
University of Rhode Island
DigitalCommons@URI

Physics Faculty Publications Physics

1999

Quantized Systems with Randomly Corrugated
Walls and Interfaces
A. E. Meyerovich
University of Rhode Island, sfo101@uri.edu

A. Stepaniants
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/phys_facpubs

Terms of Use
All rights reserved under copyright.

This Article is brought to you for free and open access by the Physics at DigitalCommons@URI. It has been accepted for inclusion in Physics Faculty
Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.

Citation/Publisher Attribution
Meyerovich, A. E., & Stepaniants, A. (1999). Quantized Systems with Randomly Corrugated Walls and Interfaces. Phys.Rev. B.,
60(12), 9129-9144. doi: 10.1103/PhysRevB.60.9129
Available at: http://dx.doi.org/10.1103/PhysRevB.60.9129

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@URI

https://core.ac.uk/display/56696433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/phys_facpubs?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/phys?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/phys_facpubs?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1103/PhysRevB.60.9129
mailto:digitalcommons@etal.uri.edu


Quantized systems with randomly corrugated walls and interfaces

A. E. Meyerovich and A. Stepaniants
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

~Received 26 February 1999!

Effect of scattering by random surface inhomogeneities on transport along the walls and localization in
ultrathin systems is analyzed. A simple universal surface collision operator is derived outside of the quantum
resonance domain. This operator contains all relevant information on statistical and geometrical characteristics
of weak roughness and can be used as a general boundary condition on the corrugated surfaces. In effect, the
boundary problem for the three-dimensional~3D! transport equation is replaced by the explicit matrix collision
operator coupling a set of 2D transport equations. This operator is applied to a variety of systems including
ultrathin films and channels with rough walls, particles adsorbed on or bound to rough substrates, multilayer
systems with randomly corrugated interfaces, etc. The main emphasis is on quantization of motion between the
walls, though the quasiclassical limit is considered as well. The diffusion and mobility coefficients, localization
length, and other parameters are expressed analytically or semianalytically via the intrawall and interwall
correlation functions of surface corrugation.@S0163-1829~99!00935-2#

I. INTRODUCTION

Recent progress in micro- and nanofabrication, multilayer
systems, pure materials, vacuum technology, etc., made the
study of particle and wave interaction with system bound-
aries vital for almost all branches of physics. Below, we
concentrate on some universal features of wall and interface
scattering. More precisely, we consider effects of scattering
by random surface corrugation without energy accommoda-
tion.

Scattering of particles by random surface inhomogeneities
contributes to the randomization of momentum, formation of
the mean-free path, quantum interference, and, often, local-
ization. Though this effect of surface scattering looks trans-
parent, it is not easy to express it in terms of geometrical and
statistical properties of surface inhomogeneities, especially
for quantized systems~see Refs. 1–5 and, for recent refer-
ences, our preceding publication6!.

At first glance, the effects of scattering by random surface
inhomogeneities should not be qualitatively different from
scattering by bulk impurities. However, while the basic ef-
fects of impurity scattering are described in textbooks, a
similar simpleaccount of surface scattering is missing. One
of the reasons is technical: the range of impurity interaction
is usually short while the corresponding parameter for sur-
face scattering, namely the correlation radius of surface in-
homogeneities, can be large. The second reason is more fun-
damental. It is intuitively clear that the role of surface
scattering is higher in ultraquantum small-size systems of
longwave particles. In such quantized systems even the im-
purity scattering is not well understood and is much more
complicated than in standard quasiclassical problems.

If one disregards quantum interference and localization,
the effect of impurity scattering on quasiclassical three-
dimensional~3D! transport can be described by the transport
equation

dn~p!

dt
52pNimpE W~p2p8!@n~p8!2n~p!#

3d~ep2ep8!
d3p8

~2p!3
, ~1!

whereNimp is the density of impurities,e(p) is the energy
spectrum of particles with the distribution functionn(p), and
the transition~scattering! probability W between the statesp
and p8 is proportional to the impurity cross sections
~throughout the paper\51). This allows to express the re-
laxation time operatort̂21 via the transport cross section
s tr . In quasi-2D systems with small spacingL between the
walls, such as ultrathin films, the motion inx direction per-
pendicular to the walls is quantized and one deals with a set
of 2D energy minibandse j (q) instead of the 3D spectrum
e(p). If the motion along the walls remains quasiclassical
and the concentration of impurities is large,Nimp

1/3 L@1, the
transport Eq.~1! can often be rewritten as a set of coupled
equations for minibandse j (q)

dnj~q!

dt
5

2p

L
Nimp(

j 8
E Wj j 8~q2q8!@nj 8~q8!2nj~q!#

3d~e j q2e j 8q8!
d2q8

~2p!2
, ~2!

where the collision integral includes all impurity scattering
processes with and without interband transitionsj↔ j 8. The

related relaxation time operator is a matrix,t j j 8
21̂ . A similar

matrix equation in kinetic theory of gases of particles with
discrete internal states is sometimes called the Waldmann-
Snider transport equation. Since the~weak! localization
length is exponentially large in 2D systems, the quantum
interference and localization problem can be approached af-

PHYSICAL REVIEW B 15 SEPTEMBER 1999-IIVOLUME 60, NUMBER 12

PRB 600163-1829/99/60~12!/9129~16!/$15.00 9129 ©1999 The American Physical Society



ter the ‘‘classical’’ transport problem~2! is solved and the
relaxation and diffusion parameters are found.

The form of the collision operators in Eqs.~1! and ~2! is
universal for bulk impurities and does not depend on the
geometry of the system. The main conclusion of this paper is
that for a wide range of wall scattering problems one can still
use the impuritylike Eq.~2! in which the transition probabil-
ity W @i.e., the impurity cross-sections j j 8(q2q8)# should be
simply replaced by the correlation function of surface inho-
mogeneitiesz j j 8(q2q8) with trivial constant factors. The
form of the resulting transport equation is system indepen-
dent in the same sense as Eq.~2! is independent of a particu-
lar realization of the random impurity system. We solve both
the diffusion and localization problems and give a compact

expression for the wall-related relaxation time operatort j j 8
21̂ .

In certain situations, the quantum transport equation is
solved analytically. To illustrate the versatility of the results,
we present a wide spectrum of applications such as conduc-
tivity of ultrathin metal films and channels, multilayer sys-
tems, single-particle diffusion of quasiparticles in helium
systems, quantum bouncing ball problem for trapped ultra-
cold neutrons or electrons on helium surface, weakly bound
states on corrugated substrates, etc.

Our preceding paper6 contains a rigorous diagrammatic
derivation of the quantum transport equation for quasi-2D
systems with weak scattering by random rough walls~or ran-
dom impurities!. The essential difference from the standard
Keldysh technique in combination with impurity averaging7

is the quantization of motion inx direction perpendicular to
the walls resulting in the quantum~matrix! form of the trans-
port equation; the motion along the walls remains quasiclas-
sical. Almost always, this quantum transport equation with
surface or impurity scattering reduces to the form~2!. The
exception is a narrow quantum resonance region in which the
gaps between the quantized energy levelsV are comparable
to the effective corrugation-induced perturbation. Since the
energy gapsV increase with decreasing spacingL between
the walls as 1/L2, this anomalous quantum resonance domain
is unavoidable with miniaturization of the system. In the
quantum resonance regime, the description of weak impurity
and surface scattering becomes almost intractable. In this
regime, transport processes are coupled to off-diagonal
~mixed! quantum states and cannot be approximated by Eq.
~2!, which accounts only for the diagonal~pure! states. Out-
side of this quantum resonance region, the contribution of
the off-diagonal mixed states is small and the quantum trans-
port equation acquires the standard Boltzmann-Waldmann-
Snider form~2!. Below we study only the ‘‘normal’’ regime
~2! and show that the surface-induced transition probability
W is system independent for a wide range of systems and
physical problems.

