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Zero-temperature dynamics of the one-dimensional X X Z and t-J models:
A weak-coupling continued-fraction analysis

V.S. Viswanath,* Shu Zhang, and Gerhard Miiller
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

Joachim Stolze
Physikalisches Institut, Universitit Bayreuth, 95440 Bayreuth, Germany
(Received 22 June 1994; revised manuscript received 15 August 1994)

We use the recursion method to study the spectral and dynamical properties of the one-
dimensional (1D) s = 1/2 XX Z model with planar anisotropy at T = 0. Distinct methods of
continued-fraction analysis have been developed for the weak-coupling and strong-coupling regimes
of the corresponding lattice fermion system. The weak-coupling analysis presented here yields
detailed information on the spectral-weight distribution in dynamic structure factors and spin auto-
correlation functions, notably on the infrared singularities produced by critical fluctuations, and on
the bound states for the case of attractive fermion interaction. The same method is then applied to
the charge dynamics of the 1D t-J model for strongly correlated electrons. There it yields similar yet
distinct results in the regime of weak exchange coupling. The results for renormalized bandwidths
of particle-hole excitations are consistent with available results for charge velocities, and the results
for the infrared exponent in the charge dynamic structure factor agree with existing results for the
exponent of the equal-time charge correlation function.

I. INTRODUCTION

Studies of cooperative phenomena in quantum many-
body systems of interacting degrees of freedom are of-
ten classified into weak-coupling and strong-coupling ap-
proaches according to criteria that vary somewhat from
method to method. The main goal of our investiga-
tion is to demonstrate that the recursion method can
be successfully employed for the study of nontrivial prob-
lems in quantum many-body dynamics in both the weak-
coupling and strong-coupling regimes of the underlying
model system. In a companion paper,! we have already
demonstrated the usefulness of the recursion method cou-
pled with a strong-coupling continued-fraction analysis
in an application to the ' = 0 dynamics of the one-
dimensional (1D) and 2D s = 1/2 X X Z antiferromag-
nets. Here we use the same method, but now combined
with a weak-coupling continued-fraction analysis, for a
comparative study of the dynamical properties in the
ground state of two models with physically interesting
weak-coupling regimes: the 1D s = 1/2 XX Z and t-J
models.

The XX Z model for a magnetic insulator with uni-
axially anisotropic exchange coupling between nearest-
neighbor spins,

N
Hxxz =Y {JL(SFSF + SYSE,,) + J.57S7,), (1.1)
=1
can be mapped via the Jordan-Wigner transformation
onto a system of interacting lattice fermions (sometimes
called the ¢-V model).? The XX model (J,/J, = 0)
corresponds to the case of free fermions. The parameter
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J./J 1, which controls the anisotropy in spin space, is the
coupling constant in the fermion representation.
The dynamic structure factor

+oo
Sela@) =N e [ ar e si(057,.)
In —o

(1.2)

is related to a two-particle Green’s function for the lattice
fermions.?* In the noninteracting case (J,/J. = 0), the
particle-hole excitations of free lattice fermions are the
only ones that contribute to S..(q,w) at T = 0. They
form a frequency band of finite width.

In a typical weak-coupling approach, the fermion cou-
pling is taken into account more or less summarily. The
dynamically relevant excitation spectrum of S, .(g,w) re-
mains confined to a finite band. The effects of interaction
at this level include renormalized two-particle excitation
energies, modified line shapes and band-edge singulari-
ties, and the formation of bound states.

In a strong-coupling approach, by contrast, the dynam-
ically relevant excitations in S,,(g,w) are truly collec-
tive in nature. In general, they involve arbitrarily many
fermions and thus are spread over a frequency band of in-
finite width. A meaningful description of phase changes
must involve these collective modes. This succinct char-
acterization of the two regimes is borne out not only in
the framework of the recursion method but also in the
context of other methods that have been used for the
study of the T' = 0 dynamics of Hx xz.

The t-J model for strongly correlated electrons has
gained prominence chiefly in the context of oxide high-T
superconductivity as a 2D application. It was designed

368 ©1995 The American Physical Society
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as an approximation to the Hubbard model for the case
of very strong on-site repulsion—a model which strictly
prohibits double occupancy of electrons on any site of
the lattice.5® The t-J Hamiltonian for a 1D lattice can
be expressed in the form

N
Hes=—t 3 3 (ot + thrntio)

o=1,] I=1
i 1
+J {Sl - Siy1 — anl_H} s (1‘3)
=1

with &0 = c1,0(1—n,—0), 7t = mup+1u,, Mo = ¢ 010,
Slz = %(nl,T - nu), Sl+ = E{,Tél,l’ and SI— = 63‘451’1‘. The
charge dynamics of H;.; as expressed by the dynamic
structure factor

“+o0

Sanlgyw) = N"1 3 emiem / dt

l,n,o0' -0

xe“tEl ()eo(t)Eln grblane)  (1.4)
is related, for weak exchange coupling, to the spin dy-
namics of Hx x z as expressed by (1.2) near the X X case.
The t-J model has its own spin dynamics, which will not
be discussed here.

The continued-fraction analysis of dynamical proper-
ties presented here is based on the finite-size ground-state
wave functions of the two model Hamiltonians (1.1) and
(1.3). In the XX Z model we use systems with up to
N = 18 spins and periodic boundary conditions. In the
t-J model we consider systems with up to N = 12 sites
and N, = 3, n; = N/2 electrons. Here we use two types
of boundary conditions: (i) H;.; with periodic bound-
ary conditions in both the t term and the J term will be
named the c-cyclic system. (ii) The alternative bound-
ary condition, formally represented by an additive term
to the ¢t part of H, ;,

H ,=H. s+t Y {5},’051,, + 5'{,,5,‘,,,} [ 4 1],
o=1,1
(1.5)

introduces an extra minus sign to the hopping term in-
volving sites 1 and N if the number of electrons is even.
This will be called the a-cyclic system.” H. ; with J =0
in any state with all electrons up (or all down) is equiv-
alent to Hxxz with J, = 0 and a periodic boundary
condition.?”® The two kinds of boundary conditions give
rise to two different level crossings in the weak-coupling
regime. Awareness of these boundary effects is important
for the finite-size analysis as we shall see.

