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Phase Behavior of Models with Competing Interactions* 

J. C. BONNER AND J. F. NAGLEt 

Physics Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 

Models with competing nearest-neighbor and very long-range interactions are solv('d l'xaclly 
for several one-dimensional cases, including the usual Ising chain (lCCI) , the X Y model (X YCI) , 
the transverse Ising model (TICCI), and the spherical model (SCCI). For certain ratios of the 
competing interaction strengths, ICCI and XYCI display triple points and two critical points in 
a field. In addition TICCI has an apparently enclosed phase in an H-T phase diagram; however, this 
phase is really paramagnetic as can be seen when an extended phase diagram is used. The extended 
phase diagrams for ICCI, X YCI, and TICCI display tricritical points and the tricriticall"xponents 
have different values from the usual classical values. In contrast to the rich phase behavior of the 
preceding models, SCCI shows very simple phase behavior, which is directly related to the ground 
state. Finally, the introduction of a staggered field to I CCI and a simple transformation allows 
reinterpretation as a metamagnetic model. Using ICCI as a guide the observability of the tricritical 
exponents is discussed. 

Interest has recently arisen in two-paramete~ model 
Hamiltonians.1•2 We have made a theoretical study of a 
variety of one-dimensional nearest-neighbor models in 
the presence of a very long-range, equivalent-neighbor 
(mean field) interaction, and a rich variety of phase 
behavior has been found when the short-range and 
long-range interactions compete. Extended phase 
diagrams plotted in terms of applied field H, tempera­
ture T, and a parameter representing the ratio of long­
range to short-range interactions J LR/ J SR show an 
unusual type of critical point called (after Griffiths) 
a tricritical point, i.e., the meeting point of three 
second-order critical lines. For our models, the tri­
critical points display the set of exponents 

H = 0 phase surface. At the top of the triple line sits the 
tricritical point. A qualitatively similar diagram is 
observed in the case of the linear XY model (XYCI) 
whose Hamiltonian is 

-y=-y'= 1, j3= 1/4, 1i=5, 

o/=!, and a=O, 

in contrast to the usual mean-field set. 
A feature of interest also is the strong dependence of 

the resultant phase behavior on the particular type of 
short-range competing interaction. The Hamiltonian for 
the linear Ising chain with competing interactions 
(1 CC1) is given as 

N N 

JClccr= 21 JSR II: 5i'5i+1"-H I: 5;"- (hR/N) 
i=1 i=l 

N N 
X L: L: 5;"5/, (1) 

i=1 j=1 

and a sketch of the extended phase diagram is shown 
as Fig. 1. The exact solution of this composite Hamil­
tonian is quite simple, and the general technique is 
fairly well known.3 Tracing out the phase boundaries in 

N 

JCXYcr= 2JsR L (5;"'5i+f"+5i"5i+11l
) 

i=l 

N IV N 

-H L 5/- (hnj;V) L: L: 5;'5/, (2) 
i=l }=1 

and numerical studies suggest that the linear antiferro-

T 

TRICRITICAL 
POINT 

FIG. 1. Extended phase diagram for ICCI. 

magnetic Heisenberg model also has this type of phase 
diagram. 

However, the Ising model in a transverse field, plus 
a mean field in the same direction as the applied field, 
whose Hamiltonian is 

detail, however, may be analytically nontrivial and is N 

most easily done by computer. Special features, how- :JCTlCCI= 2JSR I: 5/5 i+1
x 

ever, have been studied analytically. 
We observe in Fig. 1 that when the ratioJLR/JsR de­

creases to a critical value, a triple line appears, resulting 
from the intersection of two first-order phase surfaces 
symmetrically situated out in nonzero fields with the shows 

