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Investigatio n of wettin g hydrodynamic s usin g numerica l simulations
David E. Finlow, Prakash R. Kota,a) and Arijit Boseb)
Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881

~Received 25 July 1995; accepted 27 October 1995!

Meniscus shapes from a simulation of a plate immersing into an infinitely deep liquid bath, for a
range of outer length scales, have been obtained numerically. These have been compared with the
leading-order prediction from athree-region asymptotic analysis done in thedouble limit , Capillary
number, Ca→0, LS/LC→0, with Ca ln(LC/LS) of O(1), where LS and LC represent the slip length
and an outer macroscopic length, respectively. For Ca,0.01, the numerically computed and the
perturbation solutions show excellent agreement. Within this range of Ca, the meniscus slope at a
distance 10LS from the dynamic contact line is geometry independent, that is, does not vary with
changes in theouter length LC . The interfaceslopeat thispoint can serveasan appropriatematerial
boundary condition for the outer problem. For 0.01,Ca,0.1, the intermediate region solution
continues to closely fit the numerically generated solution, while the match in the outer region
begins to degrade. By monitoring the pressure difference between the surrounding inviscid gas
phaseand arbitrarily chosen point in the liquid, weattribute thisbreakdown to infiltration of viscous
effects into the outer region, so that static capillarity does not adequately describemeniscus shapes
in this regime. For Ca.0.1, there is no match between the numerical and perturbation solutions in
both the intermediate and outer regions, indicating that higher-order contributions must be
accounted for in the perturbation solutions.¬ © 1996 American Institute of Physics.
@S1070-6631~96!02302-1#

I. INTRODUCTION

In both nature and in industrial processes, moving con-
tact lines are ubiquitous, and they occur over awide rangeof
length scales—frommicrons for themovement of oil ganglia
through porous rocks to meters in a variety of coating pro-
cesses. A proper geometry-free characterization of the dy-
namic wetting process is therefore crucial if predictivemod-
els of these phenomena are to be developed. However,
several complications arise when such a goal is attempted,
largely because of the disparity between the submicroscopic
length scales at which wetting occurs and the macroscopic
length scales at which typical experimental observations are
made. A further complication is that different local models
yield the same dynamics at macroscopically observable
levels.1 Therefore, in order to verify refined models, mea-
surements must necessarily be made on a submicroscopic
length scale over which this physics remains important. This
is a formidable challenge, partly because rapid changes in
interface curvature occur near the three-phase juncture, and
sophisticated experimental techniques become necessary to
produce adequate resolution of data in that region.

Challenges also exist from a continuum modeling per-
spective. For a pure liquid, the customary hydrodynamic
analyses1 result in amultivalued velocity field at thedynamic
contact line. If the liquid is Newtonian, a stress field is pro-
duced that is nonintegrable as the dynamic contact line is
approached. One consequence of this stress divergence is an
unbounded interface curvature at the dynamic contact line,
resulting in the inability to specify a true dynamic contact
angle. Because this angle serves as a boundary condition for

the differential equation governing the shape of the liquid–
fluid interface, an ill-posed problem results. This difficulty is
often resolved by breaking the flow domain into two regions.
An inner one, in the vicinity of the dynamic contact line,
where slip is permitted ~thereby removing the source of the
double-valued velocity at the dynamic contact line!, has di-
mensions characterized by a slip length LS . An outer region,
characterized by a much larger geometry-dependent macro-
scopic length scale LC , utilizes the no-slip dynamic bound-
ary at the solid surfaces. Singular perturbation solutions to
the field equations in each region ~ignoring inertial effects!
are matched in the overlap region to produce a uniformly
valid solution over the entire domain. In the double limit
Ca→0, e→0, with Ca ln~e21! of O(1), whereCa is theCap-
illary numbermU/g, m is the liquid viscosity, andg is its
surface tension, U is a characteristic speed, and e5LS/LC ,
there is no overlap of the inner and outer regions,2,3 and a
third, intermediate region must exist between the inner and
outer regions of expansion. In cylindrical polar coordinates,
the inner, intermediate, and outer regions are characterized
by dimensionless lengths r 8/LS , Ca ln(r 8/LC) and r 8/LC ,
respectively. @Variables with a prime ~8! superscript are di-
mensional.# Analyses2–5 of the resulting boundary value
problem to O(1) yield a solution for the interface shape in
the intermediate region of the form ~assuming that the dis-
placed fluid has zero viscosity!

