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Excitation Spectrum and Thermodynamic Properties of the Ising-Heisenberg
Linear Ferromagnet

J. D. Johnson
Theoretical Division, I.os Alamos Scientific Laboratory, Ios Alamos, Nese Mexico 87545

and

J. C. Bonner
Physics DePartment, University of Rhode Island, Kingston, Rhode Island 08881

(Received 9 November 1979)

New analytic results are presented for the low-T thermodynamics of the Ising-
Heisenberg linear ferromagnetic in a magnetic field H p, For small H

p the thermo-
dynamic functions show unexpected and interesting structure as a function of H

p
and

the anisotropy &. The thermal and magnetic energy gaps have singularities, not
necessarily at the same A-H, location, as changes occur in the type of excitation
dominating the low-T behavior. The results may relate to quantum solitons in the
linear ferromagnet.

There has been a renewed interest in exact so-
lutions of nontrivial, quantum-mechanical, one-
dimensional models. ' For example, exact and
fairly complete solutions are now available for
the one-dimensional (1D), 5-function potential,
Fermi- and Bose-gas models, ' the linear Hub-
bard model of a metal-insulator transition, ' and
the linear, spin-2, Ising-Heisenberg XY contin-
uum model. 4 Exact solutions for a continuum
electron gas' and an electron gas on a lattice' are
known. These are relevant to the important field
of 1D organic conductors. ' Models for organic
charge-transfer salts can be mapped into a quan-

!

tum magnetic chain' which in the antiferromag-

netic limit corresponds to the Hubbard dimer
gas. ' The exact solutions of the 1D quantum-
mechanical sine-Gordon and related equations
(solitons) have been extensively applied to charge-
density waves in 1D conductors. ' " Very recent-
ly the Bethe's Ansata techniques have been used
to solve the massive Thirring model. "' Fa-
deev's review presents a unified approach to all
the models discussed above. " Sutherland gives
an overview of the quantum soliton concept and
its connections to Bethe's Ansat~. "

In this Letter we present new, unanticipated,
and interesting exact results for the 1D, spin-2,
ferromagnetic, Ising-Heisenberg model. The
Hamiltonian" is

N N

H =- g fS, "S,+,"+S,'S, +,'+~(S, 'S, +,'-4)]-H, g S,.'.
The S's are 2 the respective Pauli matrices, and there are periodic boundary conditions on the system.6-l except, if H, is in a small, order T, neighborhood of zero, we restrict 6&l. (T is tempera-
ture. ) We set Boltzmann's constant to l throughout the body of this paper.

This system was first studied" in the 1930's; a formalism for the thermodynamics was derived by
Gaudin much later. " In Gaudin's work assumptions were made which are difficult to verify directly.
In this and previous work" we have made comparisons of the predictions of Gaudin's formalism to nu-
merical results on finite systems. " All comparisons are favorable thus enhancing our faith in the as-
sumptions contained in the thermodynamic formalism.

We have performed low-temperature expansions of Gaudin's formalism to derive all of our results.
We will not present this approach in this paper, however, since it is a fairly long and detailed deriva-
tion. We will give a "physical" argument for the results which shows the connection between the low-
temperature thermodynamics and the excitations of the system.

It is known that the zero-temperature dispersion curves for this system" are given by

E„(P)=nH, + sinhC'(coshn4 —cosP)/sinhnc',

where 6, =cosh@, 0-P- 2&, andn =1, 2, . . . . The n =1 excitations and linear combination of the n =1
excitations are spin waves, and the higher-n excitations are bound states of spin waves. The P s are
distributed uniformly between 0 and 2& and, for a given n, obey a Fermi-like exclusion principle.
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The energies of the first excited states are E(q) =H, +b. —cosq. There are N such states with q
=2mm/N, 0 & q & 2m. The states we first sum to derive the partition function are these N states, the

2N(N —1) states with energies E(q, ) +E(q,), . . . , the N!/[I! (N —l)] states with energies E(q, ) +E(q,)
+. . . +E(q,), etc. These are all the spin-wave excitations, and they provide a contribution" to E(T, cr)

of
2r

F(T,o) =oH, —(T/2]]) f, dq exp[- (&+H, —cosq)/T],

where a is the magnetization per spin.
For Ho far enough away from zero, this is all we need to obtain the low-temperature thermoydnam-

ics to exponential accuracy in T. However, for small H, other excitations, the high-lying bound states,
can dominate. For large n E„(P)-nHO+sinhC'; note that the E„(P) are independent of P and, according-
ly, are effectively just the energies of a 1D Ising model with exchange constant J= sinh@. Therefore,
we add to Eq. (3) the Ising free energy for this J." We obtain, after some simplification for low T of
the Ising-model result,

E(T,o) —&H, =-(H,'/4+T'exp[- (&' —I)'"/Tl}'/' —(T/2~) J, dqexp[- (6+H, —cosq)/T]+E. (4)

This is our basic result and is the same result as obtained by the low-T expansion of the Gaudin for-
malism. It is valid for low T, O(T) &H, - 0 and b, & 1. The correction, E, is exponentially higher or-
der in T than the larger of the two terms on the right-hand side of Eq. (4) even after taking an arbi-
trary number of T derivatives or up to and including two H, derivatives. (Note that this means, in
particular, that if one expands the square root for H, exponentially larger or smaller than exp[- (4'
—1)'/'/2T], one should retain two terms in the expansion. Both terms are significant, and E is expo-
nentially higher order than the integral or the second term of the square-root expansion, whichever
is larger. }"

We now discuss the detailed behavior of Eq. (4) in terms of the susceptibility y =- —[ 8'(F —aH, )/BH, '] r
and specific heat Cz—= —T[8'(F —crHo)/BT']z . We find from Eq. (4)

1
T* exp[- (CP =—1)"'/T ] (4[H */4+X' exp[- {a'—1]'"/T']]"*

+(27[T) 'f dq exp[- (a+H, —cosq)/T]+E„. (5)

(6a)

Ex is exponentially higher order in T than the larger of the first two terms. If we asymptotically ex-
pand the integral,

1
7' exp[- (cP —

1=V
"/T'] (4[H '/4+ 7' exp[- (a' -I)"'/T ]]*"

+ (2]]'T)
'"exp[- (6 + H, —1)/T ] +E„' .