1280 

i=l 

IV N IV 

-H L 5;,-(lhnllV) L I: S;'5/, (3) 
i=l i=l .i=1 

an additional interesting feature, sketched in 
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Fig. 2. The triple line "doubles back" on itself, meeting 
the axis at T=O at a value of hRIJSR larger than the 
value corresponding to the tricritical point. Clearly, the 
shaded area under the triple line indicates a region 
showing a double phase transition in zero field" The 
H-T phase diagram associated with this double phase 
transition is of further interest, and is shown as Fig. 3. 
For values of hRIJsR indicated by the shaded area, 
an enclosed phase region appears for temperatures 
below Tl at which the system undergoes a first-order 
transition to a ferromagnetic state.5 At first sight this 
seems surprising, since an enclosed H-T boundary is 
usually associated with some kind of long-range order, 
such as antiferromagnetism. Here, however, the en­
closed region is paramagnetic, having transverse short­
range order, since in the extended phase diagram cor­
responding to Fig. 2, it is possible to pass from a high­
temperature paramagnetic region to the "enclosed" 
region without passing through a phase surface. 

T 

TRIPLE LINE 
fOR Icer. """'T 

PHASE SURf~CE 
I N IE ltO fltLl> 

HeI. \y/ Z 

I fORM OF TRIPLE 
, 1j LINE fOR 

I TIceI 
+H~~ __ L--1~ImDb~~~ __ ~+ 

PHASE SURFACES J', ILR 
IN NON-ZERO FlELl) Is" 
NOT SHOWN 

FIG. 2. H=O phase diagram for TICCI. The form of the triple 
line for ICCI and X YCI is shown dashed for comparison. 

By contrast with the rich variety of phase behavior 
of the ICCI, XYCI, and TICCI models, the extended 
phase diagram for the linear spherical model (SCCI) is 
very simple. The first-order phase surface in zero field 
terminates at a value of JLRIJsR such that the ground 
state changes character from ferromagnetic to anti­
ferromagnetic. There is no tricritical point and no phase 
surfaces out in a nonzero field.6 

Of greater experimental interest is further work on 
ICCI with a staggered applied field in addition to a 
direct field.7 The Hamiltonian (1) then becomes 

N N 

JCICCI STAO= 21 JSR I L S/Si+l'-H L S/ 

N N N 

-H'L (-l)iSiz-(! hR liN) L L S/Sjz. (4) 
i-I i--l i-I 

Flipping over the spins on one sublattice shows' that 
this model is equivalent to a ferromagnetic nearest­
neighbor linear chain with a "staggered" type of mean 

H 
+H, :r..ajJso'" J= 0 , 

, :To , , 
, :Tit , , , , 1----_., 

T 

FIG. 3. H-T phase diagram for TICCI for various values of 
JLR!JSR. 

field. A simple staggered mean-field model is capable of 
producing the familiar antiferromagnetic-paramagnetic 
second-order phase boundary in an H-T plane. The 
influence of some ferromagnetic short- and long-range 
interaction causes the low-temperature portion of the 
boundary to become first order, just as in the case of a 
classical metamagnet. These features are visible in the 
extended H, H', T phase diagram shown as Fig. 4. 
The first-order portion of the boundary becomes a triple 
line when an extra degree of freedom, H', is considered, 
since two additional phase surfaces appear for H:;6.0. 
Further, the point at which the boundary changes from 
first to second order appears as a tricritical point with 
the same set of tricritical exponents as previously. For 

TRIPLE LINE 

SE COND ORl>E R 

CRITICAL LIME 

0 
T 

H PfiASE SURrAC!: 

~ FOR ZERO H 
I 

-He TRICRITICAL POINT 

FIG. 4. H', Ii, T diagram for ICCI in an additional staggered 
field. 
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a particular value of J LR/ JSR , the two tricritical points 
for positive and negative H' merge with the Neel 
point to yield a tetracritical point, i.e., a meeting point 
of four second-order critical lines. The tetracritical 
exponents, however, are the same as the tricritical 
exponents. 

Studies on ICCI show that for ordinary critical 
points near the tricritical point, the apparent exponents 
for decades of log I T-Te I far away from Te look more 
like tricritical exponents than ordinary mean-field 
exponents and become mean-field-like only for decades 
close in to Te. This suggests that tricritical exponents 
may be "dominant" in experimentally accessible regions 
of temperature near tricritical points and hence tri­
critical exponents should be experimentally observable. 

