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R10: Roswell Park Memorial Institute (RPMI) 1640 supplemented with 10% fetal calf serum 

PHA: Phytohemagglutinin 
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Summary:  

Infants exposed to maternal HIV-1 provide an opportunity to assess correlates of HIV-1-specific 

IFN-γ responses and may be informative to the development of HIV-1 vaccines. HIV-1-infected 

women with CD4 counts 200-500 cells/mm3 were randomized to short-course ZDV/NVP or 

HAART between 2003-2005. Maternal plasma and breastmilk HIV-1 RNA and DNA were 

quantified during the first 6-12 months postpartum. HIV-1 gag peptide stimulated ELISpot 

assays were conducted in HIV-1-exposed, uninfected infants (EU), and correlates were 

determined using regression and generalized estimating equations. Among 47 EU infants, 21 

(45%) had ≥1 positive ELISpot result during follow-up. Infants had a median response 

magnitude of 177 HIV-1-specific SFU/106 PBMC (IQR: 117-287) directed against 2 (IQR: 1-3) 

gag peptide pools. Prevalence and magnitude of responses did not differ by maternal ARV 

randomization arm. Maternal plasma HIV-1 RNA levels during pregnancy (p=0.009) and 

breastmilk HIV-1 DNA levels at one month (p=0.02) were associated with higher magnitude of 

infant HIV-1-specific ELISpot responses at one month postpartum. During follow-up, concurrent 

breastmilk HIV-1 RNA and DNA (cell-free virus and cell-associated virus, respectively) each 

were positively associated with magnitude of infant HIV-1-specific responses (p=0.01). Our data 

demonstrate the importance of antigenic exposure on the induction of infant HIV-1-specific 

cellular immune responses in the absence of infection.  
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Introduction 

Globally an estimated 370,000 children are newly infected with HIV-1 each year, the 

majority as a result of mother-to-child transmission(1). Infants born to HIV-1-infected mothers 

consume large volumes of breastmilk containing HIV-1, but despite this exposure ~80% of 

these breastfeeding infants remain uninfected(2). It is possible that these infants escape 

infection due to natural resistance, either through genetics, innate immunity, or acquired 

immunity, which protects them from acquiring HIV-1. 

The discovery of HIV-1-specific cellular immune responses in individuals exposed to 

HIV-1 but who remain uninfected (EU) has been of particular interest as adaptive immunity may 

protect against acquisition of infection. Among HIV-1-infected adults, HIV-1-specific cellular 

immune responses are associated with control of viral replication and viral clearance(3, 4) and 

slower HIV-1 disease progression(5-11). In the pre-antiretroviral era, waning of these responses 

correlated with disease progression(12-14). HIV-1-specific cellular immune responses have 

been reported in varied HIV-1 EU populations, including commercial sex workers(15-17), HIV-1-

discordant couples(18-20), and infants born to HIV-1-infected women(21-23). CD4+ and CD8+ 

HIV-1-specific responses have been observed in EU infants, with prevalence ranging from 3-

56%(24-27) and 0-47%(22, 27-31), respectively, resulting in controversy around the detection of 

these responses and their potential protective role. However, vaccine development relies on 

understanding the induction of immune responses, and so it remains important to identify the 

correlates of presence and magnitude of HIV-1-specific immune responses in EU individuals. 

Historic cohorts of infants of HIV-1-infected mothers who breastfeed offer a natural human 

challenge study because they are continuously exposed to HIV-1 from their mothers. With both 

viral source and recipient identifiable, mother-infant cohorts provide a unique opportunity to 

investigate correlates of infant cellular immune responses. 

We hypothesized that factors associated with exposure to increased levels of HIV-1 

antigen would increase induction of HIV-1-specific immune responses. To test our hypothesis, 
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we compared the prevalence, magnitude, and breadth of infant HIV-1-specific T cell responses 

between breastfeeding HIV-1 EU infants born to women randomized to short-course 

zidovudine/nevirapine (ZDV/NVP) or highly active antiretroviral therapy (HAART) 

[ZDV/lamivudine (3TC)/NVP], both shown to impact the levels of HIV-1 cell-free virus exposure 

in breastfeeding infants. Additionally, we examined maternal systemic and breastmilk HIV-1 viral 

levels as correlates of infant HIV-1-specific responses.  