The wall roughness affects physical processes via the cor-
relation ~or lack thereof! of classical and quantum multiple
scattering by the walls. The magnitude of the effect is a
complicated function of four spatial scales-the particle wave-
lengthl, distanceL between the walls, bulk mean-free path
Lb , and the correlation radiiR of intra and interwall corre-
lations of surface inhomogeneities. Another spatial scale,
namely, the amplitudel of the wall corrugation, determines
the ‘‘strength’’ of the surface scattering and, without the

bulk scattering and outside of the resonance region, enters
the results as a simple perturbative factorl 2 ~see below!. The
main restriction on our results is thatl is small,

l !L,R!Lb , ~3!

while the wavelengthl remains arbitrary. This restriction is
not overly severe.@For example, the only nontrivialtrans-
port problem for narrow channels is that for slight rough-
ness. If the roughness is strong, the particles are dephased by
each wall collision, and thetransport problem becomes
trivial with the mean-free pathL;L#. Two additional con-
ditions that ensure the quasiclassical motion along the walls
and the absence of the quantum resonance are also not very
restrictive.6

The results below are obtained for quasi-2D systems with
impenetrable external walls and/or transparent interlayer
boundaries in multilayer systems. Since the localization
length in weakly inhomogeneous 2D systems is exponen-
tially large,8–13 one can start from ‘‘usual’’ transport and
diffusion and study the localization effects after or in the
frame of the diffusion problem.14–16 The diffusion results,
with minor modifications, can be extended to quantized nar-
row quasi-1D channels as long as we do not consider local-
ization effects, which are much stronger in quasi-1D chan-
nels than in quasi-2D films.

II. CORRUGATION-INDUCED RELAXATION TIME
OPERATOR

A. Systems and problems

The aim of this paper is to describe the effect of scattering
by random surface inhomogeneities on physical processes in
ballistic systems with random rough surfaces. The results
describe the following classes of problems:

• diffusion flows along random rough walls in thin films,
wires, layers, quantum wells, waveguides, etc.;

• quantum and classical bouncing-ball problems with a
random rough wall and an arbitrary holding potentialU(x),
which returns the particle~the ‘‘bouncing ball’’! back to the
wall;

• motion and localization of adsorbed or weakly bound
particles on rough substrates;

• localization of particles in rough channels;
• transport and localization in multilayer systems with

rough transparent interfaces between the layers.
The confinement in thex direction perpendicular to the

walls is necessary to ensure the repeated scattering by the
walls. This confined motion can be quantized; the motion
along the walls is quasiclassical. The particles can have ar-
bitrary spectrume(p)5e(2p), such asp2/2m, ‘‘relativis-
tic’’ spectrum cp, spectra with gaps, etc. Specific physical
examples and experimental applications are discussed in Sec.
III. Geometrically, the systems can be split into four groups:

• systems with a single random rough wallx
5j(y,z), ^j&50; the particles are bound to it by some
attractive potentialU(x), U(x→`)50; U5` on the
wall;

• single-wall systems,x5j(y,z), with particles confined
near the wall by a holding potential, such as gravity or elec-
tric field, with U(x→`)5`;
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• system with two rough external walls,x56L/2
7j1,2(y,z), ^j1,2&50, with an arbitrary potentialU(x) in
between;U5` on the walls;

• multilayer systems with corrugated transparent inter-
faces between the layers,x5xa1ja(y,z), and an arbitrary
bulk potential U(x) in between ~the potential changes
abruptly by @U#a on the interface!; the confinement inx
direction is ensured either by impenetrable external walls or
by a holding potential.

Theoretical description of systems with random bound-
aries is often hindered by a common difficulty. It can be
illustrated in the calculation of the corrugation-induced cor-
rection to the matrix element̂c1uĤuc2& for particles with
the HamiltonianĤ5Ĥ01V̂ and the orthonormalized wave
functionsc5c (0)1dc (Ĥ0 andc (0) describe the same sys-
tem but with flat walls; V̂ and dc are the corrugation-
induced changes!,

d^c1uĤuc2&5^c1
(0)uV̂uc2

(0)&1~E12E2!^dc1uc2
(0)&. ~4!

The wave functionsc (0) for the flat walls are known and the
first term in Eq. ~4! is the same as in all perturbative
schemes. Analytical or computational calculations of the
corrugation-induceddc require a set of wave functions that
can be used as a basis. The use of the basis set assumes that
all wave functions are defined in the same space. For ran-
domly corrugated walls, especially with the boundary condi-
tion c50, the domain of existence of the wave functions is
not the same as for the flat-geometry functionsc (0) and the
proper basis set cannot be introduced explicitly. Thus,dc
cannot be easily calculated using the functionsc (0) as an
expansion basis. As a result, the second term in Eq.~4! is
much more complicated than the first. This issue arises in
almost any theory of systems with random rough walls.

The energy factor in this second term indicates that this
term does not contribute to the Waldmann-Snider Eq.~2!. As
it is shown in Ref. 6, the contribution of this term is large
only in the resonance situations when Eq.~2! breaks down.
In this paper we do not consider the quantum resonance do-
main and assume that Eq.~2! is valid. Then the only issue is
the calculation of the scattering probabilityWj j 8 in Eq. ~2!,
i.e., of the matrix elementŝc j

(0)uV̂uc j 8
(0)& of the corrugation-

induced perturbationV̂. The real question is, of course, how
to define this ‘‘corrugation-induced perturbationV̂’’ math-
ematically. After that, the calculation of the matrix elements
becomes straightforward.

B. Theoretical approaches

There are numerous theoretical approaches to scattering
by surface corrugation. We will mention only those that are
best suited for transport and dissipative phenomena and ig-
nore the ones aimed at description of wave fronts, diffraction
patterns, spectral shifts, mean field corrections, etc. These
approaches, though not equally convenient and general, lead
to identical results outside of the quantum resonance region.
Inside the quantum resonance region, the cumbersome cal-
culations are system specific, while most of the existing ap-
proaches fail.

1. S-matrix approach

One of the options is to start from the single-wallS ma-
trix. 5,17 Because of the interwall interference, the two-wall
scatteringS matrix does not factorize into a product of two
single-wall S matrices, and the exact expressions for the
single-wallS matrix are not sufficient for solving the multi-
wall problems in the ultraquantum regime. This approach has
not been used beyond the simplest two-wall system without
interwall interference.18

2. Adiabatic approach

Kawabata’s ‘‘adiabatic’’ approximation for the wave
function19 can circumvent the difficulties caused by the lack
of explicit basis wave functions in systems with randomly
corrugated boundaries. Suppose one deals with a flow cannel
with two random walls,

x56L/27j1,2~y,z!. ~5!

If the change of the wave function along the walls is slow,
one can start from the ‘‘adiabatic’’ wave function

C; exp~ iqyy1 iqzz!sinFp j
x1L/22j2~y,z!

L2j1~y,z!2j2~y,z!G . ~6!

This wave function assumes a slow variation of the wall
shape along the channel,qR@ j , j l /L(R is the ‘‘size’’ of in-
homogeneities, i.e., the correlation radius of surface corruga-
tion!. This condition differs from the perturbative condition
~3! and is sufficient for the calculation of the matrix elements
and the reflection coefficient. However, thetransportcalcu-
lations use the perturbative Boltzmann equation, which re-
quires an extra condition of the smallness of the wall corru-
gation. As a result, thetransport restrictions in Ref. 19 are
equivalent to supplementing of Eq.~3!, l !R,L, by a strong
extra conditionqR@S(S is the number of occupied and/or
accessible minibands!. Taken together, these restrictions are
stronger than the ones used in other calculations. On the
positive side, the adiabatic method, when applicable, makes
the physics transparent. The adiabatic method fails in the
quantum resonance regime.