* Research supported in part by the NSF. 
t Alfred P. Sloan Foundation Fellow. 
1 P. W. Anderson, G. Yuval, and D. R. Hamann, Phys. Rev. B 

1, 4464 (1970). Anderson's theory of the Kondo problem involves 
long-range (1/r2) and nearest-neighbor linear Ising interactions. 

I R. B. Griffiths, Phys. Rev. Lett. 24,715,1479 (1970). Griffiths 
demonstrates the importance of extra interactions for systematiz­
ing and predicting the nature of phase transitions. 

3 J. F. Nagle, Phys. Rev. A 2, 2124 (1970). 
4 We believe this is the first example of a double-phase transi­

tion in one dimension. The double transition "only just" develops 
for TICCI, and the salient features of Fig. 2 are exaggerated for 
clarity of presentation. 

6 For the same values of J LRI J SR the system undergoes a 
further transition at a higher temperature T2 to a high-tempera­
ture paramagnetic state. 

6 Work performed in collaboration with G. Stell (unpublished). 
7 J. F. Nagle and J. C. Bonner, J. Chern. Phys. (to be pub­

lished). . 
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Problem of Using Kink-Point Locus to Determine the Critical Exponent (3 

A. AnoTT 

Department of Physics, Simon Fraser University, Burnaby 2, British Columbia 

It is shown that depending on how one analyzes measurements of the temperature dependence of 
magnetization near the Curie temperature it is possible to conclude that the critical exponent changes 
near Te. An apparent change in fJ can be obtained from analyzing data generated from an equation 
of state in which fJ does not change. The mathematical and experimental difficulties in the use of the 
kink-point locus method are discussed. 

The "kink-point" method of determining Curie 
temperatures was used by the Strausborg school during 
the thirties and apparently originated with Neel.i The 
basic assumption of the method is that below Tc there 
is an unsaturated state in which the permeability is 
very large. In the limit of high permeability any sample 
with a uniform demagnetizing factor has its magnetiza­
tion determined by M = Ba/ 4'/TD, where Ba is the ap­
plied field. If the high permeability persists until 
M =M.(T), then for Ba>47rDM.(T), 

M = [M.( T) +xBJ/ (1 + 47rDx) , 

where X is the initial susceptibility in the saturated 
state. For cubic materials where the anisotropy should 
vanish as a high power of the magnetization on ap­
proaching the Curie temperatures, the above model 
should be close to the experimental situation. One 
would expect that for measurem!!nts in constant applied 
field M would remain constant with increasing tem­
perature until T= T B, where T B is the temperature at 
which M.(TB ) = B a/47rD. Above T B , dM/dT should 
have a finite value except in the limit as T~Te. Thus 
there should be a break point which should allow the 
determination of T B for each Ba; hence one should be 
able to obtain M.(T) in this way. Alternatively, one 

should be able to determine M. from the applied field 
dependence of 47rDM/Ba at constant temperature; 
47rDM/Ba should remain constant in the unsaturated 
region and then start to decrease with a finite slope for 
Ba>47rDM.(T). Both methods suffer in practice from 
two effects. Very near Te the vanishing initial deriva­
tives and the high curvatures make it very difficult to 
obtain M.(T) with adequate precision. Further from 
Tc, where the derivatives are finite and slowly varying, 
the fundamental assumption of the method, namely, 
very high permeability for M <M.(T), is no longer 
sufficiently true. That the permeability is limited by 
anisotropy, possibly arising from defects, is indicated 
by the observation that the decrease in permeability in 
the unsaturated region is more noticeable in a poly­
crystallineNi sample than in a single-crystal Ni sample.2 

The effects of these things on the temperature depend­
ence of the magnetization3 of a nickel spherical single 
crystal in constant applied fields are shown in Fig. 1. 
For 240 G the anisotropy effect shows a decrease in M 
some 0.2 deg below what I consider to be T B • For 18 G, 
there is an intrinsic curvature in addition to that arising 
from anisotropy (much smaller at 18 G than at 240 G). 
This is because X depends quite markedly on tempera­
ture and field near Te. At 240 G one can use a linear 
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