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Critical Phenomena Pedro Schlottman, Chairman 

Dynamics of the one-dimensional spin-l Heisenberg antiferromagnet 
with exchange and single-site anisotropy 

Shu Zhang, Yongmin Yu, V. S. Viswanath, Joachim Stolze,a) and Gerhard Miller 
D~pnrtmmt of Physics, The Uniwrsity of Rhode Island, Kingston, Rhode I.slund 02881-0817 

The T=O dynamical properties of the one-dimensional s= 1 XX2 model with an additional 
single-site term are investigated by means of the recursion method. The dynamic structure factors 
*S,,~l~= 7r,m), p==x,- 7 bear the characteristic signatures of several different phase transitions. ln 
the s= 1 Heisenberg antiferromagnet, the intrinsic Iinewidth (at fixed q) of S,,(q,o) is larger for 
small q than for q near ‘71; in contrast to well-established results for the corresponding .~=a model. 

Spin chains with quantum number s= 1 have been the 
object of sustained intense study ever since 1.983, when 
Haldaner first predicted the existence of a nonmagnetic 
phase with an excitation gap for the isotropic Heisenberg 
antiferromagnet. That research activity has led to a broad 
consensus on the main features, and many intricate details of 
the T= 0 phase diagrams pertaining to several mode.1 Hamil- 
tonians involving spin-l chains. The prototype among them 
is the Heisenberg antiferromagnet with exchange and single- 
site anisotropies, 

N 
H=~ [J(,SirLl’;+*+S~S~,l)t-J,sfs;‘,,+D(S;)”]. (1) 

l-1 

Within the domain il4TJJ 5 2, 0 G D/J 6 2 considered 
here for the two anisotropy parameters, a total of four dis- 
tinct T-0 phases have been identified?” (i) A Ndel phase 
(N) with antiferromagnetic long-range order in z direction is 
realized for sufficiently large J,/J. (ii) A singlet phase (S) 
characterized by a nondegenerate ground state, and an exci- 
tdtion gap exists for large D/.1. (iii) A critical phase (C) with 
algebraically decaying in-plane correlation function {SFS;+,J) 
is present for sufficiently small Jz/J and D/J. (iv) Contigu- 
ous to these three phases is the phase (H)-the one first 
predicted by Haldane. Like (S), it is characterized by a non- 
magnetic singlet ground state with an excitation gap.6 The 
ground state is critical on the boundaries of (H). The (C/H) 
transition is of the Rosterlitz-Thouless type, and the (N/H) 
transition is of the 2D-lsing variety. Both transitions are 
specified bv a single set of critical exponents for the entire 
phase bour&ry, except at the endpoints. The critical expo- 
nents of the (S/If) transition, by contrast, vary continuously 
along the phase houndary. 

What is the characteristic signature of the four phases, 
and the impact of the three transitions on the T=O dynamic 
structure factors S&q, w), defined as the Fourier transforms 
of the space-time correlation functions {S~(~)S~+,~),,~cl.=.u,z? 
The first goal of this stu@s is to investigate this important 

_--- 
%n leave from the Institut fiir Physik, UniversitSt Dortmund, 44221 Dort- 

mund, Germany. 

question with an application of the recursion method. The 
second goal will be a study of line shapes of S,,(q,w) for 
an experimentally relevant situation. 

The recursion method, which, in the present context, is 
based on an orthogonal expansion of the wave function 
1 @T(t)) ==S$( - t)l #a), S~=N-““C@“S~, yields (after 
several intermediate steps)7*8 a sequence of continued- 
fraction coefficients Af”(q),A$p(q),. .., for the relaxation 
function, 

1 
~r;%i52)=Z+App~aj 7 

1 . . 
z+ A;%J) 

from which the T= 0 dynamic structure factor can be in- 
ferred as 

The finite-size ground-state wave function I&> must be com- 
puted up front. We use the conjugate-gradient method for 
that task.’ 

Despite the nontrivial N dependence of I&o> in the 
present application, the first K-N/2 coefficients 
At”p(q),...,A?(q) are, at most, r~oukl~~ size dependent. 
They reflect key properties of S,,(q,oj for the infinite sys- 
tem more faithfully than the subsequent coefficients, which 
depend strongly on N. Our continued-fraction analysis uses 
the nearly size-independent coefficients (i) for the detection 
of dynamically relevant excitation gaps and (ii) for the de- 
termination of the spectral-weight distribution in S,,(q, 0). 