u intermediate~r 8!5g21@g~uR!1Ca ln~r 8/R!#,¬ ~1!

where

g~u!5E
0

u f2cos~f!sin~f!

2 sin~f!
df. ~2!

Here u(r 8) is the angle between the moving solid and
the tangent to the liquid free surfaceat adistance r 8 from the

a!Current address: Clean Sciences, Inc., 163 Whitney Place, Fremont, Cali-
fornia 94539.

b!Author to whom correspondence should be addressed.

302¬ Phys. Fluids 8 (2), February 1996¬ 1070-6631/96/8(2)/302/8/$6.00¬ © 1996 American Institute of Physics

Copyright ©2001. All Rights Reserved.



dynamic contact line, the subscript indicating the value of
this angle in the indexed region. In addition,uR represents
this angle at somedistanceR located within the intermediate
region. As seen in Eq. ~1!, the slope of the interface within
the intermediate region is independent of macroscopic geom-
etry, that is, it does not depend upon the outer length scale
LC . Although the exact magnitude of uR depends upon the
specific inner model, the form of Eq. ~1! is independent of it.

If the geometry independence of Eq. ~1! could be con-
firmed, that is, if for a certain Ca, asingle valueof uR can be
used to correctly predict complete meniscus shapes for a
range of outer length scales, then uR could be used as a
material boundary condition for the outer problem, replacing
the true dynamic contact angle boundary condition. Cutting
off the domain at r 85R and providing this slope character-
ization would permit a solution for all the field variables and
the free-surfaceshape in theouter region without resorting to
specifying any of the details of the fluid physics in the inner
region ~which are currently not well known!. Clearly, this
would represent a powerful advance in our ability to predict
wetting behavior.

Two approaches can be taken to determine if Eq. ~1! is
valid. The first is to compare experimentally obtained menis-
cus shapes in the vicinity of the dynamic contact line, that is,
in the intermediate region, with predictions from the pertur-
bation analysis. For a given geometry and Capillary number,
uR can be chosen by minimizing the difference, in a least
squares sense, between the experimental and analytically
predicted meniscus shapes. This approach has been utilized
by a number of different investigators.4–7 The geometry-free
nature of this expression for the shape of the interface in the
intermediate region for Ca<1022 has been established.6

However, some systematic deviations were observed for
Ca.1022, which could be attributable either to the difficulty
in obtaining accuratemeniscusshapes in theproximity of the
dynamic contact line or to a possible failure of the O(1)
asymptotic analysis in thisCapillary number regime. Clearly,
to resolve this issue, more accurate experimental meniscus
shape measurements are required in the vicinity of the dy-
namic contact line. Such experiments, using rods entering
liquid bathsat various immersion angles ~asameansof vary-
ing geometry! have now been completed.7,8 Viscous defor-
mation has been observed at distances of the order of a cap-
illary length scale from the dynamic contact line at
Ca>1022, an observation that has direct implications for the
measurement of ‘‘apparent’’ dynamic contact angles in cap-
illary tubes.7 Experiments conducted at Ca;0.45 indicate
that the breakdown of themodel is caused by the inadequacy
of the lowest-order perturbation solution in the geometry-
free region, or because of contributions to the shape of the
interface from the inner region.8