 

Materials and Methods 

Study population and sample collection 

This study was a Phase II clinical trial conducted at the Mathare North City Council Clinic 

in Nairobi, Kenya between 2003 and 2005 and was approved by the Institutional Review Boards 

of the University of Washington and Kenyatta National Hospital (ClinicalTrials.gov number, 

NCT00167674). Methods for recruitment, randomization, and follow-up for this trial, along with 

results of the primary study, have been previously described(32, 33). Briefly, 60 HIV-1-positive 

pregnant women and their infants were followed for 1 year postpartum. Enrolled women had 

CD4 cell counts between 200 and 500 cells/mm3. At 34 weeks gestation, women were 

randomized to either ZDV/NVP or HAART. In the ZDV/NVP arm, women received ZDV from 34 

weeks gestation until delivery and a single dose of NVP at labor, and infants were administered 

a single dose of NVP within 72 hours of delivery, in accordance with Kenya national guidelines 

at the time. In the HAART arm, ZDV, 3TC, and NVP were given to women at 34 weeks 

gestation until 6 months postpartum.  Also per 2003-2005 national guideline, all women were 

advised to stop breastfeeding 6 months after delivery, and women in the HAART arm were 

advised to discontinue taking HAART after breastfeeding cessation. 

Maternal blood specimens were collected at 32 weeks gestation, within 2 days of 

delivery, then 2 weeks, 1 month, and every 3 months after delivery for HIV-1 RNA levels. 
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Breastmilk was obtained 1-3 times per week for the first month, then 3 and 6 months 

postpartum for breastmilk cell-free HIV-1 RNA and cell-associated HIV-1 DNA levels. Blood 

samples collected from infants at delivery and then at 1, 3, 6, 9, and 12 months of age were 

used to determine HIV-1 infection status and for enzyme-linked immunospot (ELISpot) assays. 

 

Laboratory Methods 

The processing of breastmilk specimens has been described elsewhere(34). Briefly, 

breastmilk samples were separated into supernatant and cells after discarding the lipid layer. 

Plasma and breastmilk HIV-1 RNA levels were determined using the Gen-Probe HIV-1 viral load 

assay (Gen-Probe Inc., USA), as previously described(34, 35), with a lower limit of detection of 

200 copies/ml and 100 copies/ml for plasma and breastmilk samples, respectively. Infant filter 

paper blood specimens were tested to determine HIV-1 status by HIV-1 DNA PCR(36). HIV-1 

DNA from breastmilk cells was extracted using the QIAmp DNA mini kit (Qiagen, USA) and 

quantified using real-time PCR as previously described(33, 34). The lower limit of detection was 

1 copy/reaction, and HIV-1 DNA levels were normalized to the number of cells tested (number 

of β-actin copies). CD4 counts were measured from blood samples using flow cytometry 

(FACScan, Becton Dickinson, USA). 

Infant HIV-1 gag-specific T cell responses were assessed using an established IFN-γ 

ELISpot assay protocol on fresh peripheral blood mononuclear cells (PBMC). Briefly, 96-well 

nitrocellulose plates (Millipore, USA) were coated with 7.5µg monoclonal antibody to IFN-γ 

(Mabtech, Sweden) for 2 hours at 37°C. Antibody was removed by washing the plates with 

RPMI-1640 and then blocked with R10 (RPMI-1640 containing 20mM L-glutamine with 10% 

fetal calf serum) (all Sigma, USA) for 30 minutes at room temperature. Freshly isolated infant 

PBMC were then added in duplicates with 2 x 105 PBMC/well. Each infant PBMC sample was 

stimulated with R10 media alone as a negative control, 10µg/ml phytohemagglutinin (PHA) as a 
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positive control, or 20µg/ml HIV-1 gag peptide pools. Seven peptide pools of overlapping 15-

mers spanning HIV-1 p55 were derived from the clade A consensus sequence and were 

provided by the NIH AIDS Research and Reference Reagent program. Cells were stimulated 

overnight in a humidified incubator at 37°C with 5% CO2 and were removed from the plates by 

washing with phosphate-buffered saline (PBS) containing 0.05% Tween-20. Biotinylated anti-