As is typical in quantum many-body dynamics, the 
nearly size-independent sequences Af”(g), k = 1,. . . ,K, ob- 
tained here grow linearly with k, on average,and exhibit one 
or several patterns that translate into specific properties of 
S,,(q,w) related to the type of ordering, the presence of 
excitation gaps, the size of bandwidths, and the exponents of 
infrared singularities. The techniques of analysis for these 
properties have been described in previous or concurrent ap- 

J. Appi. Phys. 75 (lo), 15 May 1994 0021-8979/94/75(10)/5937/3/$6.00 Q 1994 American Institute of Physics 5937 

Downloaded 27 Nov 2007 to 131.128.70.27. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



i-J/J D/J I 

(a) D/J=0 

J,/J 

FIG. 1. Dynamically relevant excitation gaps for operators Sq (circicsj and 
S$ (squares) along three lines in the parameter space of the Hamiltonian (1). 
The gaps are derived from Ii=6 nearly size-independent continued-fraction 
coefficients Am@, k= 1 ,...,K computed by means of the recursion 
method from the N- I? ground-state wave function. The vertical arrows 
indicate the locations where the three lines in parameter space cross phase 
boundaries. 

plications of the recursion method to the LD and 2D 
s =$ XXZ models7>” and the ID spin-s XYZ mode1.t” 

For our first task, which is to map out the rather complex 
phase diagram of (1) in the given parameter range, we 
choose an operator (in our case St with q= rr and p=x,z) 
which we know or expect to represent the critical fluctua- 
tions aiong a specified phase boundary. The method of deter- 
mining the dynamically relevant excitation gap for that op- 
erator involves the matching of the nearly size-independent 
~oefticien$ hfP( s) , . . . , AK*(q), with the first k’ coefficients 
a,(d&...,a,(tij of a suitable model dynamic structure factor 
that has a gap of size b1.s Since the matching criterion is not 
unique we cannot expect to obtain from that analysis accu- 
rate values for the gap sizes. Nevertheless, it proves to be a 
reliable indicator for the identification of phase boundaries 
and the dynamical variables that are subject to critical fhrc- 
tuations. 

For this short work, we have carried out the gap analysis 
along three lines in (JJJ,D/J) space. In Fig. l(a) we have 
plotted the J,lJ dependence for fixed DIJ = 0 of the excita- 
tion gaps which are dynamically relevant for the operators 
SX, (circles) and S: (squares). At J,/J = 0, our analysis yields 
a SX, gap very close to zero, and it remains near zero over 
some range of J,/J values, reflecting the extended critical 
phase (C). The large S$, gap in that region indicates that the 
out-of-plane lluctuations are not critical. Even past the tran- 
sition to the Haldane phase, marked (C/ri) in Fig. I(a), the 
SX, gap opens only very slowly, which is typical near a 
Kosterlitz-Thouless-type phase boundary. This is in marked 
contrast to the more rapid closing of the SZ, gap at the other 
end of the Haldane phase. The (-H/N) transition marks the 
onset of antiferromagnetic long-range order in the z direc- 
tion. The large SX, gap near the phase boundary confirms 
Haldane’s prediction’ that the in-plane Auctuations have no 
part in that transition. 

For the second line in parameter space [see Fig. l(b)], 
we keep the exchange parameter fixed at J,/J = 1 and vary 
the single-site parameter D/J. At DIJ=O, which is equiva- 
lent to the midpoint of Iine (a), the Pi gap starts out nonzero 
and grows with increasing D/J, which reflects the fact that 
low-frequency out-of-plane fluctuations are more and more 
suppressed as the easy-plane anisotropy becomes stronger. 
The S-k gap, by contrast, has a decreasing trend. Starting 
from the same value at D/J=O, it reaches a minimum near 
zero at D/J= 1.0 and then grows again. The minimum 
marks the (HIS) transition between two nonmagnetic 
phases, where only the staggered in-plane fluctuations be- 
come critical. 

Now we shift the line 06D/JG2 in parameter space 
from J+/J= 1 [Fig. l(b)] to J,/J = 1 .S [Fig. licj]. At D/J =0 
the system is in the Ndel phase. Here the S: gap is large, 
reflecting the transverse spin waves of a uniaxial antiferro- 
magnet? whereas the SZ, gap is effectively zero, reflecting the 
twofold degeneracy of the ground state associated with anti- 
ferromagnetic ordering. As D/J increases from zero, the SC 
gap stays near zero up to the (N/H) phase boundary at D/J 
==O.S, where it starts to increase very rapidly with no further 
change in course. The S: gap decreases from some large 
value as D/J increases from zero. It goes through a mini- 
mum near zero at D/J- ‘1.7, marking, as in Fig. l(b), the 
(H/S) transition, now shifted to a higher value of single-site 
anisotropy, in agreement with the broadly accepted 
picture.“-” 

The significance of the results displayed in Fig. 1 is that 
they have been derived entirely from the ground-state wave 
function of a chain with just N= 12 spins. It is certainly 
surprising that the spectral signatures of a rather complex 
phase diagram are so clearly encoded in that quantity and 
that this information is so easily retrievable. 