A description in technical terms of the weak-coupling
and strong-coupling regimes for the recursion method
will be presented in Sec. II. Weak-coupling results for
some infrared singularities produced by critical fluctua-
tions and for the spectral-weight distribution in the dy-
namic structure factor S,,(m,w) and in the frequency-
dependent spin autocorrelation function S$%*(w) of the
X X Z model will be discussed in Secs. III-VI. That dis-
cussion includes comparisons with exact results wherever

possible, with strong-coupling results inferred from the
same method, and with weak-coupling results derived by
different methods. In the concluding Sec. VII we present
weak-coupling results for the 1D ¢-J model and discuss
them in comparison to the corresponding X X Z results.

II. WEAK-COUPLING
AND STRONG-COUPLING REGIMES

The recursion method®!° as applied to the dynamic

correlation function (¢o | AT(t)A | ¢o) in the ground
state of a given quantum many-body system can be based
on an orthogonal expansion of the dynamical variable
A(t) (Liouvillian representation), or on an orthogonal ex-
pansion of the wave function A(—t) | ¢o) (Hamiltonian
representation).!1714 The algorithms of both representa-
tions have been described in Ref. 1. They produce equiv-
alent data, which are expressible (directly or indirectly)
in terms of a sequence of continued-fraction coefficients,

A1, Ag, ..., for the relazation function
1
co(2) = A, (2.1)
Pt R
z+ 2
zZ4...

It is the Laplace transform of the symmetrized and nor-

malized correlation function Re{go | AT(t)A | do)/{co |

AYA| ¢o) . Its Fourier transform is the spectral density

®¢(w) and can be recovered directly from (2.1):

Bp(w) = li_% 2Re [co (e — w)]. (2.2)

The Fourier transform of (¢ | AT(t) A | ¢o) is the structure
function

S(w) = 2(do | ATA | $o)®o(w)O(w) (T =0). (2.3)

In the context of the X X Z model, this becomes the dy-

namic structure factor (1.2) if we set A = S7, and for

A = S} it becomes the frequency-dependent spin auto-
correlation function

zz — oo iwt Q2 z + dq
S (w) = dt € <Sl (t) l) = '2—7T'Szz(q, UJ).

— 00

(2.4)

These are the two quantities for which results will be
presented and discussed in Secs. III-VI.

How do we recognize and distinguish the weak-coupling
and strong-coupling regimes in the framework of the re-
cursion method for a given dynamic quantity of interest?
The relevant information is encoded in the A sequence
as described in the following. In Fig. 1 we have plotted
Ay, versus k for the dynamic structure factor S, (7, w) at
T = 0 of Hx x z at three different values of the anisotropy
parameter (coupling constant).

For J,/J, = 0 (XX model) the A, sequence is strictly
linear with zero slope for k£ > 2. Convergence of Ay to-
ward a finite value implies that the dynamically relevant
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FIG. 1. Continued-fraction coefficients Ay vs k for the dy-
namic structure factor S,,(m,w) at T = 0 of the 1D s = 1/2
X XZ model (1.1) with energy scale Ji = 1, and with cou-
plings J, = 0 (free fermions), J, = 0.1 (weak-coupling
regime), and J, = 1.0 (strong-coupling regime), as derived
from the ground-state wave function for a chain with N = 16
spins. The coeflicients of the case J, = 0 are exact for the
infinite system (Ref. 13), and those for J, # 0 are nearly size
independent as specified in Ref. 1. The coefficient A7 for
J. = 0.1 is already mildly affected by the crossover from zero
growth to power-law growth.

spectrum is a band of finite width, in this case the two-
particle spectrum of free lattice fermions. The constancy
of Ay for k > 2 implies a particular spectral-weight dis-
tribution, which will be discussed in Sec. IV. For J,/J,
# 0, the fermion interaction causes the continued-
fraction coefficients to grow to infinity with the average
growth described by some power law: Ay ~ k*, A > 1.
This dramatic change in pattern signals the dynamic rel-
evance of many-body collective modes with frequencies
in a band of infinite width.!®% For sufficiently strong
coupling, the power-law growth is manifest in the entire
Ay sequence. In the context of Fig. 1 this is the case for
J./JL = 1. For very weak coupling, on the other hand,
the Ay sequence starts out with zero average growth as
is illustrated by the case J,/J; = 0.1. That sequence
crosses over to power-law average growth for larger k (not
shown in Fig. 1).

Naturally, the fermion coupling affects all continued-
fraction coefficients A, but if it is very weak the impact
on the first K,, coefficients is much more subtle than on
the rest. The number K,,, which marks the crossover
from zero growth to power-law growth, becomes smaller
with increasing coupling strength. When K, reaches
zero, we are in the strong-coupling regime. The dynami-
cal quantity is then governed by the full many-body spec-
trum. Under these circumstances the continued-fraction
analysis must be carried out on the basis of the actual
power-law growth of the Ay sequence. If, on the other
hand, K, is sufficiently large, we may proceed with just
those coefficients A, k£ = 1,2,...,K,, which are still
consistent with zero growth and carry out the continued-
fraction analysis on that basis. This is what we call a

weak-coupling approach within the framework of the re-
cursion method. While the distinction between the weak-
coupling and strong-coupling regimes of Hxxz has its
physical interpretation in the lattice-fermion representa-
tion of that model, the continued-fraction coefficients Ay
for either regime are much more conveniently calculated
in the spin representation.