IFN-γ antibody was applied for 3 hours at room temperature, followed by washing, and then 

streptavidin alkaline phosphate (Mabtech) was added for 1.5 hours at room temperature. After 

washing, alkaline phosphatase (Mabtech) was added for approximately 10 minutes or until spot 

forming units (SFU) were visible in the PHA wells. The reaction was stopped by washing the 

plates under running water, and plates were dried overnight before being read on a CTL 

ImmunoSpot Core Analyzer (Cellular Technology Ltd., USA). 

 

Statistical Methods 

HIV-1-specific SFU was defined as the average number of spots in duplicate wells minus 

the background response (defined as the mean SFU in the negative control wells). ELISpot 

responses were considered positive if experimental wells had ≥50 HIV-1-specific SFU/106 

PBMC and more than twice the background response. Assays were excluded if PHA wells had 

<100 SFU/106 PBMC. Prevalence, breadth and magnitude of ELISpot responses were 

evaluated by 1) including all valid assays or 2) excluding assays in which the background SFU > 

100/106 PBMC. Infants were defined as being positive responders if they had ≥1 peptide pool 

with a positive response. HIV-1 gag-specific immune responses were examined both as a 

dichotomous (using the pre-defined cut-offs above) and continuous (magnitude of responses) 

variable. Magnitude of responses was defined as the summed magnitude of HIV-1-specific 

SFU/106 PBMC across all peptide pools. 

Viral loads below the limit of detection were recoded to the mid-point between zero and 
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the limit of detection for that assay. Because a high percentage (55%) of breastmilk HIV-1 RNA 

assays were below the limit of detection, breastmilk HIV-1 RNA was modeled as a dichotomized 

covariate (detected/not detected). Infant HIV-1-specific IFN-γ responses were compared 

between the two randomization groups at each visit. ELISpot prevalence was compared using 

Pearson’s Chi-squared tests or Fisher’s exact tests, and magnitude and breadth of responses 

were compared using Mann-Whitney U tests. Linear regression was used to assess correlates 

of magnitude of ELISpot HIV-1-specific responses (background subtracted) in all infants at 

specific time points. Generalized estimating equation (GEE) models with a Poisson link and 

exchangeable correlation structure were used to examine associations between maternal viral 

load and infant ELISpot responses over time. All regression models were adjusted for treatment 

arm and constructed with robust standard errors. Sensitivity analyses were performed in which 

samples with undetectable HIV-1 DNA levels and fewer than 10,000 cells tested were excluded 

from regression models. Stata version 11.2 (College Station, USA) was used for all analyses. 

 

Results  

Study population and characteristics 

Of 60 mother-infant pairs, 3 infants acquired HIV-1 during follow-up and were excluded 

from the ELISpot analyses; 47 (78%) infants had ELISpot data at ≥1 visit. Among the selected 

mother-infant pairs, median age and CD4 cell count at 32 weeks gestation did not differ 

between trial arms (Table 1). While plasma HIV-1 RNA levels were similar between the two 

groups at 32 weeks gestation, women randomized to ZDV/NVP had significantly higher plasma 

viral loads (~2 log10 copies/ml higher) from delivery to 6 months postpartum compared to 

women randomized to HAART(33). Furthermore, more women in the ZDV/NVP arm had 

detectable breastmilk cell-free HIV-1 RNA levels at 1 month postpartum versus women in the 

HAART arm (82% vs. 29%, p<0.001). In contrast, breastmilk HIV-1 DNA levels did not differ by 

trial arm at any time-point. Follow-up time and number of valid assays did not differ between 
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infants by randomization arm. Median breastfeeding duration was similar between infants in the 

ZDV/NVP arm (179 days, interquartile range (IQR) 91-184) and infants in the HAART arm (182 

days, IQR 155-185). 

