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(Received 28 July 1970) 

Work on the Ising chain with competing interactions is extended to the case where a staggered field is 
included as well as the usual direct field. A simple transformation enables one to interpret the behavior 
of this model as a metamagnet. Tricritical points are found and analyzed, and the observability of the 
tricritical exponents, as distinguished from the usual critical exponents, is discussed. 

I. INTRODUCTION 

In a previous paper1 (to be called I in this paper) 
the one-dimensional spin -1/2 Ising chain with com­
peting nearest neighbor and very long range equivalent 
neighbor interactions was discussed. The Hamiltonian 
may be written 

N JLR N N N 

X=-JSRL (J.l,J.li+l)- -T L L J.liJ.lj-HL J.li, 
i=1 ~\ ;=1 j=1 i=1 

( 1) 

where J.li= ±1. For the case of competing interactions, 
JSR<O and JLR>O. One reason for choosing the some­
what artificial very long range equivalent neighbor 
interaction is, of course, that the complete thermo­
dynamic solution to such a Hamiltonian can be found 
relatively easily provided that the JLR=O problem 
can be solved in a field. 2- s The JLR=O problem can 
be solved quite easily for the one-dimensional Ising 
model with short range interactions and also for some 
one-dimensional quantum mechanical models6 as well 
as for one-dimensional continuum systems.7 Further, 
the equivalent neighbor interaction guarantees the 
existence of a phase transition. Also, the equivalent 
neighbor and nearest neighbor interactions are opposite 
extremes in terms of the range of interactions. 

One interesting feature of the solution of the Hamil­
tonian in Eq. (1) is the existence of a tricritical point, 
which is defined to be the point at which three critical 
lines meet.8 (A critical line is a line of critical points.) 
The confluent point, found and defined in (I), appears 
as a tricritical point in a phase diagram in which 
H, T, and JLR are variables. However, it can be 
argued that J LR represents a spin interaction strength 
and thus is not a thermodynamic variable. In this 
paper another term is added to the Hamiltonian, 
namely, 

N 

- H' L (-1) iJ.li. (2) 

than J LR.) In this paper we discuss the tricritical 
points in the H, H', T phase diagram. It is interesting 
that in these diagrams the confluent point found in I 
becomes a tetracritical point. It might be noted that 
the addition of a staggered field does not present any 
real difficulty in solving the problem, as was shown by 
Stout and Chisholm.3 

The introduction of the staggered field also facilitates 
interpreting the results of this work in terms of the 
properties of metamagnets.3 •9 ,10 After performing a 
transformation which flips alternate spins, the tri­
critical point on the H, H', T phase diagram becomes 
the point at which the metamagnetic phase transition 
changes from first order to second order. Defining T* 
to be the tricritical temperature and TN to be the 
Neel temperature, the variation with JSR/ J LR of the 
ratio T* / TN is discussed in Sec. III. 

Although it is to be expected that models with very 
long range equivalent neighbor interactions will not 
quantitatively fit experiments, especially very near 
critical points, it is hoped that such models will provide 
a qualitative picture of significant features of real 
systems. One such feature is the qualitative variation 
of T*/TN with J SR/ hR. Another is that the critical 
exponentsll for such models at the tricritical point 
are different from the exponents at usual critical 
points. In connection with this latter observation it is 
of some experimental interest to obtain an estimate 
of the size of the "tricritical region" in which such 
tricritical indices are observable. This is done in Sec. 
III, using our calculations of the sublattice magnetiza­
tion and specific heat as a guide. 

In the next section we summarize the details of 
obtaining the solution. The results of physical interest 
are presented in Sec. III. 

II. DETAILS OF THE SOLUTION 

We first solve the nearest-neighbor Ising chain 
i=l 

problem in a staggered field, i.e., JLR=O in Eqs. (1) 
This term represents the effect of a staggered field and (2). One may use the usual transfer matrix 
which operates in one sense on one sublattice consisting technique except that the presence of the staggered 
of even-numbered spins and in the opposite sense on field requires a different transfer matrix for even-odd 
the other sublattice consisting of the odd-numbered (eo) transfers (2i~2i+ 1) than for odd-even transfers 
spins. (Although such a field is most easily realized (2i-1~2i), as was shown by Stout and Chisholm.3 

theoretically, it is at least a more realistic variable Defining K = JsR/kT, K LR= JLR/kT, Lo= H/kT, and 
729 
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730 J. F. NAGLE AND J. C. BONNER 

Lo' = H' / k T, we have for the transfer matrices 

and 

Veo= [eXP(K+LO) 

exp( -K+Lo') 