The calculational scheme developed previously!® and
adopted here for the reconstruction of T = 0 structure
functions for Hx xz and H, ; is based on an extrapola-
tion of the dominant patterns which can be identified in
the A, sequences obtained from the recursion algorithm.
The practical implementation of this scheme expresses
the eract relazation function co(z) of (2.1) in terms of
the known coefficients Ay,..., Ax and an unknown ter-
mination function 'k (2):

1
CO(Z) = A
z+

(2.5)

Ag_1

z+”'+——z+AKI‘K(z)

Now consider a model relazation function ¢o(z) deter-

mined via
1 e $o(w)
co(z) = 21ri_/ dw ——=

w—1iz (2.6)

—0o0

from some model spectral density ®¢(w) and express it,
by continued-fraction expansion, in terms of K model co-
efficients Ayq,...,Ax and a model termination function
Tk (z). The model spectral density ®¢(w) is to be chosen
such that the model coefficients Ay, ..., Ax reproduce and
extrapolate the dominant patterns of the recursion data
Ay, ..., Ax optimally. The reconstructed relazation func-
tion &y (z) is then obtained by substituting the known,
matching termination function I'x(z) for the unknown
function 'k (2) in (2.5).

In Ref. 1 we have introduced two model spectral den-
sities which are suitable for strong-coupling applications,
including the reconstruction of S,,(w,w) from the Ag
sequence labeled J,/J; = 1.0 in Fig. 1. In the weak-
coupling applications presented here, the Ay sequences
exhibit different patterns, which call for different types
of model spectral densities. Two such functions will be
introduced in Secs. IV and V.

III. WEAK-COUPLING ANALYSIS
OF INFRARED SINGULARITIES

Some aspects of the critical fluctuations in the ground
state of Hxxz for —1 < J,/J, < 1.0 are described by a
power-law infrared singularity in the dynamic structure
factor S.(q,w) at ¢ = m,15

S (m,w) ~ wPs, (3.1)
with the exponent explicitly known as a function of the
coupling constant,

ﬂz=l—2, 0=1—1arccos (i)
™ JJ_

z (3.2)
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Here we demonstrate a general method by which this
singularity exponent can be derived from a small num-
ber of continued-fraction coefficients Aj in the weak-
coupling regime and discuss the results in conjunction
with those previously obtained from a strong-coupling
exponent analysis.! In Sec. VII we shall apply the same
weak-coupling exponent analysis to the t-J model, for
which exact results are not known. The exact expression

20(w — J sing) ©(2J sin(q/2)
\/4J3sin?(g/2) — w?

at J,/J) = 0 for the dynamic structure factor was first

derived from a two-particle Green’s function for free lat-

tice fermions.31® For ¢ = 7 it can be recovered with little
effort'3 from the A sequence

Szz(qyw) = — w) (33)

Ay =2J3, Ap=Az=---=J3, (3.4)
obtained by the recursion method and shown in Fig. 1
(open circles).

In the weak-coupling regime, |J,/J, | < 1, the fermion
interaction produces two kinds of deviations of the Ag’s
from the reference sequence (3.4). (i) The new sequence

(w)

tends to converge toward a different value A’ as k in-
creases toward K,,. (ii) The A, and Ajk_; approach
Ag‘: ) from opposite sides. Both effects are conspicuous
for J,/J1 = 0.1 in Fig. 1. All deviations from (3.4)
switch direction with the sign of the coupling constant
J2/JL.

The shift of the pseudoasymptotic value AW [ef-
fect (i)] describes the renormalized bandwidth wo of
the particle-hole continuum of lattice fermions via the
relation'3

1

AW = ng. (3.5)

For the case at hand, the value Al ) has been determined
as the average of A,,...,As. The resulting band-edge

frequency wq (for | J,/J1 |< 0.1) reproduces very accu-
rately the exactly known boundary

ev(q) = &J‘;}l—r{é sin%, cos? = j—: (3.6)

at ¢ = m of the spinon continuum.!? Explicit results in
comparison will be shown in Sec. VII.

The alternating approach of the A toward AS,': ) [ef-
fect (ii)] describes the infrared singularity (3.1) in the
dynamic structure factor. For a truly convergent A se-
quence, the exponent of the infrared singularity, ~ w7, is
determined by the leading term of the large-k asymptotic
expansion'®

Ak =Ag |1 (=1)FT ...
b= A [1— ()T 4] (3.7)
The exponent value «y is then most conveniently extracted
by analyzing the sequence

Ag

= (1% [1- 2= (3.8)

which converges toward v for k — 00.!® Such an anal-
ysis can still be carried out for the finite sequences
A4,...,Ak, available for our weak-coupling analysis of
the exponent 3,.

Two such sequences (3.8), ﬁgk) vs 1/k, are shown in
the upper inset to Fig. 2. For the determination of the
infrared exponent from that sequence we propose two
alternative schemes. (i) Averaging: The exponent 3, is
assigned the mean value of an even number of successive

(k). These data points are shown as open squares in
the main plot. (ii) Extrapolation: The trends indicated

by the (k)5 for even k and odd k are extended linearly to
k — oo as marked by dashed lines in the upper inset. The
average of the two intersection points with the vertical
axis is taken as the data point for 8, in the main plot
(open circles).

FIG. 2. J, dependence of the infrared ex-
ponent 3, pertaining to the dynamic struc-
ture factor S,.(m,w) at T = 0 of the 1D
s = 1/2 XXZ model (1.1) with J, = 1.
In the main plot the solid line represents
the exact result (3.2), and the open sym-
bols the results of our weak-coupling analy-

sis based on the nearly-size-independent con-
tinued-fraction coefficients Aq,...,As com-
puted for a system of N = 18 spins. The
squares result from the averaging method
and the circles from the extrapolation
method as described in the text. The lower
inset is a blowup of the main plot near
J. = 0. The upper inset illustrates the
extrapolation procedure used for the expo-

nent sequences (3.8) at J, = —0.003 (top),
J. = —0.001 (bottom) as described in the
text.
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FIG. 3. J, dependence of the infrared-singularity expo-
nents B, p = z,2 for Suu(m,w) at T = 0 of the 1D s = 1/2
XXZ model (1.1) with J, = 1. The solid circles represent
the results derived, via strong-coupling analysis as explained
in Ref. 1, from a number of nearly-size-independent Ag’s
computed for systems with up to V = 18 spins. The exact
results are shown as solid lines. The open circles represent the
weak-coupling results for 3, as in Fig. 2 but over an extended
range of (positive) coupling strengths.