The same type of gap analysis carried out for the y de- 
pendence of the operator SC yields the dispersion of the low- 
est branch of excitations which is dynamically relevant for 
S,,(q,w). Toward our second goal we reconstruct the dy- 
namic structure factor itself via (3) from expression (2) with 
coefficients AT”(y), . . . , At’(q) and a termination function 
tailored, such as to extrapolate the recognizable pattern of the 
first K coefficients. A detailed account of the reconstruction 
has been reported in Ref. 8. Here we must limit the discus- 
sion to a couple of specific issues: What is the main differ- 
ence in line shape between the functions S,,(q,o) of the 
s= 1 Heisenberg antiferromagnet and its s= i counterpart, 
and what is the impact of a small easy-plane single-site an- 
isotropy on the peak positions and line shapes in the .y= 1 
case? 

Figure 2(a) shows the reconstructed (normalized) dy- 
namic structure factor S pIL(q,~j~SLccL(q,o)!(S~S~LLq) at 
(I = n/6 and 4 = 5 7r/6 for the 1D s = 1 Heisenberg antiferro- 
magnet. For both wave. numbers, the function consists of a 
single peak with nonzero intrinsic linewidth. This is in strong 
contrast to the results obtained from truncated continued 
fractionsrt or equivalent procedures,‘” which are sums of S 
functions, often broadened into Lorentzians for graphical 
representation. 

We note two main differences between the results of Fig. 
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FE. 2. Normali, dynamic structure factor S,,(q,w)/(S$SEJ at T=O of 
(a) the 1 n .Y = 1 Heisenheg aniiferromaget and (bj the same n~del with an 
additions] easy-plane single-site anisotropy, D/J ~0.18. We show results for 
FL-X,=, and q-r,&, 5~16. They havvc been derived from k’= 6 continued- 
fraction coefficients ;I$l’(q j , k  = I ). . . , K extracted from the N= 12 ground- 
&ate wave function combined with the continued-fraction analysis described 
in Ref. rC. The arrow near the peak of each curve indicates the energy of the 
lowest excitation with nomero m&ix element in S,,(q,o) of the N= 12 
chain. 

3_(a) and the corresponding results of the s=$ model (see 
Ref. S:): ($1) thr: pt& positions at wave nunlbers q and r-q 
are the same for .s= i, but differ substantially for s= 1. The 
spnxnetric dispersion of the s =$ chain is exactly known, and 
the asymtnrtric dispersion ‘of the s= .1 chain has been well 
established by extensive numerical diagonalizations.‘lal” (b) 
The linewidth is known to increase monotonically with in- 
creasing cl in the s= i ca!~e,s*‘~ but in Fig. 2(a) the s= 1 
result at snrall q has a considerably larger linewidth than the 
one at y near n: Our s= 1 results are consistent with the 
findings of Refs. 11 and 12 that the spectral weight in 
S’,,(y,wj is dominated by a single S function at q near 7r, 
but less so at small 61. The opposite trends of line broadening 
in the s =$ and s = 1 chains may he understood by interpret- 
ing the observable excitations as composites of different 
kinds of elementary states. 

The presence of some easy-plane anisotropy, D/J 
-0.18, alters the functions S,,(m’ti,wj and Sccl*(S~/6,0), as 
shown in Fig. 2(b). In-plane (XX) and out-of-plane (zz) fluc- 
tuations are now represented by separate peaks. At small 4, 
the in-plane peak has moved up and the out-of-plane peak 
down. At small m--q, they have moved in opposite direc- 

tions. the anisotropy causes an increase in in-plane line- 
widths. The peak positions of the reconstructed functions 
S++(5r/6,0) shown in Fig. 2 are in good agreement with the 
energies of the lowest-lying dynamically relevant excitation 
of a chain with N= 12 spins. The latter, quoted from Ref. 12, 
are indicated by arrows in Fig. 2. However, for q= ~16 the 
peaks lie significantly higher than the lowest N= 12 excita- 
tion. 

The significance of the point (Jz/J= 1, D/J = 0.18) 
in the parameter space of Hamiltonian (1) is its physical 
realization by the quasi-1D magnetic compound 
Ni(C1,W8N2j2N0$10, (NENP). A recent inelastic neutron 
scattering study on that compoundI observes well-defined 
resonances for 0.3rr<q& W, including q = 5 ~16, where our 
result predicts a peak with small but nonzero linewidth. At 
smaller wave numbers including q = g/6, the resonance in the 
experiment has disappeared in a broad background intensity. 
Here our analysis predicts a broad signal, which, when mul- 
tiplied by the very small integrated intensity, becomes indeed 
undetectable for all practical purposes. 
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