Voe= [eXP(K+ Lo) 

exp ( - K - Lo') 

exp( - K - LO')] 

exp(K-Lo) 

exp( -K+Lo')]. 

exp(K-Lo) 
(3) 

The partition function per spin Z is given by the square 
root of the largest eigenvalue of VeoX Voe, i.e., 

Z2= e2K coshZLo+e-2K coshZLo' 

+[e4K coshZLo+e-4K cosh2ZLo' 

+ 2 coshZLo cosh2Lo' + 2 (1- cosh4K) J1/2. (4) 

For convenience let us abbreviate the square root in 
Eq. (4) as sqrt. Then the magnetization per spin can 
be found to be 

M = a InZjaLo= e2K sinh2Lo/sqrt (5) 

and the "staggered" or sublattice-magnetization per 
spin is 

M'=a InZ/aLo'=e-2K sinhZLo'/sqrt. (6) 

Next, we discuss the formal changes in the solution 
when an equivalent neighbor term is added, i.e., 
hR~O in Eqs. (1) and (2). The formal changes are 
well known in the context of mean field theory (see, 
for example, Stout and Chisholm3) and have been 
established rigorously by Baker! and Suzuki.5 In 
order to establish notation we give a quick derivation. 
Writing for the J LR= 0, i.e., the nearest-neighbor 
case, 

Znn= L exp[ -(3(Es-M.Ho-Ms'Ho')J (7) 
states 

and using a maximum term argument, we can assert 
that in the thermodynamic limit the free energy per 
spin is 

Fnn(Ho, Ho', T) =minM,M{E(M,M') 

- (kT/N) InW(M,M') -MHo-M'Ho'J, (8) 

where E(M, M') is an average energy per spin over the 
number W(M, M') of states with magnetizations M 
and M' given by (5) and (6). Exactly the same sort 
of thing can be done when JLR~O to give 

FLR(H, H', T) =minM,M.[E(M, M') 

-(kT/N) InW(M,M')-MH-M'H'-JLRM2J (9) 

and E(M, M') and W(M, M') are the same as in Eq. 

where now the variables Ho and Ho' are related to 
M, M', and T via Eqs. (5) and (6). 

Let us perform a double Legendre transformation: 

A(M,M', T)=FLR(H,H', T)+MH+M'H'. (11) 

Then from Eqs. (11), (10), (6), (5), and 

H= (aA/aM)M',1' and H'= (aA/aM')M,7', 

we have 

(12) 

(13) 

Thus, given H, H', and T, the solution to the problem 
of finding the thermodynamic value of M' is given by 
Eq. (6), but the solution to the problem of finding 
M requires minimizing FLR in Eq. (10) as a function 
of M under the constraint in Eq. (13). Instead, we 
prefer to define a mixed thermodynamic potential, 

CI(M, H', T)= FLR(H, H', T)+MH, (14) 
so that 

(15) 

It is then easily shown that the system is stable in a 
homogeneous phase with magnetization M provided 
that the tangent to Cl at M lies completely below 
the Cl versus M curve; otherwise the system is 
metastable and will break up into two phases. This 
is the familiar double tangent or convex envelope 
prescription for obtaining thermodynamic behavior 
in the two phase region.12 

It is not very useful to attempt analytic solutions 
of the regions of stability of the first-order phase 
transitions. It is far easier to carry out these computa­
tions numerically. The procedure was to compute 
Cl(M, H', T) for a given H' and T at some 40 values 
of M (i.e., Ho). It was then tested whether or not the 
tangent to the Cl curve at M lies below the Cl vs M 
curve at the other computed values of M. This pro­
cedure provides an upper bound for the regions of 
stability. If the system was not stable for some values 
of M, an iteration scheme computed the boundary 
value of M between the stable and metastable region 
to as many significant figures as desired. However, this 
numerical procedure breaks down near critical points 
because the unstable region may be so small as to be 
lost between two adjacent values of the original grid 
in M, but this is not important since the critical 
points can often be located analytically. 