 

Prevalence, durability, magnitude, and breadth of HIV-1-specific IFN-γ responses and 

comparison by randomization arm 

Ten (43%) infants in the ZDV/NVP arm and 11 (46%) infants in the HAART arm had 

positive HIV-1-specific IFN-γ responses at least once (Table 2), and the prevalence of positive 

ELISpots did not differ between randomization arms at any visit (p>0.05 for each visit). In the 

HAART arm, prevalence of positive ELISpots was low early in life and increased thereafter with 

the highest prevalence (43%) at 9 months of age. In contrast, prevalence of positive ELISpots 

among infants in the ZDV/NVP arm remained relatively constant throughout their first year of 

life.  

The median magnitude of all ELISpot responses were similar between infants in the 

ZDV/NVP and HAART group overall (88 HIV-1-specific SFU/106 PBMC, IQR 45-187 vs. 96 HIV-

1-specific SFU/106 PBMC, IQR 68-171, respectively) and for every time point (p>0.05 for each 

visit). When restricted to positive responders at each visit or overall, the magnitudes of 

responses were not different by treatment arm (p>0.05); however, statistical power for 

comparisons was limited. The median number of peptide pools recognized (breadth of 

response) also did not differ between randomization arms overall or at any single time point 

(p>0.05), and there were no specific pools selectively recognized in either arm (data not 

shown). 

Of the 47 infants who had ELISpot data during the study, 21 (45%) had at least one 

positive HIV-1-specific response (Figure 1). Among the 21 positive responders, 13 had only 1 

positive response, 5 infants (4 HAART, 1 ZDV/NVP) had positive ELISpot responses at two time 
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points, and 3 of these infants (2 HAART, 1 ZDV/NVP) had repeated responses to identical gag 

pools (Figure 2). The number of peptide pools that were recognized by infants with positive 

ELISpot responses ranged from 1 to 7, with a median of 2 pools overall (Table 2). Similar 

patterns of responses were observed when the analyses were restricted to assays with 

background responses ≤ 100 SFU/millioin PBMC. When assays with high backgrounds were 

removed, 17 (36%) had at least one positive response. The median magnitude of all responses 

were reduced to 63 HIV-1-specific SFU/106 PBMC, IQR 42-120 vs. 72 HIV-1-specific SFU/106 

PBMC, IQR 52-125, in the ZDV/NVP and HAART groups, respectively. The number of pepite 

pools recognized remained unchanged. 

 

Infant HIV-1-specific IFN-γ responses at 1 month of age are associated with maternal viral load 

To evaluate effect of antenatal exposure of infants to maternal virus on infant ELISpot 

responses, we determined correlates of infant ELISpot responses at 1 month postpartum 

utilizing data from all infants (both negative and positive ELISpot results) and assessing all HIV-

1-specific cellular responses (after subtraction of background) as a continuous variable. We 

utilized all infant data rather than the subset of positive responses to enhance potential 

analytical power because the biologic threshold for a true positive response is unknown. 

Maternal HIV-1 viral levels and CD4 count were evaluated as correlates of infant responses at 1 

month of age. For every log10 increase in maternal plasma viral load at 32 weeks gestation there 

was a significant association for a 0.44 log10 increase (95% confidence interval (CI)=-0.12 - 

0.76, p=0.009) in magnitude of infant IFN-γ responses (Table 3A). Thus for every log10 increase 

in viral load during gestation, infants had ~600/106 additional HIV-specific cells in circulation by 

one month of life. In contrast for every log10 increase in breastmilk HIV-1 DNA month 1 

postpartum, there was a 0.54 (95% CI=0.11-0.97, p=0.02) log10 increase in magnitude of infant 

IFN-γ responses (Table 3A). Thus for every log10 increase in concurrent breastmilk viral load, 



12 
 

infants have ~3000/106 additional circulating HIV-specific cells. Similar results were found with 

sensitivity analyses excluding samples that had less than 10,000 cells and undetectable HIV-1 

DNA (data not shown). When the analysis was restricted to assays with background ≤100 

SFU/106 PBMC, the associations were similar:  the contribution of plasma viral load during 

pregnancy was reduced to a trend (p=0.08) while the contribution of concurrent breastmilk viral 

load remained a significant correlate for detection of infant HIV-1 specific IFN-γ responses one 

month after birth. 