Both sets of data points display a smooth dependence
on J,/J, over the interval of anisotropy shown. Also
shown in the main plot is the exact J,/J, dependence
(3.2) of the exponent 3, (solid line). Note that the line
through the circles has the correct slope near the free-
fermion limit (J,/J,. = 0), whereas the line through the
squares has a somewhat different slope. The lower in-
set shows the center region of the main plot on a mag-
nified scale. The conclusion is that the weak-coupling
continued-fraction analysis of the infrared exponent 3, is
fairly reliable. In this instance, extrapolation improves
the accuracy significantly over that of averaging.

In Ref. 1 we have already determined the exponent 3,
in the strong-coupling regime 0.5 < J,/J; < 1.0 of the
X XZ antiferromagnet. In A sequences with nonzero
growth, such as shown in Fig. 1 for J,/J; = 1.0, the in-
formation on the infrared exponent is encoded differently
and must, therefore, be extracted by different means. In
Fig. 3 (upper branch) we show those strong-coupling
results (solid circles) together with the weak-coupling re-
sults at 0 < J,/J. < 0.2 (open circles) and the exact
results (solid line) for the exponent 3,. The gap be-
tween the two sets of results marks the crossover region
where no meaningful continued-fraction exponent analy-
sis can be carried out on the basis of the limited number
of known coefficients. The lower branch depicts the ex-
act exponent B, = # — 2 of the dynamic structure factor
Sze(m,w) and the result from Ref. 1 of the continued-
fraction analysis. For this function, the entire parameter
range shown belongs to the strong-coupling regime.?

IV. DYNAMIC STRUCTURE FACTOR §S,.(7,w)

The goal here is to determine the line shapes of
S..(g,w) at the critical wave number ¢ = = in the

weak-coupling regime of Hxxz, specifically the devia-
tions from the exact result (3.3) caused by the fermion in-
teraction in the framework of a weak-coupling continued-
fraction analysis.

In the insets to Fig. 4 we have plotted six Ag’s for (a)
two cases with weak repulsive coupling (J,/J, > 0) and
(b) one case with weak attractive coupling (J,/J1 < 0)
along with the sequence (3.4) as a reference. The two
dominant effects of the interaction on the Ag’s have al-
ready been identified in Sec. III and analyzed quantita-
tively in terms of a renormalized bandwidth wo and an in-
frared singularity exponent -, both of which depend con-
tinuously on J,/J,. These two quantities alone contain
already a fair amount of information on the line shapes.
Since both quantities have been extracted from the A.’s,
it is legitimate to employ them as parameters with fixed
values wo ~ ey(7), v =~ B, in the model spectral den-
sity to be used for the weak-coupling continued-fraction
analysis for this situation. A simple function which in-
corporates these two parameters is the following:

Bo(w) = o-(1+7) [w/wo ["O(wo — [w]).  (41)
The associated model continued-fraction coefficients are
then also functions of wg and ~:

2k2
Wo
(even k),
Ay = (2k—1-};7)(2k-{2-1+’)’) (4.2)
wo(k + ) (odd k).
(2k—1+7)(2k+1+7)
The reconstruction with termination at level K = 5

based on this model spectral density yields the curves
for J,/J, = 0.1, 0.2, and —0.1 in Fig. 4.

In the antiferromagnetic case (J,/J1 > 0), we observe
an increase in bandwidth and the emergence of an in-
frared divergence. These are effects previously seen in the
Ay sequence and then incorporated into the termination
function via (4.1). But near the band edge the termina-
tion function is unbiased with respect to any structures
that might emerge from the weak-coupling reconstruc-
tion. Here the model spectral density is flat and drops to
zero discontinuously. The reconstructed dynamic struc-
ture factor S,,(w,w) as shown in Fig. 4(a) exhibits a
softening of the square-root divergence at the band edge
as J,/J increases from zero. At J,/J, = 0.2 the spec-
tral enhancement has all but disappeared. That trend
combined with the strengthening of the infrared diver-
gence connects perfectly with the strong-coupling result
for J,/J, = 1.0 presented in Fig. 4(a) of Ref. 1.

In the ferromagnetic case (J,/J < 0), the bandwidth
shrinks and a cusp singularity develops at w = 0 as shown
in Fig. 4(b). This is in conformance with the parameter
values wg =~ ey(7), v ~ B, in (4.1) as inferred from the
A} sequence shown in the inset. Unlike in the antifer-
romagnetic case, the spectral enhancement at the band
edge stays strongly peaked. Furthermore, a discrete state
is observed to split off the upper boundary ey (w) of the
spinon continuum. It is represented in S..(m,w) by a &
function separating from the band edge at J,/J, = 0~.2°
This discrete state is readily identified as belonging to the
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FIG. 4. Dynamic structure factor
S.:(m,w) at T =0 of the 1D s =1/2 XXZ
model (1.1) with (a) antiferromagnetic cou-
pling (J. =1,J. > 0) and (b) ferromagnetic

coupling (J1 = 1,J, < 0). The short-dashed
curve in each plot represents the exact result
(3.3) for the X X case (J, = 0). The remain-
ing curves are the results of a weak-coupling

reconstruction as described in the text. The
insets show the A, sequences for the same
three cases. The coefficients shown are ex-
actly size independent for J, = 0 and nearly
size independent for J, # 0. The latter have
been extracted from the ground-state wave
function of a system with N = 16 spins.