In order to locate critical points analytically it is 
most convenient to refer to the Landau free energy 
expansion, which is applicable because this is a classical 
model. For fixed H' this may be written, 

Cl(M, H', T) =ao(T)+Il2(T) CAM)2 

(8). Thus, and 

FLR(H, H', T) =minM.M.[Fnn(Ho, Ho', T) <XI 

an(T) = L anm(t~.T)m. 
+MCHo-H)+M'(Ho'-H)-hRMW], (10) ,....0 
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ISING CHAIN IN A STAGGERED FIELD 731 

This leads to an inverse differential susceptibility 

1/x= (aH/aM)r,w= 2th( T) + 12a4(T) (.:lM) 2 

+30a6(T)(.:lM)4+""". (16) 

For .:lM=M-Mc this gives an infinite susceptibility 
when th (T) = 0 and this feature locates the spinodal 
curves. As was discussed in Paper I the existence of 
a critical point in a field H(H'=O) requires that two 
spinodal curves meet. This results when two of the 
roots of the cubic equation th( T) = 0 are equal. In 
the full H"eO and H'"eO case the th(T)=O equation 
becomes sixth-order and is not amenable to analytic 
expressions. However, in the present paper, we are 
most interested in the case H=O and H'"eO. This 
case reduces to a simple quadratic equation as follows: 

(1+sinh2Lo') (e4K+sinh2Lo') =4KLR2eSK. (17) 

But Eq. (17) only locates the critical point when 
the point M = 0, H', T is stable. In practice this is 
the case when a4 (T) > 0 and is not the case when 
a4(T) <0. The point M=O, H', and T at which 
a4(T) =0 is the tricritical point and has been found 
by simultaneous numerical solution of llol( T) = 0 in 
the form of Eq. (17) and a4(T) =0. This procedure 
was verified for a test case, i.e., one particular J LR 
and JSR, by detailed computation using Gl(M, H', T) 
and the double tangent construction. 

III. THERMODYNAMIC BEHAVIOR 

First, let us relate this model to metamagnets. 
The interaction which is believed to induce the phase 
transition in metamagnets is antiferromagnetic. In 
the mean field approximation, i.e., in terms of the 
equivalent neighbor model this interaction appears as9 

JCA=N[-r(M12+M22)+2AMlM2J, (18) 

where M j = CLJ.l.i)/N over spins on the j= 1 or 2 
sublattice. We are interested in this paper in the 
special case r = A = J LR' for which 

JCA=-hR'N(Ml-M2)2. 

The whole Hamiltonian may then be written 

X= - J LR'N(Ml-M2)2_ J SR' L: J.l.iJ.l.i+l 
i 

(19) 

If one now formally redefines all the spins on sublattice 
2 to be their negatives, i.e., J.l.i(2L-+- J.l.i(2), then we 
recover the Hamiltonian in Eqs. (1) and (2) pro­
vided that J LR'= J LR, J sR'= - JSR, H'=H, H=H', 
M'(=Ml-M2)=M(=Ml+M2), and M=M'. Thus, 
a solution to (1) and (2) is equivalently a solution 
to (20) with the above identifications or reinterpreta­
tion of the parameters. 

It was found in Paper I that for H'=O, H"eO there 
are three qualitatively different kinds of phase behavior, 

A B 

T 

H 

, 
-~ 

FIG. 1. The schematic H, H', T phase diagram for J SR/ J LR> 
-0.31714···. The surfaces, such as HI', t, TN, -t, -Hi', are 
the loci of first-order or discontinuous phase transitions. The 
perimeters, such as B, t and t, TN, -t are lines of critical points. 
The surface H,', A', B, t has three images under the symmetries 
H-+-H and H'-+-H' which, for convenience, are not shown. In 
the particular case J sR =-1/2 and JLR=1.648721 .. ·, one has 
TN=2, T*=1.9421 .. ·, TB=JLR/k and 1lt'=JLR+2Js[l.· 

and this continues to be the case when H' "eO. For 
fixed JSR and hR and JSR/hR>-0.31714 ... , the 
phase diagram in the H, H', T variable set is shown 
schematically in Fig. 1. The shaded portion of the 
H = 0 plane, identified in the figure by the points 
HI" t, TN, -t, -HI' on the perimeter of the shaded 
portion, is a first-order transition plane; in particular, 
for variables H=O, H', and T lying on that shaded 
portion, there is a nonzero spontaneous magnetization 
±Ms. The high temperature boundary t, TN, -t is 
a line of critical points; thus the differential zero field 
susceptibility diverges on this line, the locus of which 
is given by Eq. (17). At the tricritical points ±t, 
the coefficient a4(T) in Eq. (16) also vanishes. Thus, 
the analytic continuations of the line t, TN, -t are 
metastable critical lines and are masked by the first­
order transition along the lines HI" t and -I, -HI'. 
The negativity of a4(T) while th(T) is positive induces 
a transition in nonzero direct field H. This transition 
is represented by the surface HI" A, B, t, and the 
three other surfaces (not drawn in Fig. 1) which are 
related by the symmetries H~-H and H'~-H'. 
This transition surface ends at T=O along the first­
order line given by H l '-Hl =2JSR+JLR. At finite 
temperatures one can obtain the limiting behavior of 
the transition surface as Hand H' become very large. 
Just as at T=O, purely energetic considerations yield 
the equation for the transition surface, Hl'=Hl+ 
J LR+2JSR• However, the transition surface for large 
Hand H' only extends up to the temperature kTc= JLR 
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.9 

.8 

0.2 o 0.2 0.4 0.6 

JSpj J"LR 

FIG. 2. The variation of T* IT N with] sRI] LR. 

and the critical magnetization is given by Mc= 1/2. 
These relations were discovered empirically, but they 
can be shown to be consistent with the sixth-order 
stability equation a2 (T) = 0 in nonzero fields when 
Land L' are much greater than one. 