E„ is exponentially higher order than the first term of Eq. (6a) or O(T) higher order than the second
term, whichever is larger. Similarly, for C~, we obtain

C„=(L'—1) exp[- (b,' —1)'"/T](H, '/2+T'exp[- (4' —1)"'/T]}
&& 4T H' 4+T'exp —4' —1 ' ' T '" + 2&T' '" 4+H —1'exp —4+H —1 T +E .

(6b)
E, is O(T) higher order than the larger of the
first two terms. The first terms of both y and
C~ are bound-state contributions and the second
terms are spin-wave contributions.

For X we redefine variables to H, =e '; Fig.
1 illustrates the following discussion. For e & o.,
=-,'[&-1-(&' —1)' '] the spin-wave term domi-
nates the bound-state term. For n & a, the bound-
state term dominates. Obvious simplif ications
can be made to either Eq. (5) or (6a) by dropping
appropriate terms in these cases. The. bound-
state region subdivides into n & a, = —(b.' —1)'"/2

and n & n, . For o. & n„Eq. (5) simplifies to

X =(4T) 'exp[(&' —1)' '/(2T)]. (7a)

For a, &a&o.„
)( =2T'H, ' exp[- (&'-1)'"/T]. (vb)

Corrections to both these equations are exponen-
tially higher order in T. We thus have three sep-
arate regions for y with different exponential be-
havior in each.

CH is somewhat different from X and is illustrat-
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FIG. 1. The top portion presents the various regions
for y, the susceptibility. The bottom portion illustrates
the character of Cz, the specific heat. In both cases
S-W labels the spin-wave regions, 8-S labels the bound-
state regions, and ~=-1.
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ed in Fig. 1. We define H, =e ' . Then for P &P,
=6 —1 —(6'-1)"'=3m, and also for —,

' &6&1, all
P, the spin waves dominate. One can then drop
the first term in Eq. (6b). For p&p»»-,', the
bound states dominate and one can drop the sec-
ond term. The bound-state region again subdi-
vides into p&p, =- (6' —1)'"/2 =a, and p &p, .
For P &P, with 6&-,',

C„=(TH, ) '(b, ' —1) exp[- (&' —1)'"/T] (8a)

and, for P &P, with»-, ',
C„=(4T') '(6' —1) exp[- (6' —1)'/'/(2T)]. (8b)

The corrections are O(T) and exponentially high-
er order for Eqs. (8a) and (8b), respectively.
Again one has three separate regions with differ-
ent exponential behavior in each (as for y), but
the details are different from X.

To emphasize this difference between g and C„,
look atH, =O. For H, =O y is given by Eq. (7a) to
exponential accuracy for all 4&1. CH, however,
is given by Eg. (8b) for 4& -', and by

(2+T3)- 1/2(+ l )2e ( 6 1) /T (8)

FIG. 2. We plot the effective energy gap for G~.
Shown are the gaps for the ferromagnet and antiferro-
magnet. The ferromagnet curve iQustrates the singu-
larity (kink) described in the text. The antiferromag
net gap is given by a single expression over the whole

anisotropy r~~ge.

for —,
' &a&1. Corrections to Etl. (9) are 0(T)

higher order. Thus X has a single effective gap
for all L at Hp 0 while CH has two effective gaps
with a crossover between the two at 4 =-,'." The
bound states dominate for large 4 while the spin
waves dominate for small &. This is shown in

Fig. 2, where the notation is that of Ref. 14.
It would be of considerable interest to investi-

gate these crossover effects experimentally. Far-
infrared studies like those of Torrance and Tink-
ham" on CoCl, ~ 2H, O might be performed on the
Ising-like linear ferromagnet cobalt chloride di-
pyridine (CoCl, ~ 2NC, H, ). The very recent dis-
covery of a family of good Heisenberg-like ferro-
magnets" offers the possibility of studies by neu-
trons or other means of the more isotropic re-
gion. Finally, we note that an understanding of
the excitations of the linear ferromagnet may be
important for the quantum soliton problem. '4
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Department of Energy, Contract No. W-7405-
ENG-36, in part by the National Science Founda-
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Bunting Institute, Badcliffe College, Cambridge,
Mass. 02138.
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Equations (12) and (40) in this paper should read as follows:

—2(g -g')s =(& —&o —~I )e

I",(x) = 2o, , [g, +g,-a,/(x —o,)] exp(- 2G, )

(12)

+ Pe; [Pg,g„,-g '+2& ](x —n, ) exp(-2G, ) —Qg,.g, , (x —n, )'exp(-2G, ).
m —2 j=0

619


	University of Rhode Island
	DigitalCommons@URI
	1980

	Excitation Spectrum and Thermodynamic Properties of the Ising-Heisenberg Linear Ferromagnet
	J. D. Johnson
	Jill C. Bonner
	Terms of Use
	Citation/Publisher Attribution


	Excitation Spectrum and Thermodynamic Properties of the Ising-Heisenberg Linear Ferromagnet