Alternatively, numerical simulations of the boundary
value problem can be used to obtain complete meniscus
shapes, which can be compared with predictions from the
perturbation analyses—this approach is used here. Because
calculated meniscus shapes are not tainted by experimental
errors, interface slopes accurate to a specified tolerance can
be obtained over thewhole domain, including the immediate
vicinity of the dynamic contact line ~at the expense, of

course, of computation time!. Eliminating gravity in the
model, the outer length scale becomes the container length,
which can be changed easily. Thus, the geometry indepen-
dence of Eq. ~1! can be conveniently and rigorously tested.
Furthermore, the simulation can be readily extended to high
Ca, where experimental measurements might become diffi-
cult, clearly identifying the range of validity of the perturba-
tion analyses. These simulations can also be used to deter-
mine the limiting Ca value beyond which viscous effects
start infiltrating the outer region, and static capillarity be-
comes inadequate for describing the outer meniscus shape.

The finite element9–11 and finite difference12,13 methods
have been used for simulation of the steady motion of an
interface between viscous liquids in a capillary tube. Com-
parisons of the simulations with experiments have been re-
stricted to predictionsof ‘‘apparent’’ contact angles. Thegoal
of our work is to show that numerical simulations are a valid
tool for understanding fluid physics in the vicinity of moving
contact lines. Therefore, its scope is very different from pre-
vious numerical studies of wetting hydrodynamics.

II. THE MODEL

A prototype problem that captures the essential features
of a dynamic wetting process is chosen for the numerical
simulation, and is illustrated in Fig. 1. It is comprised of an
incompressible liquid of infinite depth in a container of
length LC , with the left sidewall moving into the liquid with
constant velocity U. Gravity is ignored in the simulations, so

FIG. 1. Themodel system. A plate immerses into a contained bath of liquid
of infinite depth at speed U. The right wall is stationary. The dynamic
contact angle is uD and the static contact angle is uS . The hypothetical
lower boundary restricts the computational domain.
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that LC is the appropriate outer length scale. The upper
boundary of the liquid, h8(x8), is a free surface, so that its
location is not known a priori , but is obtained as part of the
solution to the transport equations and applicable boundary
conditions. A hypothetical lower boundary ~shown by the
dashed line, y850! restricts the computational domain. At
this boundary, the flow is assumed unidirectional, with zero
net volumetric flow, and is sufficiently well removed from
the free surface so that any further displacement has no im-
pact on the shape of the free boundary. The volume/width of
liquid within this computational domain isA. The static con-
tact angle is uS .

For a single component Newtonian liquid, the field vari-
ables ~velocities, pressures, free surface heights, and gas
pressure! depend upon the Reynolds number, Re, and the
Capillary number, Ca. Inertial effects wil l be ignored in the
numerical simulations presented ~Re50!, conforming to the
assumptions used in the perturbation analyses.

The dimensionless steady-state governing equations and
boundary conditions, including the slip model, are provided
in Appendix A.

III. NUMERICAL SOLUTION TECHNIQUE

Following a well-developed procedure, the Galerkin Fi-
nite Element technique is used to discretize the continuity
and conservation of linear momentum equations, as well as
the kinematic condition.14–16 The latter is distinguished in
this schemeas theequation to beused for computing the free
surface shape. The details leading to the appropriate weak
forms of each of these equations are presented elsewhere.16

The contact angle conditions replace the kinematic condition
for calculating free surface heights at the contact lines. The
unknown pressure in the inviscid gas phase, relative to a
datum pressure at the lower right corner in the liquid is ob-
tained using the volume constraint.