The tricritical points ±t occur at the ends of the 
triple lines HI', t and -HI', -t, each point of which 
is a proper triple point. The relative locations of the 
tricri tical points to the N eel poin t can be expressed 
by the ratio T*/TN, following the notation used to 
describe metamagnets.9 In much work on metamagnets, 
the basic variable which controls T* / TN is the ratio 
r / A in Eq. (18). In this work the basic variable is 
J sRI hR. In Fig. 2 the variation of T* I TN is plotted 
versus JsRI hR. The case J SR/ hR=O was originally 
solved by Sauer and Temperley.u For lsRI JLR> 0, 
i.e., when the long-range and short-range interactions 
cooperate rather than compete, the tricritical point 
recedes from the Neel point towards T=O. As JSR/ J LR 
goes negative, i.e., when the long-range and short­
range interactions compete, the tricritical point 
approaches the N eel point. For the ratio J sRI J LR= 

-0.31714· ", which in Paper I was called the confluent 
point, the tricritical points merge with the N eel 
point. In an H, H', T phase diagram this confluent 
point is technically a tetracritical point in the sense 
that it is the meeting point of four critical lines. For 
-1/2<JsR/hR<-0.31714· .. the tricritical points 
disappear altogether, resulting in the phase diagram 
shown schematically in Fig. 3. In this case the transition 
in zero fields H' = 0 and H = 0 at Tl is first order and 
is technically a triple point on a triple line where 
three first-order surfaces meet. For JSRI JLR< -1/2 
the ground state in zero field becomes antiferromagnetic 
and the transition in zero field, i.e., the surface H1', 

T1, - HI' disappears, leaving two disjoint phase 
surfaces in a field H ~O. 

As was discussed in Paper I, the critical exponents 
at ordinary critical points on these phase diagrams 
have the usual classical values {3= 1/2, 'Y = 1 = 'Y', 

0= 3, and a = 0 = a' (finite).n However, in the present 
paper, at the confluent point and also at the tricritical 
points the exponents take on the exceptional values 
{3= 1/4, 'Y= l='Y', 0=5, and a=O, a'= 1/2.14 Although 
these specific values of the tricritical exponents are 
expected to apply only to classical models, topological 
considerations suggest that tricritical exponents may 
be different from the usual critical exponents even 
for more realistic models and for real systems. 

Since more realistic models with tricritical points 
have not been solved, it may be of some value to discuss 
the question of the observability of the tricritical 
exponents using this model as a guide. The following 
computed examples are for the case J SR= -1/2 and 
hR= 1.64872··· for which the critical point in zero 
fields ( TN in metamagnetic language) is TN = 2.0 
and T*= 1.9421864· . '. In Fig. 4 a double log plot 
of the spontaneous magnetization versus Tc(H') - T 
is shown, where Tc(H') is the critical temperature in 
a field H'. In metamagnetic language, the spontaneous 
magnetization is the sublattice magnetization as 
measured by neutron diffraction or nuclear magnetic 
resonance, H' is the direct field, and Tc(IJ') is the 
~eel temperature in a field. For Tc(Ht') = T*, i.e., 
right at the tricritical field H t', the curve in Fig. 4 
has a slope of about 0.28 in the 0.1-0.01 decade and a 
slope very close to 0.25 in the decades closer to T*. 
For Tc(O) = TN the curve in Fig. 4 does not attain its 
asymptotic value of 1/2 until 1 T - TN 1"-'0.001, but 
it is easy to see, even on the basis of the values 
1 T - TN 1 ~ 0.01, that the two curves are likely to 
have different exponents. It is much harder to conclude 

A B 

T 

H 

FIG. 3. The schematic Ii, Il', T phase diagram for -1/2 < 
Jsal J LR < -0.31714···. In the particular case J SR = -1/2 and 
J LR=1.434923···, one has T N =1.5, TB=JLR/k.· 
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0.00001 0.00.1. 0.01. 