3. Mapping transformation

One of two approaches used in this paper is the exact
mapping of the problem with the corrugated boundaries onto
an equivalent problem with flat boundaries and distorted
bulk. This approach to transport was suggested first by Te-
sanovicet al.20 and Trivedi and Ashcroft21 without an ex-
plicit expression for the coordinate transformation. Indepen-
dently, one of the authors and S. Stepaniants22–24,6and, later,
Bratkovsky and Rashkeev25 introduced the explicit Migdal-
like mapping transformation for transport and localization
calculations. In a different context, the mapping transforma-
tion approach to systems with nonuniform walls has been
used for electromagnetic and acoustic wave scattering, dif-
fraction patterns, wave guides, etc. for many years~see Refs.
2,4,8,9 and 26–34 and references therein!.

This method provides an unambiguous definition of the
corrugation-induced perturbationV̂. For a single random
rough wall, x5j(y,z), the flattening transformation is a
simple coordinate shift,
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X5x2j~y,z!. ~7!

The conjugate momentum transformation,

p̂x5 P̂x , p̂y,z5 P̂y,z2jy,z8 P̂x , ~8!

transforms the Hamiltonian Ĥ0(p,r) into Ĥ0(P,R)
1V̂(P,R,̂ j‰) with a random bulk partV̂ that depends on the
wall corrugationj(y,z). For example, the quadratic Hamil-
tonianĤ05p2/2m is transformed into

Ĥ0~p!5Ĥ0~P!1V̂,Ĥ0~P!5P2/2m, V̂52~jy81jz8!P̂x /m
~9!

~the distortion operatorV̂ is linearized in displacementj).
Two walls ~5! with the average spacingL can be flattened

simultaneously by stretching the film,

X5
x1j1/22j2/2

12j1 /L2j2 /L
, ~10!

while the coordinates in the plane of the wall may be left
unchanged,

Y5y, Z5z. ~11!

The conjugate momentum transformation identifies the ef-
fective random bulk distortionV̂ˆj1,2%. In the case of qua-
dratic Hamiltonian,22–24

Ĥ5
P2

2m
1V̂, V̂5V̂x1V̂y1V̂z , V̂x5

j1

mL
P̂x

2 , ~12!

V̂y,z5
1

2m F S X

L
j1y,z8 2

1

2
j2y,z8 D P̂xP̂y,z

1 P̂y,zS X

L
j1y,z8 2

1

2
j2y,z8 D P̂xG ,

j65j26j1 ,

and the problem with the corrugated walls is mapped onto
the equivalent bulk problem with flat walls,X57L/2, and
randomly distorted bulk,V̂. Similar mapping transformation
can be used for cylindrical geometry.25 If the particle spec-
trum e(p) is nonquadratic, the mapping transformation~10!
and ~11! leads to a more complicated, but still treatable, ex-
pression for the effective bulk distortionV̂. If the potential
field U(x) between the walls is not uniform, the distortionV̂
in Eq. ~12! should be supplemented by

]U

]X
~x2X!'

1

2

]U

]X
@j2~122X/L !2j1~112X/L !#.

~13!

One should be cautious when using the mapping transfor-
mation in the form~10! and ~11!: the JacobianJ of this
transformationJÞ1. The standard diagrammatic or pertur-
bative techniques implicitly assume that the JacobianJ51.
To avoid mistakes, one can restore the volume toJ51 by
supplementing the transformation~10! by an additional
stretching the system iny,z directions instead of Eq.~11!.
This has been done in Ref. 6. The result shows that the

corrections toV̂ ~12! related to this additional transformation
in y,z plane are small and can be disregarded outside of the
anomalous quantum resonance regionVt̂;1. Thus, in non-
resonance calculations, one can leave the coordinatesy,z
unchanged and disregard the Jacobian-generated terms in the
integrals. By leaving these coordinates unchanged, one can,
with the same accuracy, extend the two-wall mapping trans-
formation to the multilayer geometry by applying the coor-
dinate transformations~10! and ~11! to each layer indepen-
dently. Inside the resonance region, this cannot be done since
the forced change of they,z coordinates makes the momenta
in each layer different from each other.

The calculation of the matrix elements of the perturbation
~9!, ~12!, and ~13! is straightforward. Though the mapping
transformation and the intermediate expressions for the ma-
trix elements are different for each geometry, the final ex-
pression for the transition probabilitiesWj j 8(q,q8) with
e j (q)5e j 8(q8) for the transport Eq.~2! is not system-
specific with the exception of the quantum resonance regime.

The mapping transformation approach seems indispens-
able because of its consistency and known accuracy on each
step of the calculation. At present, this is the only viable
approach for calculations in the anomalous quantum reso-
nance regime.

4. Direct perturbation calculation

The simplest approach is to calculate directly the matrix
elements of the potential using the wave functions for flat
geometry as has been suggested by Fishman and Calecki35

for two-wall systems without interwall correlation of inho-
mogeneities~see also Ref. 36!.

In this subsection, this approach is extended to particles
with an arbitrary spectrume(p), multilayer systems with
corrugated external and interlayer walls, and to systems with
possible interwall interference and with a nonuniform poten-
tial between the walls. The transparent interlayer walls sepa-
rate different layers of a multilayer system from each other
and are characterized by finite steplike jumps@U#a of poten-
tial. The potential becomes infinite on external impenetrable
walls.

In this approach, the walls are replaced by some infinitely
narrow potentialU(x). If the straight wallx5xa is described
by U(x), the corrugated wallx5xa1ja(y,z) is described
by U(x1ja)5U(x)1V̂, V̂5ja]U/]x. On internal inter-
faces,]U/]x5@U#ad(x2xa) and the matrix elementsVik

of the ‘‘perturbation’’ V̂ are

Vik
(a)[E exp@ is–~q2q8!#ja~s!C i@U#ad~x2xa!Ckdx ds

~14!

5ja~q2q8!@U#aC i~xa!Ck~xa!,

wheres is the coordinate in the planey,z, q is the conju-
gate momentum, and the unperturbed wave functions for the
flat geometryC i are chosen real.

On external walls, the potentialU becomes infinite and
should be excluded from the integrals
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~]U/]x! ik5E C i~]U/]x!Ckdx

52E U~C i8Ck1C iCk8!dx, ~15!

using the Schrodinger equation for the motion inx direction,

~ p̂x
2/2m1U !C i5e iC i . ~16!

Then

2E U~C i8Ck1C iCk8!dx

5
1

2mE @C i8p̂x
2Ck1Ck8p̂x

2C i #dx

2ekE C i8Ckdx2e iE C iCk8dx,

and the integration by parts yields

S ]U

]x D
ik

5~e i2ek!E C i8Ckdx

2
1

2mE FC i8
]

]x
Ck81Ck8

]

]x
C i8Gdx ~17!

5~e i2ek!E C i8Ckdx2
1

2m
C i8~xa!Ck8~xa!.

Since we are interested only in the processes without
changes in energy, Eq.~2!, i.e., only in the first term in the
right-hand side in Eq.~4!, the first term in the right-hand side
of Eq. ~17! should be disregarded. The final expression for
the matrix elements of the corrugation-induced ‘‘perturba-
tion’’ of the external wall (a) is @cf. Eq. ~14!#

Vik
(a)~e iq5ekq8!52

1

2m
ja~q2q8!C i8~xa!Ck8~xa!.

~18!

When the particle spectrum is not quadratic, the calculations
should be slightly modified. Instead of Eq.~18!, one gets

Vqj ,q8 j 8~e j q5e j 8q8!5
1

L

j j 8~e j 8q2e j q8!

j 22 j 82
@j1~q82q!

1~21! j 1 j 8j2~q82q!#. ~19!