The liquid domain is subdivided into Nx3Ny elements.
Vertical spines originating at the lower hypothetical bound-
ary form element borders, while the ends of these spines are
used to represent the free surface. Element corner nodes are
located proportionally along these spines. The velocity fields
within each element are approximated by nine-node La-
grangian biquadratic basis functions, while the pressure field
is approximated by four-node bilinear basis functions. The
freesurface location is expanded using one-dimensional qua-
dratic basis functions. These choices haveproven convergent
for Newtonian flows, and provideC0 continuity for all vari-
ables across interelement boundaries. As is customary in fi-
nite element practice, the basis functions are developed on a
square parent element in an ~h,j! Cartesian coordinate sys-
tem. This parent element is transformed onto the deformed
quadrilateral element in the real domain through the use of
isoparametric mapping. With this mapping, the free bound-
ary coincides with j511 for each element bordering the
surface. Isoparametric mapping also facilitates evaluation of
the unit normal and tangent vectors.14 The residuals are cal-
culated using the four-point tensor product Gaussian quadra-
ture.

The discretization results in asmany nonlinear algebraic
equations as the number of unknowns ~the unknowns consist

of valuesof the two componentsof thevelocity, thepressure,
and free surface heights at appropriate finite-element nodes,
and the gas pressure!. This algebraic equation set is solved
by Newton’smethod. The linear equation set to be solved at
the nth Newton iteration is

corr̃ nJMn52R̃n,¬ ~3!

where

corr̃ n5 s̃n112 s̃n.¬ ~4!

The elements of vector R̃n are the residuals of the weak
forms of the equations, the elements of vector s̃n are the
values of the unknowns at the nth Newton iteration, and the
Jacobian matrix JMn5]R̃n/]s̃n . The elements of JMn are ob-
tained numerically using a one-sided forward difference
scheme.15,16At each Newton iteration, Eq. ~3! is solved by
frontal elimination.17 The Newton iterations are stopped
when the L2 norm and the L` norm of R̃n are below 1026.
Al l the unknowns are updated at each Newton iteration, pro-
ducing nearly quadratic convergence. Starting from initial
guesseswhere only the known essential boundary conditions
are specified, along with a static meniscus shape and zero
values for all variables at all other nodes, convergence is
achieved within nine iterations.

The convergence of numerically generated solutions
with grid size has been carefully monitored, and details are
provided below. This is especially critical in moving contact
line problems, because large changes in velocity occur over
dimensions comparable to the slip length, and an adequate
tessellation must be provided to capture these features. Fur-
thermore, roundoff errors associated with discretization of
the transport equations and boundary conditions automati-
cally produce slip, so that the force singularity referred to
earlier is evident only when aplot of the forceon themoving
plate versusmesh sizedivergesas themesh size is reduced.16

Therefore the mesh must be highly refined in the region
around the dynamic contact line; we use aminimum of five
nodes within a slip length.

The lower hypothetical boundary is displaced succes-
sively larger distances from the free boundary ~through ad-
justment of the volume/width, A! until the L2 norm and L`

norms of the slopes of the free surface from two successive
values of A are ,1028 ~note: because the piecewise qua-
dratic expansion used for the free surface shape only guar-
antees C0 continuity at interelement boundaries, slopes are
calculated at Gauss points on the element surfaces!. Our re-
sults indicate that this distance should be a minimum of
4LC . We have used A54LC

2 in all the simulations.
The algebraic grid generation scheme, using proportion-

ally spaced spines, provesadequate for generating converged
solutions for e>1024. The requirement that at least five
nodes beplaced within a distance of one slip length from the
dynamic contact line implies a large disparity between ele-
ment sizes in different parts of the computational domain.
For e,1024, when the free surface nodal locations are per-
turbed in preparation for evaluation of the appropriate entry
in the Jacobian matrix, the smallest elements bordering the
free boundary get sufficiently distorted, so that the mapping
to the isoparametric domain becomes singular. Furthermore,
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the calculations presented here are restricted to surface
shapes that are single valued in this simple representation
using spines. Therefore this simple discretization scheme
wil l certainly be inadequate at ‘‘low’’ or ‘‘high’’ contact
angles, or whereviscousdeformation causessomepart of the
free surface to become tangent to a vertical spine. Alternate
mesh generation schemes wil l then be required, but that re-
mains outside the scope of this paper.