first branch of bound states, which are part of the exactly
known spectrum of low-lying excitations of Hx x z.2* The
exact excitation energy with which the pole position in
Fig. 4(b) must be compared is €, (m), where

wJysind . ¢q

sinZ \/sinzg + sin%ycos? % ,  (4.3)

e1(e) = J siny 2

and y = 7(1 — ¥)/29. The agreement is near perfect for
| J2/JL | < 0.1

In order to gain some insight into how the bound state
contribution to S.,(mw,w) at J,/J; < 0 is encoded in
the continued-fraction coefficients of that function, we
consider the model sequence

51=2A+F, Az'—‘A:;:"'EA. (44)

WithI' < J,/J, and A—Ji o« J,/J L, as inferred empiri-
cally from our data, it describes the predominant pattern
of the weak-coupling Aj sequences displayed in the in-

sets to Fig. 4. For I" > 0 the associated model relaxation
function

1
z+ (2A + D)4 (2)’

co(2) = (4.5)

with I'1(z) = [z + AT'1(2)]7?, exhibits a pair of isolated
poles. The model spectral density ®¢(w) inferred from
(4.5) via (2.2) is then the sum of a continuous part

2A

) — (1+ L) VAA —w? O(4A — w?)

4.6
anf1+ L t 1+ 5) w2 o
2A A
and a discrete part
_ T T
82(w) = TIT U (50— wy) + 6w +wp)],  (a7)

24(A+7)
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with
2A +T 1712
=2 =2y T I )
= Ja+T A(“mz* ) (48)

The absence of the discrete part for I' < 0 is in agreement
with the results for the reconstructed function S, (m,w).
In this application the presence of a discrete state in the
weak-coupling results of Fig. 4 depends principally on
the displacement of the first coefficient relative to the
remaining ones, which are nearly constant.

J

4 p

§%* (w) — 0

with £ = (1 — w?/4J2)/2. This function is plotted as
dashed line in Fig. 5. It grows linearly from zero at
w = 0, has a square-root cusp at w = J, , and drops back
to zero discontinuously at w = 2J, . Here we use a sym-
metrized version of (5.1) as the model spectral density for
the reconstruction of S%*(w) at small positive and nega-
tive couplings J,/J, . The associated model Ay sequence
can be derived from the frequency moments of (5.1).23:24

As in the applications of Sec. IV, the predominant ef-
fect of J,/J) # 0 on the Ap’s is an overall shift, which is
related to the renormalized bandwidth (3.6) of the spinon
continuum. For the present line-shape analysis we have
eliminated this effect by a simple rescaling of the fre-
quency: ' 2w/ey(m), A} = 4Ag/e¥(n). For the
weak-coupling reconstruction of $**(w) at J,/J,. # 0,
we use the coefficients A;,...,As extracted from the
ground-state wave function of a system with N = 16
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{

V. SPIN AUTOCORRELATION
FUNCTION §*(w)

From the frequency-dependent spin autocorrelation
function (2.4), subjected to its own weak-coupling
continued-fraction analysis, we can expect to gain fur-
ther insight into the T = 0 dynamics of Hxxz. At
the same time, the results from such an analysis can
be tested against some exactly known spectral proper-
ties and against the implications of the results reported
in Sec. IV for the dynamic structure factor S,.(g,w).

For J,/J, = 0, the function §**(w) can be obtained
by integration from the exactly known dynamic structure
factor (3.3). The result is expressible in terms of elliptic

functions as follows:22

O(w)O(J1 — w) + ;%K (k) O(w — J1)O(2J1 — w),

(5.1)

[
spins by means of the recursion method. These coeffi-
cients are subject to only very weak finite-size effects,
which have negligible impact on the results.2> The re-
constructed function S%*(w) for the two cases J,/J
+0.04 is shown as solid lines in the main plot of Fig.
5. The impact of a weak fermion coupling is strongest
near the upper boundary of the spinon continuum. For
J./J1L > 0 the spectral weight near w’ = 2 is suppressed
considerably. This is consistent with the observation
made in Sec. IV that the density-of-states divergence
in S,,(m,w) at w = ey(n) is offset by vanishing matrix
elements.

For J,/J, < 0, on the other hand, the discontinuity
at the band edge has transformed into a divergent end-
point singularity at a frequency slightly above w’ = 2. A
bound-state branch £;(g) with a smooth maximum (4.3)
at ¢ = m and smoothly varying spectral weight would

J

FIG. 5. Spin autocorrelation function
S**(w) at T = 0 of the 1D s = 1/2 XXZ
model (1.1) with J, = 1. The dashed
curve represents the exact result (5.1) for
the XX case (J; = 0). The solid curves
are the results of a weak-coupling reconstruc-
tion as described in the text. The insets
show parts of the corresponding curves on ex-
panded scales for somewhat larger coupling
strengths. Bandwidth renormalization ef-
fects have been eliminated by employing the
rescaled frequency w’ as described in the text.

,=—0.04

2.0
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indeed produce a square-root divergence at precisely the
frequency where S, (m,w) has a discrete state.

At ' ~ 1, the deviations from the dashed curve are
in opposite directions compared to those at w’ ~ 2. The
cusp grows sharper and higher for J,/J; > 0 and be-
comes round and inconspicuous for J,/J; < 0. These
trends are further amplified for J,/J; = 0.1 as shown
in the upper inset. They suggest that the spectral weight
in S,,(g,w) along the lower spinon continuum boundary
eL(9) = ev(2q)/2 is enhanced for J,/J; > 0 and sup-
pressed for J./J; < 0 as we have, in fact, observed for
g = 7 in Fig. 4. According to this interpretation, the
same trends should then persist over the frequency inter-
val 0 < w’ <1 as is indeed the case.