The full matrix elementVik is the sum overa of Vik
(a) for

all interlayer interfaces~14! and external walls~18! @or ~19!#.
This approach, by design, disregards the resonance con-

tributions and the second term in the expression~4! for the
matrix elements. The accuracy is not always clear; it can be
evaluated from the comparison with the more consistent
mapping transformation approach. We used both approaches
outside of the quantum resonance domain. The transition
probabilitiesW calculated using the matrix elements~14! and
~18! turned out to be the same as the ones calculated forV̂
~9!, ~12!, and ~13! under the conditionEi5Ek though the
matrix elementsVik themselves were not identical.

C. Scattering probabilities and correlation functions
of surface corrugation

The corrugation-induced bulklike matrix elementsVik
~14! and ~18! play the same role for boundary scattering as
the scattering amplitude for scattering by bulk impurities.
The role of the impurity cross section is played by the tran-
sition probability which should be averaged over random
inhomogeneitiesj

Wj j 8~q,q8!5K U(
a

Vj q, j 8q8
(a) U2L

j

[(
a,b

Wj j 8
(ab)

~q,q8!.

~20!

Since the matrix elementsVik ~14! and ~18! are linear in
j, the transition probabilitiesW ~20! are quadratic inj. Their
averages are expressed via the correlation functions of sur-
face corrugation defined as

zab~ usu!5^ja~s1!jb~s11s!&j[E ja~s1!jb~s11s!ds1 ,

~21!

zab~q!5E d2s eiq–szab~s!.

The correlation functionszaa describe the intrawall correla-
tions of inhomogeneities, andzab(aÞb)5zba the interwall
correlations. Usually, the inhomogeneities on all surfaces are
similar, zaa5zbb , but are not correlated between different
surfaces,zaÞb50. Occasionally, the corrugations of differ-
ent boundaries can be correlated with each other,zaÞbÞ0.37

Experimentally, the correlation function~21! is not neces-
sarily Gaussian.4,38 When possible, we avoid specifying the
form of the correlation function and express the results via
the angular harmonics ofz ik(s). In applications and numeri-
cal calculations, when the form ofz ik(s) has to be specified,
we use the most common Gaussian correlation function

zab~s!5 l ab
2 exp~2s2/2Rab

2 !,

zab~q!52p l ab
2 Rab

2 exp~2q2Rab
2 /2!. ~22!

To avoid the parameter clutter, we assume in numerical ap-
plications that all correlation radiiRab are the same, while
the amplitudes of inhomogeneities may be different with
some typical scalel

zab~s!5aabl 2 exp~2s2/2R2!. ~23!

The matrix elementsVik ~14! and~18! allow direct calcu-
lation of the corrugation-induced transition probabilities
Wj j 8(q,q8) ~20! between the quantum states (j ,q) and
( j 8,q8). For transparent interlayer walls with finite changes
in potential @U#a ~14!, the corrugation-induced transition
probabilities~20! are

Wj j 8
ab

5Re@zab~q2q8!@U#a@U* #bC j a* C j 8aC j bC j 8b
* #,

~24!

whereC j a5C j (xa). Diagonal termsWj j 8
aa(q2q8) describe

the transitions caused by repeated scattering from one inter-
face a. The termsWab with aÞb describe the effect of
interwall interference in consecutive scattering from two dif-
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ferent corrugated surfaces. For external impenetrable walls,
the probabilitiesW ~18! and ~20! are

Wj j 8
(ab)

5
1

4m2
Re@zabC j a*

8C j 8a
8 C j b8 C j 8b

* 8 #, ~25!

and the external wall (a)- interlayer wall (b) interference
term in the transition probability is

Wj j 8
(ab)

5
21

2m
Re~zab@U#bC j a*

8C j 8a
8 C j bC j 8b

* !. ~26!

Equation~24! for internal interfaces can be used for particles
with any spectrume(p)5e(2p), while Eqs.~25! and ~26!
assumee5p2/2m. For particles with an arbitrary spectrum
e(p)5e(2p) ~19! in a homogeneous two-wall system, Eq.
~25! should be replaced by

Wj j 8
(ab)

5
zab j 2 j 82

L2

@e j q82e j 8q#2

~ j 22 j 82!2
@dab2~12dab!~21! j 1 j 8#.

~27!

The most prominent feature of the above scattering prob-
abilities is that these expressions are not system specific and
the form of the equations is universal. All system-specific
information is hidden, in the form of simple constant factors,
in the boundary values of the wave functions~or their de-
rivatives! for ideal flat geometry.

D. Standard Waldmann-Snider transport equation
and the relaxation time

The transport equation outside of the quantum resonance
region Vt;1 has the standard Boltzmann-Waldmann-
Snider form ~2! and is determined by the sum of all
corrugation-inducedW(ab)

dnj

dt
52p (

a,b, j 8
E Wj j 8

(ab)
@nj 82nj #d~e j q2e j 8q8!

d2q8

~2p!2
.

~28!

The integration overdq8 is done using thed function,
d(e j q2e j 8q8)5d(q82qj j 8)/v j j 8 , whereqj j 8(q) is the solu-
tion of the equation e j 8(qj j 8)5e j (q) and v j j 8
5(]e j 8q8 /]q8)q85qj j 8

for isotropic e j q . As always in the
transport theory, the angular integration is eliminated by us-
ing the angular harmonics. The currents are given by the first
harmonic of the distributionnj

(1)[n j the equation for which
involves only the zeroth and first harmonics(0,1)Wj j 8(q,qj j 9)
of W(q2qj j 8) over the angleqq̂j j 8 ,

dn j~q!/dt52(
j 8

n j 8~qj j 8!/t j j 8 , ~29!

2

t j j 8

5 (
a,b, j 9

F ~d j j 8
~0!Wj j 9

(ab)
2d j 8 j 9

~1!Wj j 8
(ab)

!
qj j 9

v j j 9
G .

This collision operatort21̂ can serve, outside of the
anomalous quantum resonance regime, as a general bound-
ary condition for a wide range of confined ballistic systems.

In effect, we replaced a boundary problem for the 3D trans-
port equation by the matrix collision operator that couples a
set of 2D transport Eqs.~29!. This matrix-transport equation
and the relaxation time operator closely resemble those for
the bulk impurity problem. The angular harmonics of the
surface correlation function,z (0)(uq2qj j 8u)2z (1)(uq2qj j 8u),
play the role of the impurity transport cross section,
s tr(uq2qj j 8u)5s (0)2s (1).

Equations~29! for the distribution functionsn j (q) are still
very complicated. The level of complexity depends on the
number of equationsS and by the range ofq for which this
set should be solved. The number of equations is given by
the numberS of occupied or energetically accessible mini-
bandse j (q) and can be very large or even infinite. In each
equation, the arguments of the distribution functionsn j and
n j 8 , q, andqj j 8(q), are different reflecting the integral nature
of the collision operator. Sometimes, the number of equa-
tions and the number of the relevant values ofq become
finite. For degenerate fermions, the values ofq and qj j 8 in
the equation forn j (q) are the Fermi momentaqj andqj 8 for
minibandsj and j 8, EF5e j (qj )5e j 8(qj 8), while the num-
berSof the occupied minibands„e j (0)<EF… is restricted by
the Fermi energyEF . For the single-particle problems, the
values of q and qj j 8 are the momentaqj and qj 8 of the
particle with the overall energyE in the minibandsj and
j 8, E5e j (qj )5e j 8(qj 8), while only a finite number of the
minibands,e j (0)<E, are energetically accessible. In other
situations, as, for example, for particles with the Boltzmann
distribution function, the number of occupied minibands is
technically infinite, while the equations should be solved for
all values ofq.

In three important situations the equations decouple from
each other, the matrixt j j 8

21 becomes diagonal,t j j 8
21

.(1/t j )d j j 8 , and Eqs.~29! can be solved analytically. This
happens when~i! only the first ~lowest! quantum statej is
occupied or is energetically accessible,S5 j 5 j 851; then
the set~29! reduces to a single equation

2

t1
5(

a,b
@ (0)W11

(ab)2 (1)W11
(ab)#

q11

v11
; ~30!