 

Association between concurrent breastmilk HIV-1 levels and magnitude of HIV-1-specific IFN-γ 

responses  

GEE models were developed to determine the relationship between HIV-1 exposure 

through different biological compartments and infant cellular immune responses longitudinally 

(Table 3B and Figure 2). The magnitude of infant ELISpot responses was significantly 

associated with the concurrent detection of HIV-1 RNA in breastmilk (β=0.84, 95% CI=0.19-

1.48, p=0.01) and the concurrently measured level of breastmilk HIV-1 DNA (β=0.84, 95% 

CI=0.19-1.49, p=0.01). Sensitivity analyses produced similar results when excluding samples 

with undetectable HIV-1 DNA in which less than 10,000 cells were tested (data not shown). 

There was a trend for a positive association between plasma viral load at 32 weeks gestation 

and magnitude of subsequent ELISpot responses (β=0.35, 95% CI=-0.03-0.72, p=0.07).  

 

Discussion 

In this study, prevalence and correlates of HIV-1-specific IFN-γ responses among 

breastfeeding HIV-1-exposed uninfected (EU) infants born to mothers on antiretroviral therapy 

were evaluated. We found 45% of infants were able to generate cellular immune responses of 

substantial breadth and magnitude; however, most responses were transient. Our finding 
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confirms previous studies that detected responses in HIV-1 EU infants(22, 27, 28, 31) and is 

consistent with our previous study that observed 47% prevalence of at least one positive 

ELISpot assay using HLA-matched peptide stimulation in breastfeeding EU infants(29). We also 

found significant associations between maternal plasma and breastmilk HIV-1 viral levels and 

infant magnitude of HIV-1-specific ELISpot responses, suggesting that antigen exposure 

modifies the induced infant HIV-1-specific immune responses. 

In contrast to our study hypothesis, we did not observe that randomization to the 

ZDV/NVP arm was associated with higher infant HIV-1-specific immune responses. We may 

have been underpowered to detect a difference between the two arms, however, the absence of 

a difference by treatment is consistent with our finding that breastmilk cell-associated HIV-1 

DNA predicted infant IFN-γ responses. We previously demonstrated in this cohort that whereas 

breastmilk cell-free virus was significantly decreased in women on HAART, breastmilk cell-

associated virus (as measured by HIV-1 DNA levels) remained similar to women in the 

ZDV/NVP arm(34), and the persistence of breastmilk HIV-1 DNA despite HAART has also been 

observed in a study from Botswana(37). Thus, although breastfeeding infants born to mothers 

on HAART had less exposure to maternal cell-free virus, there was persistent exposure to HIV-1 

infected cells in breastmilk, and this may be a key determinant in generating infant immune 

responses.   

We found a significant association between maternal pregnancy plasma HIV-1 RNA 

levels and magnitude of IFN-γ responses in EU infants at 1 month of age, suggesting that in 

utero exposure influences infant immune responses in the absence of HIV-1 infection. 

Furthermore, ongoing HIV-1 exposure through breastmilk appears to induce responses as seen 

by the correlation between both breastmilk HIV-1 RNA and DNA and magnitude of infant IFN-γ 

responses during the postpartum period. The results from this study are consistent with other 

EU cohorts (29, 38) (39, 40). Together these observations support the hypothesis that infant 

cellular immune responses are due to HIV-1 exposure and not randomly distributed false 
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positives. However, it should be noted that not all studies have observed associations between 

increased transmitter virus exposure and EU cellular HIV-1 response. Some studies of HIV-1 

discordant couples and mother-infant pairs have noted inverse associations with the partner’s or 

mother’s HIV-1 viral load(41, 42). Consideration of the measures of transmitter virus (RNA, 

DNA), transmitter compartment (plasma, genital secretions, or breastmilk), assay (ELISpot or 

intracellular cytokine staining), and EU HIV-1-specific response score (positive/negative or 

magnitude) differ between studies and may contribute to the differences in results. These 

predictors of cellular immune responses in EU individuals may reveal factors to consider in 

vaccine design in order to effectively induce immune responses.   