IV. RESULTS

As is customary in numerical simulations of transport
problems, we demonstrate first that the numerical solution
presented is not dependent upon the mesh size. Figure 2
illustrates the location and values of vx maximum, vx minimum,
and vy maximum for successively refined meshes ~23323, 25
325, and 26326—the last mesh is shown in Fig. 3!. These
variablesapproach constant valuesas themesh is refined. We
have used the 26326 nonuniform mesh shown in Fig. 3 for
the rest of our computations. This results in 6401 unknowns.

Since the location of the intermediate region is not
known a priori , the numerically generated solution is com-
pared with a composite solution from the perturbation analy-
sis. The outer solution to O(1), characterized by a constant
curvature, is given by

uouter~r 8!5v012 sin21@r 8~cosv01cosuS!/2LC#, ~5!

where

v05g21@g~uR!1Ca ln~LC /R!#.

The uniformly valid composite solution is obtained by
summing Eqs. ~1! and ~5! and subtracting the common part
v0, and becomes

ucomposite~r 8!5g21@g~uR!1Ca ln~r 8R!#

12 sin21@r 8~cosv01cosus!/2LC#. ~6!

For given inner model parameterse anduD , and Capil-
lary number, the simulations have been run for a range of
outer length scales 100LS,LC,2000LS . Choosing R to be
10LS ~R must be apoint within the intermediate region!, the
value of uR for each LC is obtained by a single parameter
least square minimization of the difference between the nu-
merically generated solution and Eq. ~6! for r 1,r 8,r 2 . The
upper and lower boundson r 8 are intended to limi t the fitting
to the intermediate region becauseuR is an intermediate re-
gion parameter. In our simulations, r 1;5LS and r 2;0.25LC
~we have varied r 2 by 620% and found no significant
change in the value of uR!. The quality of the fit, using the
L2 norm of thenumerical and composite solutions, is used to
establish an upper bound for the Capillary number, above
which this fitting procedure is no longer meaningful.

Computed meniscus shapes for awide rangeof Caand a
fixed value of container length, LC52000LS , are shown in
Fig. 4. At low Ca, the interface shape is dominated by sur-
face tension, and is marked by near constant curvature. As
Ca increases, viscous effects on the meniscus shape become
more apparent—a rapid change in shape in the immediate
vicinity of themoving contact line is followed by a region of
low curvature. In order to obtain amore detailed understand-
ing of the nature of these shapes, meniscus slopes are calcu-
lated at Gauss points along the free surface, and compared
with the predictions from the perturbation analyses.

Figures 5~a!–5~d! show the numerical solution, the best
fit composite solution, as well as the outer and intermediate
solutions for LC52000LS and a rangeof Ca. As illustrated in
Figs. 5~a! and 5~b!, the fit over the full container length is
excellent for Ca<1022. Figure 5~c! reveals that at Ca51021,
the fit within the intermediate region is good, while the nu-
merically generated meniscus shape shows alower curvature

FIG. 2. The location and values of vx maximum ~* !, vx minimum ~3!, and
vy maximum~1! for successively refined meshes. Here vy minimum is not shown
because it is always located at (x,y)5(0,0) with amagnitudedefined by the
slip model. Nx3Ny5~a! 23323, ~b! 25325, and ~c! 26326. In going from
~a! to ~c!, additional elements have been placed in the vicinity of the dy-
namic contact line. Here Ca51023, e51023, uD5uS545°, and A54LC

2 .

FIG. 3. The 26326 nonuniform mesh used for all simulations. Here
Ca51023, e51023, uD5uS545°, and A54LC

2 .
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in the outer region than that predicted from the analysis. The
leading-order perturbation analysis appears to adequately de-
scribe the strong viscous effects in the proximity of the con-
tact line, but viscous effects, not accounted for in the
leading-order solution, are starting to infiltrate the outer re-
gion. At Ca53.531021, there is a complete breakdown of
the fit between the numerically generated and the leading-
order perturbation solution over the entire domain, as shown
in Fig. 5~d!. At this Ca, higher-order corrections to both the
intermediate and outer solutionsmust be included in order to
adequately describe meniscus shapes.