~ii ! L!R; the small clearance between the surfaces makes
the energy gaps between the minibandsV j j 8}1/L2 large
leading to a suppression of the interband transitions in com-
parison to intraband scattering,Wj Þ j 8!Wj j

1

t j
5

1

2 (
a,b

@ (0)Wj j
(ab)2 (1)Wj j

(ab)#
qj j

v j j
; ~31!

~iii ! the particle wavelength is large,qR!1, and all the tran-
sition probabilitiesW are constant(0)W'2W(q50) with
the zero first harmonic(1)W50 ~quantum reflection, cf.
Ref. 35!

1

t j
5(

a,b
(
j 8

Wj j 8
(ab)

~0!
qj j 8

v j j 8

. ~32!

In all other cases, Eqs.~29! remain coupled and should be
solved numerically. The condition~ii ! is purely geometrical
and depends only on the preparation of the walls and the
interwall spacingL. The other two situations require that the
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characteristic energy of particles should be small in compari-
son with the interwall gaps 1/mL2 in the case~i! or in com-
parison with the quantum energy 1/mR2 in the case of quan-
tum reflection~iii !.

Equations~29!–~32! represent the main general result of
the paper. The next section contains the practical applica-
tions. The calculations can be done for any surface correlator
z(s). We will supplement the results by the commonly used
Gaussian correlators~22! with the hypergeometric angular
harmonics

(0)z ik2 (1)z ik54paikl 2R1
2F1~3/2,2,22q2R2!. ~33!

III. APPLICATIONS

A. Application of the general equations

The form of the general equations for the effective relax-
ation time ~29!–~32! is universal. All system-specific
information—the energy spectrume j (q) and the unperturbed
wave functionsC(xa) is hidden in the expressions for the
transition probabilitiesW ~24!–~27!.

The practical application of these equations is straightfor-
ward. One should start from the Schrodinger equation for the
‘‘flat’’ geometry with uncorrugated surfaces and find the en-
ergy spectrume j (q) and the values of unperturbed wave
functionsC j (xa) on interlayer interfaces andC j8(xa) on ex-
ternal walls. These data, together with the correlation func-
tion of surface corrugation, provide the transition probabili-
ties Wj j 8

(ab)(q,q8) ~24!–~27! and their angular harmonics
(0,1)Wj j 8

(ab) . Then one should solve the transport Eq.~29! or,
in simpler situations, use the expressions for the kinetic co-
efficients via the relaxation time~30!–~32!.

Below this procedure is illustrated for diverse physical
systems with various geometries.

B. Conductivity and mobility in ultrathin films:
degenerate particles

The most direct application is the calculation of diffusion,
conductivity, and mobility coefficients for particles in films
and channels with an average clearanceL between the cor-
rugated walls in the absence of external fieldU(x). This was
done in detail in our previous paper6 for degenerate fermi-

ons. The paper contains the analytical expressions for con-
ductivity s, graphs ofs in different ranges ofpFR, R/L, and
S, the analysis of interwall correlations for this geometry,
etc. Though the approach was less general than the one dis-
cussed above, the results are the same and should not be
repeated.

C. Conductivity and mobility in ultrathin films:
Boltzmann particles

The transport Eq.~29! for particles with the Boltzmann
distribution function, in contrast to the degenerate fermions,
involves an infinite number of minibands and should be
solved for all values ofq, and not only for a set of Fermi
momentaqj .

The convenient representation for the distributionsn j in
Eq. ~29! is

n j~q!52
FL3

p4Tl2
expFm2e j q

T Gx j~q! ~34!

(F is the driving force!. Then the conductivity~mobility!
acquires the form

s52
e2L3

2p5Tl2m
(

j
E q2 expFm2e j q

T Gx j~q!dq, ~35!

while the transport Eq.~29! becomes

q52
L3m

p4l 2 (
j 8

x j 8~qj j 8!/t j j 8 . ~36!

The relaxation timest j j 8(q) are defined by Eq.~29!.
To avoid cumbersome equations, we give the analytical

results directly for the Gaussian distribution of inhomogene-
ities and evaluate the dimensionless conductivityP(R/L,x)
defined as

s5
2e2L2

p4l 2
ZP~R/L,x!, ~37!

Z52NL2/p, x5qTR[A2mTR.

FIG. 1. FunctionF1(x), Eq. ~39!.
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When the clearance between the walls is small,qTL!1,
the thermal energy is small in comparison to the interband
gaps and only the lowest minibande1q has a noticeable oc-
cupation. Then the dimensionless conductivity~37! becomes

P5
L2

8R2

1

a111a2212a12
. ~38!

Interband transitions are suppressed in comparison with
intraband scattering ifR/L@1 @this is a sufficient condition
for qTL*1; for smallqTL!1 one returns to the single-band
situation ~38!#. Then the dimensionless conductivity
P(R/L,qTR) decouples into the product of two single-
parameter functionsF1(qTL) andF2(qTR)

P5
L2

8R2

1

a111a2212a12
F1~qTL !F2~qTR!,

F1~x!5
( j 24 exp~2p2 j 2/x2!

( exp~2p2 j 2/x2!

, ~39!

F2~x!5E
0

` dy yexp~2y!

1F1~3/2;2;22yx2!
.

FunctionsF1(x) andF2(x) are plotted in Figs. 1 and 2.
The third analytical case is the case of long-wave particles

qTR!1

P5
L2

8R2

1

a111a22
F3~qTL !;

F3~x!5
6p2

x2 F( expS 2
p2 j 2

x2 D G21

(
j 51

`
1

j 2 (
k5 j

` Qk
( j )~x!2Qk11

( j ) ~x!

k~k11!~2k11!@116~21! j 1ka12/~a111a22!~2k11!#
, ~40!

Qk
( j )~x!5~k22 j 21x2/p2!exp~2p2k2/x2!.

FunctionF3(x) is plotted in Fig. 3.
A numerical example forP ~37! in an intermediate range

of parameters is given in Fig. 4 for two values of the inter-
wall correlation amplitudea1250 ~solid curve! and a12

50.8 ~dotted line!. As expected, the gradual filling of mini-
bands for Boltzmann particles results in much smoother
curves than for degenerate fermions in Ref. 6 for which the
singularities ins reflect abrupt changes in the number of
occupied minibands with changing Fermi energy. The effect
of interwall correlations is also less dramatic than in the de-
generate case.

D. Single-particle diffusion in thin films and narrow channels

The single-particle diffusion in channels and films with
corrugated walls is similar to the diffusion problem for de-
generate fermions. In equilibrium, a particle with energyE
can be in any of S accessible minibandse j (q)5(1/
2m)@(p j /L)21q2# for which e j (0)<E. The equilibrium
distribution functionn(0) is

n(0)~q!5( nj
(0)~q!5

p

mS( d„E2e j~q!…. ~41!

FIG. 2. FunctionF2(x), Eq. ~39!.
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Equations~29! reduce to a set ofS coupled linear equations
for distributions n j (qj ) with the values of momentaqj

5A2mE2(p j /L)2,

1

Sm
qj¹r52(

j 8
n j 8~qj 8!/t j j 8 , ~42!

D¹r52
1

m (
j 51

S

qjn j~qj !,

where¹r is the density gradient that causes the diffusion,D

is the single-particle diffusion coefficient, andt̂ is still de-
fined by Eq.~29!. The single-particle mobility coefficientb is
related toD by the Einstein equationD5bE.

The set of equations Eq.~42! is easily solved numerically.
Analytical solutions are available in the same three cases.
For low-energy particles@only one band is accessible, Eq.
~30!#,

~43!