We observed infant ELISpot responses that were of relatively high magnitude and were 

comparable to levels noted after HIV-1 vaccines in trials among adults(43-45). Responses were 

detected in 3 infants at 1 month of age, suggesting responses can be primed very early in life; 

however, these responses were not maintained and subsequently disappeared in all 3 infants. 

The characteristics of these infant responses are analogous to what may be expected among 

recipients of a prime-boost vaccine (46). The lack of persistent immune responses in infants 

suggests that initial in utero priming of responses may not be sufficient for a sustained 

response, perhaps due to antiretroviral treatment decreasing maternal HIV-1 viral load in the 

last trimester. As for route of vaccine delivery, our data and others(19, 38) have shown that oral 

exposure to HIV-1 induces systemic HIV-1-specific IFN-γ responses, lending support for 

discussing the potential role of mucosally administered HIV-1 vaccines. Recently, CD4+CCR5+ 

T-cells have been noted to be prevalent in infant gut mucosa, yielding potential susceptibility to 

HIV-1 infection or vaccination(47).  

This study benefited from the longitudinal assessment of HIV-1 EU infants to monitor 

durability of immune responses and to determine correlates over time, and to identify the 

infant’s viral source and to collect detailed HIV-1 exposure data from the mothers. A limitation of 

this study was the relatively small number of mother-infant pairs. In the absence of a biological 



15 
 

threshold or gold standard for HIV-1-specific SFU, cut-offs for positive assays are arbitrary and 

are based on lab-based comparisons to background wells or to control individuals. By using 

continuous HIV-1-specific SFU instead of dichotomous data, we were able to increase analytical 

power and precision to discern associations.  

In summary, our findings suggest that HIV-1-specific IFN-γ responses in HIV-1 EU 

infants are associated with maternal levels of HIV-1 in plasma and breastmilk, and that the dose 

of infant exposure to maternal virus during and after pregnancy influences the induction of infant 

HIV-1-specific responses. Associations with breastmilk viral load suggest that these responses 

result from HIV-1 exposure at the oral and/or gut mucosal surfaces. Our results suggest that 

oral induction of immune responses is possible and related to dose of antigenic exposure; 

however, sustained responses are rare and the relevance of isolated cellular responses to 

protection is uncertain. It is likely that multipronged humoral and cellular responses induced by 

vaccines will be required.  
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Figure Legends 

Figure 1.  Detection of negative and positive HIV-1-gag-specific IFN-γ responses in HIV-1-

exposed, uninfected (EU) infants during the first year postpartum.  The detection of HIV-1-

specific IFN-γ responses is shown for 47 EU infants born to mothers randomized to either short-

course ZDV/NVP or HAART. Filled circles=detectable response. Open circles=undetectable 

response. No circle=not tested. 

Figure 2.  Infant HIV-1-specific peptide responses and maternal viral loads.  Interferon-

gamma (IFN-γ) ELISpot assays were conducted on freshly isolated PBMC samples from HIV-1-

exposed, uninfected infants using 2 x 105 PBMC per well with 2 wells per peptide pool.  Data 

from assays with background SFU ≤ 100/106 PBMC are depicted. Pools with ≥50 HIV-1-specific 

SFU/106 PBMC and >2x the background response were defined as positive ELISpot responses.  

Magnitude of HIV-1-specific peptide responses (stacked bar), plasma HIV-1 RNA (open 

squares, dashed line), breastmilk HIV-1 RNA (closed circles, solid line), and breastmilk HIV-1 

DNA (open triangles, solid line) are shown for all infants with positive ELISpot responses. 

Months -1 and 0 refer to 32 weeks gestation (initiation of ARV regimen) and delivery, 

respectively. The mean days to delivery after the 32 weeks gestation visit was 39 (median 39 

days, range 2-82 days). Data points marked with an NT indicate time-points when infants were 

not tested for ELISpot responses.  Black reference lines indicate the lower limits of detection for 

HIV-1 RNA/ml in plasma (200 copies/ml, dashed line) and breastmilk (100 copies/ml, solid line) 

and red reference lines indicate threshold for a positive HIV-1-specific IFN-γ response (50 HIV-

1-specific SFU/106 PBMC). 
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