At small frequencies, the linear behavior at J,/J; =0
should transform into a cusp singularity of the form
S%%(w) ~ wP=*+! with B, from (3.2). The curves in Fig.
5 (see also the lower inset) give no hint of such a change.
Unlike for S,,(7,w) we have not been able to extract the
J./J1 dependence of the infrared exponent 3, + 1 from
the first few Ay’s and, therefore, have had no legitimacy
to incorporate that singularity into the model spectral
density.26 The gradual deviations of the reconstructed
function $%*(w) from the dashed line for increasing values
of J,/J, as seen in Fig. 5 connect well with the result of
a strong-coupling continued-fraction analysis presented
in Ref. 1: The spectral weight at small frequencies con-
tinues to build up. The cusp at w’ = 1 grows into a
divergence, while the shoulder at w’ = 2 continues to
weaken. But unlike the results of Fig. 5, the strong-
coupling analysis yields nonzero spectral weight beyond
the frequency w' = 2.

VI. OTHER WEAK-COUPLING APPROACHES

The dynamic structure factor S,.(q,w) at T =
0 of Hxxz was previously investigated by means
of a Hartree-Fock analysis in the lattice fermion
representation, 2728 which is an alternative and inde-
pendent weak-coupling approach. Even though it is very
different in nature from the weak-coupling continued-
fraction analysis, it turns out that the two methods yield
results that are remarkably consistent and accurate:

(i) The dynamically relevant excitation spectrum of the
Hartree-Fock result for S,.(q,w) is a renormalized two-
particle spectrum, in agreement to O(J,/J, ) with the ex-
actly known spinon continuum as was the renormalized
bandwidth in the continued-fraction analysis. (ii) The
Hartree-Fock analysis predicts a discrete state above the
continuum for J,/J; < 0 as did the continued-fraction
analysis.?® In both weak-coupling approaches the gap be-
tween this state and the edge of the continuum grows
quadratically in J,/J, for fixed ¢, in agreement with the
exactly known spectral properties.'”2! (iii) Both meth-
ods predict that the spectral weight of the discrete state
increases linearly with J,/J,. (iv) Both types of anal-
ysis produce very similar line shapes for weak (positive
and negative) couplings. (v) In the Hartree-Fock result
for S,.(m,w), the infrared singularity is logarithmic in
nature. If it is interpreted as the logarithmic correction

to a power-law singularity, the exponent (3, is correct
to O(J,/J.) as was the result of the continued-fraction
analysis.

The continuum analysis of S,.(g,w) on the level of the
Luttinger model (without umklapp terms in the fermion
interaction) shares some features with the two weak-
coupling approaches discussed previously:'%3° It pro-
duces an exponent 3, that is correct to O(J2/J?), and
it predicts a spin-wave velocity that agrees to O(J,/J.)
with the spinon continuum boundaries ey (q) and €,(q)
for small gq.

It is appropriate to mention, in this context, an explicit
expression for the dynamic structure factor S,.(q,w) of
the 1D s = 1/2 XXZ antiferromagnet in the critical
regime (0 < J,/J, < 1) that was proposed on the basis of
numerical finite-chain results and sum rule arguments:3!

O(w —€1(9))O(cu(q) —w)

1— b
w? -t @) (B0 -
with 3, from (3.2) and a J,/J,-dependence factor A..
It was designed to provide a reasonably accurate descrip-
tion of the spectral-weight distribution within the spinon
continuum. Expression (6.1) connects smoothly with the
exact result (3.3) for J,/J, = 0 and exhibits the correct
singularity at ¢ ~ 7 over the entire critical regime. More-
over, the line shapes produced by the weak-coupling re-
sults presented in Sec. IV agree well with the result (6.1)
for | J,/J. |< 1. Expression (6.1) for J,/J; = 1 was
recently used to interpret inelastic neutron scattering ex-
periments on the quasi-1D antiferromagnetic compound
KCuF;.32

Sz2(q,w) = Az (6.1)

VII. CHARGE DYNAMICS
OF THE 1D t-J MODEL

A. Finite-size ground state

Whereas Hx xz has a nondegenerate ground state at
| J./J | < 1 for all even N, the ground state of H, ;
is highly spin degenerate at J/t = 0.3® The (isotropic)
exchange coupling splits it into (2St + 1)-fold degen-
erate spin multiplets, where St is the total spin. The
ground-state degeneracy is thus completely removed if
the lowest-lying level is a singlet (S = 0). This is ex-
pected to be the case for J/t > 0, while, at J/t < 0,
one expects the ground state to be the multiplet with
all electrons ferromagnetically aligned (St = N./2). In
reality the situation is more subtle. For finite N, = N/2,
level crossings occur at J/t # 0, and they depend on the
boundary conditions.

Consider a very small system, N, = 2 electrons on
N = 4 sites. The J/t dependence of the complete spec-
trum is displayed in Fig. 6 for both a-cyclic and c-
cyclic boundary conditions. The solid lines are singlets
(St = 0) and the dashed lines triplets (St = 1).3* The
observations which remain relevant for larger systems are
the following: (i) The a-cyclic ground state is a triplet
for all J/t < 0 and the c-cyclic ground state a singlet
for all J/t > 0. (ii) Level crossings involving the ground
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FIG. 6. Dependence on the coupling constant of the com-
plete spectrum of H; ; with N, = 2 electrons on N = 4 sites
for a-cyclic and c-cyclic boundary conditions. The singlets
(St = 0) are denoted by solid lines and the triplets (St = 1)
by dashed lines.

state occur at small positive J/t in the a-cyclic system
and small negative J/t in the c-cyclic system.

In the system of size N = 2N, = 12, on which our
continued-fraction analysis is based, we observe the fol-
lowing: The c-cyclic ground state is a singlet at J/t > 0
throughout the weak-coupling regime.3®> At J/t = 0
this singlet is degenerate with the S multiplets for
St =1,...,N./2 — 1. The St = N./2 multiplet has a
higher energy. At small negative J/t the St < N./2 mul-
tiplets split apart with the singlet again at the bottom.
The singlet remains the ground state until it crosses (at
J/t ~ —2) the J/t-independent level of the Sy = N./2
multiplet.