D5
2p2

m S L

p D 4 ẽ21

Y1
(0)2Y1

(1)
,

Y j
(0,1)[Y (0,1)~zj !5 (0,1)z11~zj !1 (0,1)z22~zj !12(0,1)z12~zj !,

whereẽ52mE(L/p)2, zj5qjR. For ultrathin channels~31!,

D5
2p2

mS S L

p D 4

(
j

ẽ2 j 2

j 4@Y j
(0)2Y j

(1)#
, ~44!

while for a long-wave particle 2mER2!1,

D5
2p2

mS S L

p D 4 3

S~S11!~2S11!@z11~0!1z22~0!#

3(
j 51

S
ẽ2 j 2

j 2~11J j !
,

~45!

J j5
6

2S11

~21! j 1Sz12~0!

z11~0!1z22~0!
, z ik~0![z ik~q50!.

For Gaussian correlations of inhomogeneities, these equa-
tions reduce to

D5
p

2ml2R4 S L

p D 6 F~z1!

a111a2212a12
,

~46!

F~x!5
x2

1F1@3/2,2,22x2#
,

for the single-band occupancy,

FIG. 3. FunctionF3(x), Eq.~40!, for two val-
ues of the interwall correlation amplitudea12

50 ~solid curve! and a12/(a111a22)50.4 ~dot-
ted line!.

FIG. 4. FunctionP(x), Eq. ~37!, for R/L
50.1, a115a2251, and two values of the inter-
wall correlation amplitude,a1250 ~solid curve!
anda1250.8 ~dotted line!.
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D5
p

2mSl2R4 S L

p D 6 1

a111a2212a12
(

j

F~zj !

j 4
, ~47!

for ultranarrow channelsR/L@1, and

D5
p

2ml2R4 S L

p D 6 6

S2~S11!~2S11!~a111a22!

3(
j 51

S zj
2

j 2~11J j !
, ~48!

J j5
6

2S11

~21! j 1Sa12

a111a22
,

for long-wave particles @here zj5qjR5(2mE
2p2 j 2/L2)1/2R#. An example of the single-particle diffusion
coefficient, parameterized as

D5
L2

ml2
PS R

L
,RA2mED , ~49!

is given in Fig. 5 forR/L50.003, a115a2251, and two
values of interwall correlations,a1250 ~solid line! and a12
50.7 ~dotted line!. The contribution of interwall correlation
is an oscillating function of the numberS of minibandse j q
accessible to a particle with energyE and changes from de-
structive to constructive depending on whetherS is even or
odd. This is a general feature that can be observed for any
energy spectrum atR!l<L for not very large values ofS.
At largerS, especially in the quasiclassical regimeS@1, the
contribution of interwall correlations vanishes.

E. Quasiparticles with nonquadratic energy spectrum

So far, we were discussing the effect of weak surface
roughness on particles with quadratic energy spectrum,
e j (q)5@(p j /L)21q2#/2m. In this subsection we analyze the
single-particle diffusion coefficient for particles with a non-
quadratic spectrum such as ballistic solid-state electrons or
quasiparticles in low-temperature helium systems with a low
probability of inelastic processes. The latter include phonons
e j q5c@q21(p j /L)2#1/2, 3He quasiparticles in He II, and
ballistic quasiparticles in low-temperature3He. The scatter-

ing by wall inhomogeneities defines the helium flow through
capillaries or superleaks at ultralow temperatures and the
thermomechanical effect. In superfluid3He, the results are
affected by Andreev reflection. To account for these pro-
cesses, the transport Eq.~29! should be re-written as two
coupled sets of equations for quasiparticles and quasiholes.

The form of the transport Eq.~29! formally does not
change irrespective of the particle spectrum while the transi-
tion probabilities acquire the form~27!

Wj j 8d~e j 8q82e j q!5
j 2 j 82

L2

@e j q82e j 8q#2

~ j 22 j 82!2

3@z111z2212~21! j 1 j 8z12#

3d~e j 8q82e j q!. ~50!

If only one energy miniband is occupied,E5e1(q1)
,e2(0), thesingle-particle diffusion coefficient~30! is

D~E!5
2L2

Y11
(0)2Y11

(1)

~]e1q1
/]q1!3

q1~]e j qj
/] j !2u j 51

, ~51!

where the angular harmonics are defined as

Y j j 8
(0,1)

5 (0,1)z11~ uqj2qj 8
8 u!1 (0,1)z22~ uqj2qj 8

8 u!

12~21! j 1 j 8(0,1)z12~ uqj2qj 8
8 u!. ~52!

In the limit of ultranarrow channels,L!R, the interband
transitions are negligible in comparison with intraband scat-
tering and the diffusion coefficient is~31!

D~E!5(
j 51

S
2L2/S

Y j j
(0)2Y j j

(1)

~]e j qj
/]qj !

3

j 2qj~]e j qj
/] j !2

. ~53!

In the case of quantum reflectionqjR!1, all the correlators
z ik(q2q8) in the kernel of the integral equation can be re-
placed by the constantsz ik(0), and thediffusion coefficient
of the quasiparticle with the energyE5e j qj

is equal to

FIG. 5. Function P(R/L,x), x5R/l
5R(2mE)1/2 for the single-particle diffusion co-
efficient ~49! D5(L2/ml2)P(R/L,x) at R/L
50.003, a115a2251, a1250 ~solid line! and
a1250.7 ~dotted line!.
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D~E!5
L2

S (
j 51

S S ]e j qj

]qj
D 2Y

(
j 851

S qj 8Y j j 8~0! j 2 j 82~e j 8qj
2e j qj 8

!2

~ j 22 j 82!2~]e j 8qj 8
/]qj 8!

. ~54!

For Gaussian correlations~22!, Y ~52! is expressed via the
hypergeometric function1F1

Y j j 8~0!52p@a111a2212~21! j 1 j 8a12# l
2R2,

~55!

Y j j
(0)2Y j j

(1)54p~a111a2212a12!l
2R1

2F1S 3

2
,2,22qj

2R2D .

The frequency dependence of the diffusion coefficient for
‘‘phonons’’ e j q5c@q21(p j /L)2#1/2 at R@L,

D5
2

a111a2212a12

L3c

l 2
PS R

L
,x[

Rv

c D ,

P5
L3/R3

4p5xS
(
j 51

S
1

j 4

zj
2

1F1S 3

2
,2,22zj

2D ,

zj
25x22S p jR

L D 2

is illustrated in Fig. 6 for Gaussian correlation of inhomoge-
neities. Sharp singularities in the curves appear in the points
where the numberSof minibandse j q accessible to the ‘‘pho-
non’’ with frequencyv increases by 1 with increasingv.

F. Multilayer systems with corrugated interlayer walls

The effect of scattering by corrugated interlayer walls is
similar to that for scattering by a corrugated external wall.
The simplest illustration with the smallest number of param-
eters is a two-layer system with flat wallsx50;L and a
rough interfacex5x01j(y,z) between the layers, 0,x0
,L. The potential changes on the interface byU0. The tran-
sition probability~24! contains the correlation functionz of

the interface inhomogeneities and the value of the unper-
turbed wave functionuC j (x0)u2 on the interface,

Wj j 85z~q2q8!uU0u2uC j~x0!u2uC j 8~x0!u2. ~56!

The unperturbed spectrume j (q)5ej1q2/2m,

ej5~p/L !2ẽj /2m, U05~p/L !2k/2m, x05Ld,
~57!

and the wave function on the interfaceC j (x0) should be
found from the Schrodinger equation,

1

Aẽj

tan@pdAẽj #1
1

Aẽj2k
tan@p~12d!Aẽj2k#50,

ẽj.k,
~58!