IT -Tel 
0.1 1.0 

FIG. 4. LogMs versus log[Te(H') - T], where Te(H') is the critical temperature in a field H' for H =0, for the case J SR= -1/2 and 
JLR=1.64872···. From top to bottom the critical temperatures are Te=T*, T*+2j mdeg, T*+lO mdeg, and TN~T·+58 mdeg. 

that (3= 1/2 for the curves for Te(H') closer to T*, 
i.e., for Te(H') = T*+ 2t mdeg and T*+ 10 mdeg, 
unless one can measure more decades in / T- Te(H') /. 
From the point of view of studying tricritical points, 
however, this should be considered an advantage 
because there will probably be some experimental 
error in determining T*. For example, if there is a 
2t-mdeg error in determining T*, and the measure­
ments only go in to / T- Te /=0.001, one will still 
obtain a fairly good estimate (0.29) of the tricritical 
exponent {3. Thus, it is to be hoped that one will be 
able experimentally to distinguish the tricritical 
exponent {3 from the usual critical exponent (3, even 

0.0000.1. 0.00.1. 

though there may be some difficulty in locating the 
tricritical point very precisely. 

In Fig. 5 is shown a similar double log plot of the 
specific heat versus Te(H') - T, where the Te(H') 
are the same as in Fig. 1, namely, Te(H') = T*, T*+2t 
mdeg, T*+lO mdeg, and TN. Also for comparison the 
curve for the more customary JSR=O, J LR= 1 case 
is shown. If measurements go to within 0.0001 oK 
of Te and even if T* is overestimated by 2t mdeg, 
one would obtain an estimate for ol of 0.45. We do 
not present similar graphs for other critical exponents 
because they either do not change in this model, as 
is the case for the susceptibility exponent, or they 

0.0.1. 0.1. 1..0 

FIG. 5. LogeB _ O•B ' versus log[Te(H') - TJ for the same cases as in Fig. 4, except that the lowest curve is obtained from 
JSR=O, Te= TN. 
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are very difficult to observe experimentally, such as 
the metamagentic M' versus H' critical isotherm. 

* Work supported in part by National Science Foundation 
Grant GP-21093. 
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Infrared Spectra of Divalent Metal Monothioacetylacetonates 
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The infrared spectra of copper (II), nickel (II), zinc (II), palladium (II), cadmium (II), and lead (II) 
complexes of monothioacetylacetone have been recorded from 1700-300 cm-I . Assignments for in-plane 
vibrations were obtained by normal coordinate analyses. The carbon-sulfur stretching vibration was 
located near 710 cm-I . In every case metal-oxygen stretching force constants were larger than metal­
sulfur constants and carbon-sulfur constants were less than carbon-oxygen constants. Systematic trends 
which appeared among both metal-sulfur and metal-oxygen stretching force constants were correlated 
with sequences observed among the carbon-donor atom force constants. 

INTRODUCTION 

Although the preparation of sulfur analogs of {3-
diketones and their chelatesI has been the focus of a 
number of recent investigations, detailed information 
on the properties and bonding in these compounds is 
meager. Recently, the type of normal coordinate 
analysis developed by Nakamoto for studies of the 
acetylacetonates2 was applied to several newly syn­
thesized chelates of dithioacetylacetone.3 The study 
showed that while metal-sulfur stretching force con­
stants increase in a predictable way, their values were 
significantly less than the metal-oxygen force constants 
of the corresponding acetylacetonates. 

Since the properties of the chelates of monothio­
acetyl acetone differ considerably from those of acetyl­
acetone and dithioacetylacetone, a vibrational analysis 
of the monothioacetylacetonates should further con­
tribute to understanding the effect of sulfur-for-oxygen 
replacement in the chelates of {3-diketones. In contrast 
to acetylacetonates and dithioacetylacetonates, mono­
thioacetylacetonates belong to a point group of lower 

symmetry. In previous cases where the infrared spectra 
for the latter compounds were reported,r' absorption 
bands were assigned on a strictly empirical basis. The 
carbon-sulfur stretching mode which was tentatively 
assigned to the band near 1220 cm-I has now been 
shown to appear close to 710 em-I. The values of 
stretching force constants, K (C -'-'-'-S), indicate pre­
dominantly single-bonded carbon-sulfur in the metal 
chelates. 

In the present study the infrared absorption spectra 
of bis(monothioacetylacetonato) complexes of nick­
el(II) , copper (II) , zinc(II), palladium (II) , cad­
mium(II), and lead(II) have been recorded and the­
oretical assignment of in-plane chelate ring vibrations 
has been made. 

EXPERIMENTAL SECTION 

Preparation of Compounds 

All the complexes except that of copper(II) were 
prepared by adding 0.01 mol metal nitrate dissolved in 
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