Conversely, the ground state of the a-cyclic system is
the ferromagnetically ordered S = N./2 multiplet for
all J/t < 0. This state does not change directly into a
singlet at J/t = 0. We find an St = 1 ground state over
the entire J/t > 0 weak-coupling regime accessible to
our numerical analysis,?® and a transition to the Sz = 0
ground state at J/t ~ 1.2. We conclude that the physi-
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cal properties of the 1D ¢-J model in the weak-coupling
regime are represented in a finite system most faithfully,
if we impose a-cyclic boundary conditions for J/t < 0
and c-cyclic boundary conditions at J/t > 0.

B. Continued-fraction analysis of S,,(g,w)

For zero exchange coupling (J/t = 0) and a quarter-
filled band, the charge dynamic structure factor Sy, (g, w)
at T = 0 of H;_y is the same expression (except for triv-
ial modifications) as the spin dynamic structure factor
Szz(q,w) of Hxx z for J,/J. = 0:

S‘nn(q)w)t-.’ = SZZ(q1 w)XXZ + 7f25(‘1)5(w), (7'1)
with J, = 2t in (3.3). The effect of a spin coupling,
| J/t |< 1, on the charge dynamics of H;.; can then
be investigated by the same weak-coupling continued-
fraction analysis previously employed to study the ef-
fects of anisotropy in the spin dynamics of Hxxz for
| J./JL |< 1. The results for the two models exhibit
many similarities, but there are some important differ-
ences. Both aspects are most effectively presented in the
form of comparative plots of several key quantities.

One consequence of the ground-state degeneracy at
J/t = 0 is that the T = 0 dynamical properties of H; s
do not vary smoothly with J/t across the point of zero
coupling. This is in sharp contrast to the X X Z model,
where the point J,/J, = 0 is nonsingular. The regular
J./J. dependence of the XX Z dynamics and the singu-
lar J/t dependence of the ¢t-J dynamics at the respective
free-fermion points are also present in the data extracted
by the recursion method from the finite-size ground-state
wave function. Figure 7 shows the dependence on the
coupling constant of the first two continued-fraction co-
efficients A; and A for S..(m,w) of Hxxz (left) and
for Spn(m,w) of Hyy (right). Near the point of zero in-
teraction, the A’s depend linearly on the coupling con-
stant in both models. For the following weak-coupling

2.1 2.08
J o c-—cyclic
o~ m a-cyclic
o = 204+
: 2.0 o
< < 1 FIG. 7. Dependence on the coupling con-
2.00 stant of the continued-fraction coefficients A,
Lot L : ‘ R (top) and A; (bottom) for the dynamic struc-
-0.05 0.00 0.05 -0.10 -0.05 000 0.05 0.10 ture factors S.:(m,w) of Hxxz (left) and
Snn(m,w) of Hyy (right). The XXZ data
i1 (circles) have been obtained by the recursion
1 100 bans method for a system with 16 spins and pe-
o — . riodic boundary condition, and the ¢t-J data
2 o] g (squares) for a system with N. = 6 electrons
BN N 0.964 on a lattice with N = 12 sites with a-cyclic
< and c-cyclic boundary conditions.
0.9 T T —T 0.92 +———— T T
~0.05 0.00 0.05 -0.10 -0.05 0.00 005 0.10
I, /31 I/t
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continued-fraction analysis of the ¢-J dynamics, we shall
use the a-cyclic system at J/t < 0 and the c-cyclic system
at J/t > 0.

C. Renormalized bandwidth
of particle-hole excitations

From the average J/t dependence of the coefficients
Ag,...,As we can determine a renormalized bandwidth
for the dynamically relevant charge excitations in the
weak-coupling regime. The method has been described
in Sec. ITI. We have used it there to determine the renor-
malized bandwidth of the spin excitations which are dy-
namically relevant for S,,(g,w). In both Hx xz (fermion
representation) and H; j, these excitations are of the
particle-hole type.

The results of the bandwidth analysis for both models
are displayed in the inset to Fig. 8. The J,/J; de-
pendence of the X X Z bandwidth as represented by the
circles is perfectly regular in the noninteracting limit and
reproduces the spinon continuum boundary ey (7) (solid
line) very accurately. The J/t dependence of the renor-
malized ¢-J bandwidth is represented by the squares in
the same plot. The solid squares reflect the fact that
a ferromagnetic exchange coupling has no effect on the
charge dynamics. The open squares fall onto an inclined
straight line (shown dashed) which extrapolates toward
the free-electron bandwidth wg = 2¢ at J/t = 0.

In the XXZ model, the ratio of the spin velocity
v, = [dev(g)/dg] o to the spinon bandwidth wo = ey ()
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is independent of J,/J,, 2v,/we = 1, as can be derived
from the continuum boundary (3.6). Under the assump-
tion that the same relationship holds between the charge
velocity v. and the particle-hole bandwidth wg in the t-J
model, 2v./wg = 1, we can compare our result

wo/2t ~ 2 — 0.45J/t, (7.2)

derived from the data displayed in Fig. 8, with the re-
sult v./t ~ 2 — 0.46J/t inferred from the approximately
linear dependence of the charge velocity on the coupling
constant between the noninteracting case J/t=0 and the
supersymmetric case J/t = 2 as reported by Ogata et
al.3¢ on the basis of a numerical analysis of systems with
up to N = 16 sites.

D. Infrared singularity in S,,(w,w)

There exists overwhelming evidence that the ground
state of Hy s is a Luttinger liquid between J/t = 0
and some point beyond J/t = 2, before phase separa-
tion starts to take place. One characteristic signature of
this critical ground state is the infrared singularity in the
charge dynamic structure factor:

Spn(m,w) ~ wPr. (7.3)

Unlike the exponent 3, in (3.1) of Hxxz, the exponent
Brn is not exactly known. Therefore, it is useful to de-
termine its J/t dependence from the continued-fraction
coefficients Ag,...,As by the same two methods, aver-
aging and extrapolation , as used for B3, in Sec. III.
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FIG. 8. The inset shows the dependence on the coupling constant of the renormalized bandwidth of the particle-hole spec-
trum, which is dynamically relevant for the dynamic structure factors S, (g, w) of Hx x z (circles) and Snn (g, w) of H¢.s (squares)

in the weak-coupling regimes. Each data point is derived from the continued-fraction coefficients A,, ..