1

Aẽj

tan@pdAẽj #1
1

Ak2ẽj

tanh@p~12d!Ak2ẽj #50,

ẽj,k,

as a function of the wall positiond5x0 /L and the potential
difference between the layersk52mU0(L/p)2. This infor-
mation on dimensionless parametersẽj (d,k) andg j j 8(d,k)
5L2uC j (x0)u2uC j 8(x0)u2 is sufficient to findW ~56!, solve
the transport Eq.~29!, and find the conductivity and diffusion
coefficients. The kinetic coefficients for a layered system de-
pend not only on the characteristics of the corrugation,R/L
andl/R as in the previous sections, but also on the position
and ‘‘strength’’ of the interfaced andk.

In some sense, the effect of the transition from a single
layer to a multilayer system is similar to the result of change
in spectrum discussed in the previous subsection. The main
difference between the two-layer metal film with a corru-
gated interface and a single-layer film with rough walls,
apart from the obvious factorkg, is the replacement of the
quantum numbersj 2 by ẽj @for example, the expressions for
the Fermi momentaqj in the harmonics(0,1)z(qj ) become
qj

2L2/p25n2ẽj instead ofn2 j 2#. If only the first miniband
e11q2/2m is occupied, then

FIG. 6. FunctionP(R/L,x), x5Rv/c, for
the single-phonon diffusion coefficientD
5(L3c/ l 2)P(R/L,x) at R/L5314, a115a2251,
anda1250.
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s5
4pe2

g11k
2 S L

p D 4 n2ẽ1~d,k!
~0!z~q1R!2 ~1!z~q1R!

. ~59!

In ultrathin systemsR/L@1,

s5
4pe2

k2 S L

p D 4

(
j

1

g j j

n2ẽj~d,k!
(0)z~qjR!2 (1)z~qjR!

. ~60!

For the long-wave particles,

s5
2pe2

z~0!k2 S L

p D 4

(
j

n2ẽj

(
j 8

Ag j j g j 8 j 8

. ~61!

Figure 7 presents the functionP(z),

s5
2e2L4

p4l 2R2k2
P~z,R/L,d,k!, z52NL2/p, ~62!

for the interface with the Gaussian correlation of inhomoge-
neities at R/L50.01 and the potential strengthk
52m(L/p)2U0590 for three positions of the interface,d
[x0 /L5 1

3 ; 1
2 ; 4

5 . The shape of the curves is less regular and
is noticeably different from those for the conductivity of a
single-layer film with rough walls.

G. Diffusion of particles bound to rough substrates

Another application is single-particle diffusion of par-
ticles weakly bound to or adsorbed on rough substrates when
the sizeL of the bound state is larger than the amplitude of
the surface inhomogeneities,L@ l . Such particles move
along the substrate,e(q)5e11q2/2m* , and experience scat-
tering by its inhomogeneities. We will define the size of the
bound stateL via the derivative of the unperturbed wave
function on the wall,

A2p

L3/2
5S ]C

]x D
x50

. ~63!

The coefficients in Eq.~63! are chosen in such a way so that
for a channel with two impenetrable walls the value ofL in
~63! would coincide with the channel width. If there is only

one bound state, the expression for the single-particle diffu-
sion coefficient is similar to Eq.~43!

D~E!5
2p2

m S L

p D 6 q2

(0)z~qR!2 (1)z~qR!
, ~64!

whereq[(2mE2e1)1/2.
In the case of Gaussian correlation of inhomogeneities,

Equation~64! reduces to

D5
p

2m* R4l 2 S L

p D 6

F~qR!, ~65!

where the functionF(x) is defined by Eq.~46!. Possible
applications are weakly bound electron states in solids,3He
surface states inside He II, and hydrogen atoms on helium
surface.39,40In the last two cases,e1;1 K, L;12 Å, while
at T;1 K the ripplon corrugation has parametersR
;20 Å, l;0.8 Å, and the coefficient in Eq.~65! is
0.1\/m.

H. Bouncing ball problem: electrons on helium surface,
neutrons in a gravitational trap, etc.

A similar class of problems is often referred to as a
‘‘bouncing ball’’ problem. In this problem, a particle
bounces repeatedly from a wall after being returned to it by
an external field. We are interested in a version of this prob-
lem in which the reflection of the quantum particle by the
static rough wallx5j(y,z) is accompanied by scattering by
weak random surface inhomogeneities^j&50 and leads to
the particle diffusion along the wall. Two typical examples
are ultracold neutrons in a gravitational trap41 and electrons
pressed to helium or hydrogen surface by an electric field
~see also proceedings42!. In both cases, the holding external
fields—mgx and eEx, respectively—are linear functions of
coordinates making the problems identical.

The transition probability for scattering by the wall inho-
mogeneities is given by Eq.~25!,

FIG. 7. FunctionP(z), Eq. ~62!, for R/L
50.01, potential strengthk590 for three posi-
tions of the interface,d[x0 /L5

1
3 ; 1

2 ; 4
5 .
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Wj j 8~q,q8!d~e j q2e j 8q8!

5
1

4m2
z~q82q!U dC j~0!

dX U2U dC j 8~0!

dX U2

d~e j q2e j 8q8!

~66!

with the energy spectrume j q5e j1q2/2m. The unperturbed
wave functions for the flat wall and linear holding potential
are the Airy functions

C j q~x!5eiqsCjAi „~2m2g!1/3x2 ẽ j…, ~67!

where Cj are the normalization coefficients. The energy
eigenvaluesẽ j521/3p2/3e j /mgL are given by the zeroes
of the Airy function, Ai(2ẽj )50; ẽ1,2,3, . . .52.34; 4.09;
5.52, . . . . Thespacial scale is determined by the size of the
first, closest to the wall discrete stateL5(p2/m2g)1/3, Eq.
~63!. Finally, the transition probabilities~66! reduce to

Wj j 8~q,q8!d~e j q2e j 8q8!5m2g2z~q82q!d~e j q2e j 8q8!.
~68!

The transport Eq.~29! with the transition probabilities
~68! can be solved analytically in the same three situations.
The single-particle diffusion coefficient in the first miniband
e1(q) is

D~E!5
2p2

m S L

p D 6 q1
2

(0)z~q1R!2 (0)z~q1R!

→ p

2mR4l 2 S L

p D 6

F~q1R!, ~69!

where the last expression describes Gaussian correlations of
wall inhomogeneities;q1

252m(E2e1), and F(x) is given
by Eq. ~46!. Particles cannot access the second miniband as
long as 4.13,A2mEL,5.45.

In the case of large interband spacingL2/Rl
;A2mEL2/R!1, the interband transitions are suppressed
and the transport Eqs.~29! decouple. Then the diffusion co-
efficient is

D~A2mEL2/R!1!

5
4

m4g2S
(
j 51

S
E2e j

(0)zS 2qjsin
u

2D2 (1)zS 2qjsin
u

2D ,

~70!

whereqj
2(E)52m(E2e j ). In the case of Gaussian correla-

tions, the diffusion coefficient is

D~A2mEL2/R!1!

5
1

pm4g2R2l 2S
(
j 51

S
E2e j

1F1~3/2;2;22qj
2R2!

→ 5p3/2RH4

8A2mL3l 2S
~71!

~the last equation is quasiclassical for a large number of ac-
cessible minibandsS@1; H5E/mg is the maximal jump
amplitude!.

In the case of the long-wave particles,A2mER5R/l
!1, the solution of Eq.~29! yields

D~R/l!1!5
2

m4g2S2z~0!
(
j 51

S

~E2e j !→
4

5p2

HL3

mSz~0!

~72!

or, for Gaussian correlations,

D~R/l!1!5
1

pm4g2S2R2l 2 (
j 51

S

~E2e j !→
2

5

HL3

p3mSR2l 2

~73!

@the last expressions in Eqs.~72! and~73! are quasiclassical,
S@1#.

A numerical example of the diffusion coefficient

D5
2L2

ml2
P~R/L,H/R! ~74!

is given in Fig. 8 (H[E/mg is the amplitude of the particle
jumps!.