The quality of the fit for the numerical and best fit com-
posite solutions ~fitted in the intermediate region! for both
the intermediate and outer regions at each Ca, is assessed by
calculating the L2 norms, using

L2 norm5A( j51
m ~u j numerical2u j composite!

2

m
,

where m is the number of data points used in each region.
The results are shown in Fig. 6. For Ca<1022, the difference

FIG. 4. Free surface shapes as a function of Capillary number. Here
e5531024, uD5uS545°, A54LC

2 , x̂5x8/LS , ĥ5h8/LS . Here Ca51023

~—!, 1022 ~–––!, 1021 ~–•–!, 231021 ~•••!. Note the dramatic amount of
viscous bending in the vicinity of the dynamic contact line as the Capillary
number is increased.

FIG. 5. Interface slopeu( r̂ ) versus radial distancer̂ ( r̂5r 8/LS) from dynamic contact line. HereuD5uS545°, e5531024, and A54LC
2 . Plotted are the

numerical ~—!, composite ~–––!, outer ~s! and intermediate region ~–•–! solutions. For ~a! Ca51023 and ~b! Ca51022, the composite solution provides an
excellent fit to the numerical data. For ~c! Ca51021, the composite solution matches the numerical solution in the vicinity of the dynamic contact line, the
intermediate region, but deviates systematically from the numerical solution in the outer region. For ~d! Ca53.531021, there is no match between the
calculated and composite solutions in both the intermediate and outer regions.
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between the numerical and composite solutions remain small
for the intermediate as well as the outer regions. For
1022,Ca<1021, a good match ismaintained in the interme-
diate, while the fit deteriorates in the outer region. For
Ca.1021, the fit becomes poor for both regions.

The infiltration of viscous effects into the outer region is
further illustrated in Fig. 7, where thepressure in the inviscid
gasphasePg , relative to adatum pressure in the liquid at the

lower right corner of the domain, is plotted as afunction of
Ca. Our calculations have revealed that this pressure is in-
variant with the outer length scale LC for all Ca. At low Ca,
surface tension dominates the shape of the meniscus. Our
scaling then requires that Pg;Ca21~cosuD1cosuS! for
Ca!1, whereuD anduS represent the contact angles at the
moving and stationary plates, respectively. In our simula-
tions, uD5uS545°. At large Ca, viscous effects dictate the
shape of the free boundary and Pg becomes independent of
the Capillary number. The limiting value is Pg;26y for
Ca@1, where y5A/LC

2 . Both the low and high Ca asymp-
totes are shown, along with the results from the numerical
simulation ~the constant difference between the numerically
calculated values of Pg , and the asymptote at high Ca is of
the order of 22, and represents the pressure drop caused by
the presence of a bounding liquid surface!. Viscous stresses
start becoming important beyond Ca;1022, producing the
observed lack of fit with the leading-order solution in the
outer region. Note that because A54LC

2 ~A wil l always be
some multiple of LC

2 !, these results are independent of LC ,
implying that this limiting value of Ca is independent of
macroscopic geometry.

To assess thegeometry independenceof Eq. ~1!, wehave
plotted, in Fig. 8, the best fit values of uR vs Ca for a range
of outer length scales between 100LS and 2000LS . HereuR
appears to be independent of the outer length scale LC for
Ca<1021. Within this rangeof Ca, the first term in Eq. ~6! is
at least one order of magnitude larger than the second at
r510LS , confirming that themeniscus shape at this point is
dominated by the geometry-free viscous contribution. For
Ca.1021, this plot showsan apparent geometry dependence.
However, as discussed above, the fit has also degraded sub-
stantially, so that thoseuR values may no longer be mean-
ingful.