., As as explained in the

text. The solid line represents the upper boundary ey (=) of the spinon continuum. The dashed lines extrapolate the t-J data
linearly into the region of very small coupling. The main plot shows the dependence on the coupling constant J/t of the in-
frared singularity exponent 3, in the charge dynamic structure factor Spn(w,w) of H;. s, as inferred from the continued-fraction

coefficients Ag,...,

As. The two sets of data for J/t > 0 result from two alternative methods as described in the text. The

dashed lines extrapolate the data linearly into the region of very small coupling.
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The results of that analysis are displayed in the main
plot of Fig. 8. Again, only an antiferromagnetic ex-
change coupling (J/t > 0) affects the charge dynamics.
Either method yields a smooth and approximately linear
J/t dependence of 3,, which extrapolates convincingly
toward the exact result 3, = 0 at J/t = 0. However, the
two results differ significantly from each other. Unlike
the sequences Bﬁk) shown in the upper inset to Fig. 2,
the corresponding ﬁ,(.k) sequences show no sign of conver-
gence. We cannot expect, therefore, that extrapolation
brings any improvement over averaging as was the case
for B,. It might instead be subject to significant system-
atic errors. We therefore conclude that our best result
is

B =~ 0.40J/t, (7.4)

obtained from averaging, more accurate in this case than
the prediction 3, ~ 0.57J/t, inferred from extrapola-
tion. Our result (7.4) for the infrared exponent §, of
the charge dynamic structure factor S,,(mw,w) can be
compared with the result of Ogata et al.3® for the ex-
ponent K, of the equal-time charge correlation function
(nyniyr) ~ (—=1)ER~*K,  Under mild assumptions the
relation between the two exponents is 4K, = G, + 2.
From a fit of the data points K, = 0.6, 0.7 in Fig. 2 of
Ref. 36 and the exact value K, = 0.5 for J/t=0 (Refs. 2,
3, and 16) to a second-order polynomial we infer for the
variation of K, with J/t near the noninteracting limit
the result 4K, ~ 2 + 0.41J/t, which is in near perfect
agreement with (7.4).

E. Line shapes of S,,(r,w)

The modified spectral-weight distributions in the
charge dynamic structure factor Sp, (7, w) of Hy 5 due to
a weak positive exchange coupling J/t are qualitatively
the same as those in the spin dynamic structure factor
Sz (m,w) of Hxxz due to a small negative J,/J,. The
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function S, (m,w) has been described in Sec. IV, specif-
ically in Fig. 4(b). The function S,,(w,w) at J/t = 0.1
as determined by the same method is shown in Fig. 9.

The many striking similarities of these two dynamic
structure factors which have emerged from our weak-
coupling continued-fraction analysis are, in fact, consis-
tent with a study by Xiang and D’Ambrumenil®” based
on an approximate decoupling of the charge and spin de-
grees of freedom in H; ;. In their approach, the charge
dynamics remains governed by a Hamiltonian of spinless
lattice fermions (as is rigorously the case at J/t = 0),
and the weak exchange coupling is taken into account
by an attractive fermion interaction. This model is very
much akin to Hxxz at J,/J, < 0 in the fermion repre-
sentation. From that perspective it is not surprising that
Hyx xz and H, j exhibit very similar features in the cor-
responding dynamic structure factors: decreasing band-
width, increasing infrared exponent, and the appearance
of a discrete state near the band edge. Nevertheless, it is
noteworthy that the effects of an antiferromagnetic spin
coupling in H; ; are similar to what is in essence a fer-
romagnetic spin coupling in Hxxz. All the observed
features are much better understood in the context of
Hx xz. Their physical significance in the context of H,_;
remains to be elucidated in full.

VIII. CONCLUSIONS

In this paper and in Ref. 1 we have presented the re-
cursion method combined with techniques of continued-
fraction analysis as a calculational tool for investigating
the T = 0 dynamics of quantum many-body systems in
both their weak-coupling and strong-coupling regimes.
We have applied the method to one model (1D XX Z)
for which some of our findings (spectral properties, in-
frared exponents) can be tested against exact results and
to two models (2D XX Z and 1D ¢-J) for which no cor-
responding exact results exist. The main assets of this
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FIG. 9. Dynamic structure factor
Snn(m,w) at T 0 of the 1D t-J
model (1.3) with 2t 1 and J/t
0.1 obtained by a weak-coupling recon-
struction from the nearly-size-independent
continued-fraction coefficients Aj,...,As.
The method is the same as used for the
X X Z results presented in Fig. 4. The insets
show parts of the same function on expanded
scales.
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method are its general nature, its amenability to compu-
tational implementations, and the direct access it yields
to dynamical quantities.

The method comprises two main tasks, which must be
carried out with due circumspection in any given appli-
cation: (i) In the calculation of continued-fraction coeffi-
cients for a specific dynamical variable from the ground-
state wave function of a given Hamiltonian, special atten-
tion must be paid to finite-size effects, boundary condi-
tions, special symmetries of small clusters, spurious level
crossings, etc. (ii) The subsequent continued-fraction
analysis in all its aspects (exponent analysis, gap anal-
ysis, reconstruction of spectral densities) then depends
on whether the resulting Ay sequence indicates a weak-
coupling regime or a strong-coupling regime.

In Ref. 1 we have introduced two model terminators
that are suitable for strong-coupling applications under
fairly general circumstances. They take into account the
unbounded support of the pertinent spectral densities
(with or without low-frequency gaps and infrared singu-

larities). Weak-coupling applications such as described
in this paper offer the advantage that the most suitable
terminators can be constructed from the solution of the
dynamical problem in the noninteracting limit. In this
context it is important to note that the use of model-
specific terminators does in no way limit or invalidate
the generality of the method itself.
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