Mechanocaloric effect:
Pressure increase
causes temperature increase.

Thermomechanical effect:
Temperature increase
causes pressure increase.

A A
B

powder powder



Superconducting transition [tln35]

Meissner-Ochsenfeld effect:
Observation that the magnetic induction B = µrµ0H vanishes inside a su-
perconductor (of type I). B is expelled by surface supercurrents. However, a
sufficiently strong external magnetic field H destroys superconductivity.

B

T = const

H
Hcoex

H0

H coex

T
T c

conductor
super−

conductor
normal

coexistence
line

H cµ0µr

sc nc

(T)

Coexistence between the superconducting and the normal conducting phases
requires G(sc)(T,H) = G(nc)(T, H) (Gibbs free energy per unit volume).

Along the coexistence line: dG(sc) = dG(nc).

⇒ − S(nc)dT −B(nc)dH = −S(sc)dT −B(sc)dH

with B(nc) = µrµ0Hcoex(T ) and B(sc) = 0.

Clausius-Clapeyron equation: S(nc) − S(sc) = −µrµ0Hcoex(T )

(
dH

dT

)
coex

.

Latent heat: L = T
(
S(nc) − S(sc)

)
.

As H increases, G(sc) stays constant but G(nc) decreases:

G(nc)(T,H)−G(nc)(T, 0) = −
∫ H

0

B(nc)dH = −1

2
µrµ0H

2.

On the coexistence line: G(nc)(T,Hcoex) = G(sc)(T,Hcoex).

⇒ G(sc)(T, 0)−G(nc)(T, 0) = −1

2
µrµ0H

2
coex(T ).



Thermodynamics of a Ferromagnet [tsl5]

Materials with ions that have permanent electronic magnetic moments may

be paramagnetic, ferromagnetic, antiferromagnetic, or exhibit some other

kind of magnetic ordering.

In ferromagnetic materials there exists a continuous transition from the para-

magnetic phase to the ferromagnetic phase when the system is cooled through

the Curie temperature T
c
.

Spontaneous magnetization of nickel and iron:

Heat capacity of nickel:

(a) total heat capacity, (b) contribution of lattice vibrations

(c) electronic contribution, (d) magnetic contribution.



[tex53] Structural transitions of iron

At constant atmospheric pressure, the stable phase of Fe below 900◦C and above 1400◦C is α-iron.
Between these temperatures, the stable phase is γ-iron. The specific heat of each phase can be
taken as constant: cα = 0.775J/gK, cγ = 0.690J/gK. Find the latent heat (per gram) at each of
the two phase transitions.

Solution:



[tex44] Latent heat and heat capacities at superconducting transition

The coexistence line between the normal and superconducting phases of some metallic material is
observed to be well approximated by the empirical formula,

Hcoex(T ) = H0(1− T 2/T 2
c ), 0 ≤ T ≤ Tc,

where H0, Tc are constants.
(a) Use the Clausius-Clapeyron equation adapted to this situation (see [tln35]) to calculate the
latent heat L (per unit volume) at the transition. Plot L versus T for 0 ≤ T ≤ Tc.
(b) When the material is heated up along the coexistence line, different specific heats obtain for
the two phases. Use the results of (a) to calculate the discontinuity ∆C = C(nc) −C(sc) (per unit
volume) across the coexistence line. Plot ∆C versus T for 0 ≤ T ≤ Tc.

Solution:



[tex45] Thermodynamics of the mean−field ferromagnet I

The mean-field ferromagnet is specified by the heat capacity CM = 0 and by the equation of state
M = tanh([H + λM ]/T ), where λ is a constant. In zero magnetic field (H = 0), this system
undergoes a continuous transition at temperature Tc = λ between a paramagnetic phase (M = 0)
and a ferromagnetic phase (M 6= 0).
(a) Determine the spontaneous magnetization M(T,H = 0) in the ferromagnetic phase by numer-
ically solving the equation of state at H = 0. Plot M versus T for 0 ≤ T ≤ Tc.
(b) Show that the entropy depends only on M :

S(M) = −1 +M

2
ln

1 +M

2
− 1−M

2
ln

1−M
2

.

Plot S versus T at H = 0 for 0 ≤ T ≤ 2Tc.
(c) Calculate an analytic expression for the Helmholtz free energy A(T,M).

Solution:



[tex46] Thermodynamics of the mean−field ferromagnet II

The mean-field ferromagnet is specified by the heat capacity CM = 0 and by the equation of state
M = tanh([H + λM ]/T ), where λ is a constant. In zero magnetic field (H = 0), this system
undergoes a continuous transition at temperature Tc = λ between a paramagnetic phase (M = 0)
and a ferromagnetic phase (M 6= 0).
(a) Calculate an analytic expression for the isothermal susceptibility χT (T,M) from the equation
of state. Use the numerically determined M(T,H = 0) from [tex45] to plot χT (T,H = 0) versus
T for 0 ≤ T ≤ 2Tc.
(b) Determine the heat capacity CH(T,M) = Tα2

H/(χT − χS) from αH = (∂M/∂T )H , χT =
(∂M/∂H)T , χS = (∂M/∂H)S , and plot CH versus T for 0 ≤ T ≤ 2Tc.
(c) Plot in the same diagram (with different symbols) the function T (∂S/∂T )H=0 by using the
data of S(T,H = 0) from [tex45].

Solution:
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