The geometry-independent meniscus shape in the inter-
mediate region should be independent of the specifics of the

FIG. 6. Variation, with Ca of the L2 norm between the numerically gener-
ated and composite solutions. The plot for the intermediate region includes
data for 5LS,r 8<0.25LC , while the plot for the outer region contains data
for r 8.0.25LC .

FIG. 7. Variation of the pressure in the inviscid surrounding phase ~—!,
relative to an arbitrary datum pressureof 100 at the lower right corner of the
domain, with Capillary number. The low Ca asymptote, shown as the in-
clined dashed line, is given by Pg;Ca21~cosuS1cosuD!, while the high
Ca asymptote, shown as the horizontal dashed line, is given by
Pg;26A/LC

2 . The small constant difference between the simulated and
asymptotic results at high Ca is the end effect caused by the presence of the
bounding liquid surface. Both asymptotes are independent of LC . The cal-
culated Pg values are also independent of LC , indicating that these results
are independent of macroscopic geometry. Viscous effects infiltrate into the
outer region for Ca>1021.

FIG. 8. Variation of the angle uR as a function of Capillary number for
various outer length scales LC . The geometry independence of uR is main-
tained up to Ca;1021. No real significance can be attached to the apparent
geometry dependence for Ca.1021, because the leading-order perturbation
solution becomes inadequate for this range of Ca.
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inner model. In order to test this directly, we have completed
a set of simulations for LC5200LS and 2000LS using an
entirely different slip behavior,18 where the liquid velocity
along¬ the¬ plate¬ is¬ given¬ by
vy52U[h(0)2y)/e] 2/$[11$h(0)2y)/e] 2%. Up to Ca
50.1, the values of uR using this model are geometry inde-
pendent, and are within 61° of those using the exponential
slip model with the samee.

The geometry independence of uR for Ca<0.1 implies
that it can be used to replace the true dynamic contact angle
as amaterial boundary condition when modeling fluid flow
problems containing dynamic contact lines within this range
of Ca. Essentially, the troublesome region containing the dy-
namic contact line can be eliminated, and the modeling can
proceed on a truncated domain, to which geometry-free
boundary conditionsalong with theusual hydrodynamic con-
ditions can be applied.

V. CONCLUSIONS

Numerical simulations of a model problem containing a
dynamic contact line have been utilized to establish the
geometry-independent nature of the slope of the free surface
in the immediate vicinity of the moving contactline for
Ca<1021. Within this region, local viscous effects have a
strong impact on the shape of the free surface, so that the
macroscopic geometry does not play a role. The slope of the
interface at any point within this region can be used as a
material boundary condition for simulation of dynamic wet-
ting problems. For 1022,Ca<1021, viscous effects infiltrate
into the outer region, significantly diminishing the quality of
fit between the numerically computed and lowest-order per-
turbation solutions in this region. For Ca.1021, higher-order
corrections to the perturbation solutions appear necessary for
both the intermediate and outer regions to adequately de-
scribed meniscus shapes.
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APPENDIX: DIMENSIONLESS GOVERNING
EQUATIONS

Al l lengths are scaled with LC , velocities with the plate
speed U, and the pressure and viscous stresseswith mU/LC .
Al l variables presented here are dimensionless.

Continuity:

“–v50.¬ ~A1!

Here v5vxex1vyey , where ex and ey are unit vectors in the
x and y directions.

Conservation of momentum (creeping flow, no gravity):

2“P1“–t50, ~A2!

t5“v1~“v!T is the viscous stress tensor.

1. Boundar y conditions

No slip and no penetration of liquid on all stationary
solid walls,

v50.¬ ~A3!

At the free surface y5h(x),

n–T5Ca212Hn2nPg ,¬ ~A4!

n–v50.¬ ~A5!