FIG. 8. FunctionP(H/R), Eq. ~74!, for R/L
50.1.
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One of the most interesting applications is the system of
ultracold neutrons41 in a gravitational trap with a macro-
scopically inhomogeneous ‘‘floor.’’ The typical neutron pa-
rameters areL5(p2/m2g)1/351.5831023 cm, A2mER
51.63103Rv ~hereR is measured in cm, and the neutron
velocity v5A2E/m-in cm/s!. At present, the neutrons can be
trapped with velocities down tov5100 cm/s~jump ampli-
tudesH;5 cm).43,44 Parameters of the artificially created
roughness in experiment43 were l ,R;1022 cm. Experimen-
tally, the velocity distribution around the average value ofv
is very narrow and the fraction of low-velocity neutrons is
insignificant. Thus,H@ l ,R@L meaning thatS@1 and that
the quasiclassical expression in Eq.~71! provides a fairly
accurate description of diffusion and relaxation parameters.

A similar system is the system of electrons above helium
or hydrogen surface in weak electric field. Numerically, in
fieldsE5103 V/cm, mg in the above equations should be
replaced byeE51.631029 erg/cm, whileL5(p2/meE)1/3

53.7831026 cm. The electron-helium system45,46 differs
from the trapped ultracold neutrons in two ways. First, the
inhomogeneities of the surface of liquid helium or thick he-
lium films are ripplons ~at T;1 K, R;20 Å, l
;0.8 Å) and are not static. Though this does not necessar-
ily change the results, a more direct application is the elec-
tron system above a thin helium film on the surface of inho-
mogeneous solid substrate in a setup similar to the quasi-1D
electron-helium system of Ref. 47 or electrons on solid hy-
drogen. The scale of inhomogeneities in a setup of the type47

is large, l;R;1mm@L meaning thatS@1 and that one
should use the quasiclassical results for diffusion coefficient.
Another peculiarity is that the electron in strong electric field
creates a dimple on the helium surface. This makes the ef-
fective mass dependent on the electric field and leads, in the
limit of large fields, to selftrapping or auto-localization of
electrons in heavy ripplonic polarons. As a result, our de-
scription can be used without modifications only in the rela-
tively low electric fields. The most promising application of
this type may be the system of electrons on the surface of
solid hydrogen.

I. Scattering by surface inhomogeneities and localization

The above expressions for diffusion coefficientD(E) and
mean-free pathL52D/v determine the~weak! localization
lengthR for particles with energyE ~Refs. 14 and 8!

R~E!5L~E!exp@w~E!#, w~E!5pmS~E!D~E!,
~75!

where S is the number of minibandse j q accessible for a
particle with energyE.

The diffusion results from the previous sections provide
an adequate description of the localization exponentw ~75!
in various systems. Experimental observation of the weak 2D
localization~75! is possible when the exponentw is not very
large, w&20. In order to have a reasonable localization
length, one should try to decrease the particle energyE, de-
crease the correlation radiusR and the thicknessL, and in-
crease the amplitude of inhomogeneitiesl. Numerical esti-
mates show that the 2D localization~75! can be observed
almost exclusively for low-energy particles for which only
the first minibande1q is accessible,S(E)51. At higher en-
ergies, the exponent~75! becomes too large.

Comparison of Eqs.~46!, ~65!, and ~69! for diffusion of
the low-energy particles within the single miniband shows
that the localization exponent can be written in a universal
form as

w~E!5
p2

2R4l 2 S L

p D 6 F~qR!

a111a2212a12
~76!

@in single-wall systems, the factor 1/(a111a2212a12) should
be replaced by 1#. The plot of functionF(x), Eq. ~46!, is
given in Fig. 9. This function grows very rapidly with in-
creasingx, and one is unlikely to see localization forqR
.1.5. The universality of the coefficient in Eq.~76! for all
these diverse systems is explained by the choice of coeffi-
cients in the definition of the spatial scaleL via the derivative
of the normalized wave function on the wall~63!.

After qR reaches a certain critical valuexc5qcR, the sec-
ond energy miniband becomes accessible and the localiza-
tion exponentw is not described by Eq.~76! and Fig. 9 any
more. These critical valuesxc are different for different sys-
tems. For example, for channels with two impenetrable walls
xc5qcR5A3pR/L; for a bouncing ball, the critical value is
smaller, xc5qcR[21/3p2/3( ẽ22 ẽ1)1/2(R/L)53.57R/L.
These critical values ofxc5qcR are outside Fig. 9 for all
L<R. The localization with more than one accessible mini-
bands can be observed only forR/L!1. The multiband lo-

FIG. 9. FunctionF(x), Eqs.~46! and ~76!.
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calization exponent is not universal because the spectra and
interband gaps depend on the system geometry though the
typical energy dependence of the localization exponent re-
sembles the sawlike curve in Fig. 6.

IV. DISCUSSION AND SUMMARY

In summary, we derived general expressions for the relax-
ation time operator for ballistic particles scattered by weak
surface roughness in quantized systems. These expressions
provide, often analytically, the values of transport and local-
ization parameters. The results are illustrated for such di-
verse systems as classical or degenerate particles in ultrathin
films and channels, multilayer systems, single-particle diffu-
sion, diffusion of particles weakly bound to rough substrates,
quantum bouncing balls with rough walls, etc.

Outside of the quantum resonance region, the transport
equation and relaxation time operator~29!, expressions
~24!–~27! for the transition probabilities via the intra- and
interwall correlation functions of surface corrugation, and
the analytical expressions~30!–~32! for the corrugation-
induced relaxation time, are system independent. All system-
specific information is hidden in the energy spectrume j (q)
and the values of unperturbed wave functionsC(xa) ~or
their derivatives! on the walls. Inside the resonance region
described in Ref. 6, the situation is much more complicated
even numerically. At present, we cannot provide any general
expressions, including those for effective scattering prob-
abilities, for this regime and can approach the problem only
on a system-by-system basis. Needless to say, all the diffi-
culties associated with the resonance region disappear in the
quasiclassical regime, i.e., for large-scale systems.

Most of the problems discussed in the paper are either
transport problems or transport-related ones. The natural
question is whether it is possible to get a similar description
for other physical problems such as the effect of weak sur-

face roughness on particle spectra, mean field, diffraction
patterns, etc. In short, the answer is no. A simple picture
exists only for the effects that can be described with the help
of collision integrals with the energyd functions d(E1
2E2) in them ~2!. The wall-induced spectral changes in-
volve parts of the collision operator not with the energyd
functions d(E12E2), but with the principal part integrals
P(1/E12E2). As a result, such processes should take into
account the terms (E12E2)^dc1uc2

(0)& in the matrix ele-
ments~4!. These terms, in turn, are not universal and cannot
be easily incorporated into the equations.

Similar argument explains the difficulty of calculations in
the quantum resonance regime. In this regime, there is a
strong coupling between pure and mixed quantum states of
particles ~coupling between diagonal and off-diagonal
Green’s functions! that requires to include the principal part
integrals along with the energyd functions even in the parts
of the collision operator responsible for transport. Even intu-
itively, it is clear that in resonance the matrix elements (E1

2E2)^dc1uc2
(0)& do not disappear from the equations. We

want to emphasize that all these difficulties associated with
the resonance regime exist forquantizedfilms with usual
bulk impurities as well. As it was shown in Ref. 6, the quan-
tum resonance regimeV j j 8t̂;1 corresponds to a moderately
large numberS of accessible minibandse j q . The quasiclas-
sical domain of large quantum numbersS@1 ~thick films!
and the ultraquantum case of smallS ~ultrathin films! are
outside of the anomalous resonance region.

The next step should be the simultaneous study of bound-
ary and bulk scattering in thin films including the interfer-
ence terms beyond the Matthiessen’s rule.
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