Equations ~A4! and ~A5! represent thestressbalanceand
kinematic conditions, respectively. HereT52PI1t, I is the
identity tensor, n is the unit outward pointing normal from
the free liquid surface, H is the local mean curvature of the
interface 2H52“II–n, where “II is the surface divergence
operator ~I2nn!–“, and Pg is the unknown pressure in the
surrounding inviscid phase, relative to an arbitrarily chosen
datum pressure at the lower right-hand corner of the domain.

At the contact lines:

nsolid–n5cos~u!. ~A6!

At the dynamic contact line, the microscopic dynamic
contact angle is u5uD and at the static contact line, u5uS .

Slip model: The liquid speed along the moving plate is

vy5211exp$2@h~0!2y#/e%, ~A7!

where h(x) is the dimensionless height of the free surface
ande5LS/LC .

At the hypothetical lower surface, y50,

vx50,¬ ~A8!

vy52vy0@~12x!~123x!#.¬ ~A9!

Here vy0 is the dimensionless liquid speed at (x,y)5(0,0),
and is defined using the slip model ~A7!. Note that the im-
position of Eqs. ~A8! and ~A9! is equivalent to using the
boundary condition]vy/]y50 at that location.

The mass of liquid within the computational domain
must be conserved. For a liquid of constant density, this re-
duces to the volume contraint,

E
0

1

h~x!dx5A/LC
2 ,¬ ~A10!

whereA is the liquid volume/width within the computational
domain.
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8Q. Chen, E. Ramé, and S. Garoff, ‘‘The breakdown of asymptotic hydro-
dynamic models of liquid spreading at increasing capillary number,’’ Phys.
Fluids 7, 2631 ~1995!.

9J. Lowndes, ‘‘The numerical simulation of the steady movement of a fluid
meniscus in a capillary tube,’’ J. Fluid Mech. 101, 631 ~1980!.

10P. Bach and O. Hassager, ‘‘A n algorithm for the use of the Lagrangian
specification in Newtonian fluid mechanics and application to free surface
flow,’’ J. Fluid Mech. 152, 173 ~1985!.

11J. N. Tilton, ‘‘The steady motion of an interface between two viscous
liquids in a capillary tube,’’ Chem. Eng. Sci. 43, 1371 ~1988!.

12M. Zhou and M. Sheng, ‘‘Dynamics of immiscible-fluid displacement in a
capillary tube,’’ Phys. Rev. Lett. 64, 882 ~1990!.

13P. Sheng and M. Zhou, ‘‘Immiscible fluid displacement: Contact line dy-
namics and the velocity dependent capillary pressure,’’ Phys. Rev. A 45,
5694 ~1992!.

14S. F. Kistler and L. E. Scriven, ‘‘Coating flows,’’ in Computational Analy-
sis of Polymer Processing, edited by J. R. A. Pearson and S. M. Richard-
son ~Applied Science, New York, 1983!.

15D. Rajagopalan, R. J. Phillips, R. C. Armstrong, R. A. Brown, and A.
Bose, ‘‘The influence of viscoelasticity on the existence of steady solu-
tions in two-dimensional rimming flow,’’ J. Fluid Mech. 235, 611 ~1992!.

16P. R. Kota, ‘‘Investigation of wetting hydrodynamics using numerical
simulations,’’ Ph.D. thesis, University of Rhode Island, 1993.

17P. Hood, ‘‘Frontal solution program for unsymmetric matrices,’’ Int. J.
Num. Methods Eng. 10, 379 ~1979!.

18E. B. Dussan, V, ‘‘Themoving contact line: The slip boundary condition,’’
J. Fluid Mech. 77, 665 ~1976!.

309Phys. Fluids, Vol. 8, No. 2, February 1996¬ Finlow, Kota, and Bose

Copyright ©2001. All Rights Reserved.


	University of Rhode Island
	DigitalCommons@URI
	1996

	Investigation of Wetting Hydrodynamics Using Numerical Simulations
	David E. Finlow
	Prakash R. Kota
	See next page for additional authors
	Terms of Use
	Citation/Publisher Attribution
	Authors


	7ZF;01FEB96

