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Theoretical studies of the structure and dynamics of metal/hydrogen
systems: Diffusion and path integral Monte Carlo investigations
of nickel and palladium clusters

B. Chen, M. A. Gomez, M. Sehl, and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

~Received 3 May 1996; accepted 28 June 1996!

Using both classical and quantum mechanical Monte Carlo methods, a number of properties are
investigated for a single hydrogen atom adsorbed on palladium and nickel clusters. In particular, the
geometries, the preferred binding sites, site specific hydrogen normal mode frequencies, and finite
temperature effects in clusters from two to ten metal atoms are examined. Our studies indicate that
hydrogen is localized in the present systems. The preferred hydrogen binding sites are found to be
tetrahedral in clusters with five or fewer metal atoms and octahedral for clusters of six to ten atoms.
The exceptions to this rule are Ni9H and Pd9H for which the outside, threefold hollow and the inside
tetrahedral sites are preferred, respectively. Hydrogen induced ‘‘reconstruction’’ of bare cluster
geometries is seen in seven and ten-atom clusters. ©1996 American Institute of Physics.
@S0021-9606~96!03337-5#

I. INTRODUCTION

Hydrogen/metal systems represent an interesting and im-
portant class of materials. Hydrogen’s small mass and
uniquely large isotopic variation, for example, give rise to a
number of intrinsically quantum mechanical many-body phe-
nomena. The unusual inverse isotope effects seen for hydro-
gen diffusion in palladium1,2 are examples of this point.

Understanding the structure and dynamics of these
hydrogen/metal systems is central to obtaining a detailed un-
derstanding of a variety of technologically significant areas.
Hydrogen storage, material embrittlement, fuel cell develop-
ment, and catalysis are all topics in which hydrogen’s inter-
actions with transition metals play a vital role.

From a theoretical point of view, metal/hydrogen sys-
tems pose both special challenges and unique opportunities.
On the challenge side of the ledger, the highly quantum me-
chanical nature of these sytems typically means that one
must deal with the full complexity of a finite temperature,
many-body, quantum problem. While classically based
methods are of some use, their ultimate applicability is lim-
ited. On the other hand, hydrogen represents arguably the
simplest adsorbate. It is, therefore, perhaps the most promis-
ing system for obtaining first principles, microscopic esti-
mates of the fundamental interactions.

Within the broad class of metal/hydrogen systems, clus-
ters are of particular importance. Their high surface to vol-
ume ratio makes them ideal candidates for catalytic applica-
tions. Since many applications involve hydrogen, an
understanding of the properties of metal/hydrogen clusters is
of special significance. Bulk studies have shown that the
transport2 and vibrational spectroscopy3–5 of hydrogen are
very sensitive to substrate structure. The wide variety of ge-
ometries exhibited by clusters thus offers a noteworthy op-
portunity to examine such effects.

The present paper is a computational study of metal/
hydrogen clusters. Our purpose is to examine a variety of
properties of nickel and palladium systems ranging from two
to ten-metal atoms. Chosen because they constitute interest-
ing dynamical extremes in the bulk,2,3 these two fcc metals
exhibit a variety of cluster geometries for different cluster
sizes. Using a combination of classical and quantum Monte
Carlo methods, we determine the geometries, preferred hy-
drogen binding sites, and site variation of hydrogen normal
mode frequencies as a function of cluster size. All hydrogen
isotopes are considered. Finally, path integral Monte Carlo
methods are utilized to study finite temperature effects.

The embedded atom method~EAM! of Daw and Baskes6

is utilized throughout. While it is, no doubt, an incomplete
description of the present cluster systems, using the same
potential in the current work as in previous surface
studies2,3,5 enables comparison of hydrogen’s behavior in
cluster and surface environments. Although we have chosen
not to use them, we note that there are more recent EAM
parameterizations for the nickel and hydrogen systems.7,8 Fi-
nally, we emphasize that none of the methods in the present
study depend on the details of the potential used. More com-
plete estimates of the microscopic interactions can and will
be used as they become available.

The organization of the rest of the paper is as follows:
Section II briefly reviews the EAM method. Classical poten-
tial minima for bare metal and hydrogen containing metal
clusters are reported in Section III. Quantum mechanical ef-
fects on the ground state structure and hydrogen binding are
examined in Sections IV and V through the use of normal
modes, zero-point energy analysis, and diffusion Monte
Carlo methods, respectively. Section IV also considers the
variation of harmonic estimates of the vibrational frequen-
cies with cluster size and binding site. Finally, Section VI

9686 J. Chem. Phys. 105 (21), 1 December 1996 0021-9606/96/105(21)/9686/9/$10.00 © 1996 American Institute of Physics



examines finite temperature effects using path integral Monte
Carlo~PIMC!.

II. EMBEDDED ATOM METHOD

In this section, we briefly review the EAM method. De-
tails are discussed in the paper by Daw and Baskes.6 EAM
expresses the total energy of the system as

Etot5(
i
Fi~rh,i !1

1

2(iÞ j

Zi~r i j !Zj~r i j !

r i j
, ~1!

whereFi(rh,i) is the embedding energy of atomi in the host
of the other atoms andZi(r i j ) is the effective charge a dis-
tance r i j away from atomi . In the EAM formalism, the
embedding energy depends onrh,i , the electron density of
the host at positionr i without atomi . The electron density of
the host is approximated by the sum of atomic densities of
the atoms in the host

rh,i~r i !5(
jÞ i

r j
atomic~r i j !. ~2!

A linear combination ofs and d orbitals calculated by
Clementi9 is used for the atomic densities of nickel and pal-
ladium. The embedding energy and effective charge are fit to
experimental data for the bulk system.

Even though EAM is fit to bulk data, previous research
shows that EAM is robust and yields at least qualitative data
for the structure and binding energies of clusters. A measure
of the quality of EAM potentials for nickel clusters is ob-
tained by comparing its predictions of cluster structure and
binding energies with those obtained by other methods. Such
a comparison is given in Fig. 1 where sequential binding
energies,E(N21)2E(N), are given as a function of cluster
size,N, from a variety of methods. The open circles repre-
sent EAM results10 and the solid circles represent zero-point
harmonic corrections to EAM values. Results obtained by
Stave and DePristo11 ~open triangles and diamonds! using
computationally more intensive empirical potentials are also

shown along with the experimental results of Lianet al.12

~solid triangles!. The structures predicted by EAM methods10

are consistent with those inferred by Parkset al.13 from N2

absorption data with the exceptions of Ni8 and Ni14.
Although less extensive than the results for nickel sys-

tems, EAM methods14 have been applied to palladium clus-
ters. Sachdev and Masel15 have examined palladium clusters
ranging from 5 to 60 atoms. For magic-number-sized clus-
ters, those with complete symmetry, the most stable struc-
tures are icosahedral. Non-magic number sized clusters have
polyhedral structures.15 High resolution electron microscopy
experiments on palladium clusters16 report icosahedral struc-
tures. It should be noted, however, that the experimental
clusters are larger than those studied using the EAM poten-
tial.

III. CLUSTER POTENTIAL ENERGY MINIMA

We now turn to the issue of cluster structure. In so doing
we will be interested in the geometries of clusters with and
without hydrogen. Anticipating non-trivial quantum-
mechanical effects, it is important to distinguish between
structures predicted by purely classical-mechanical methods,
those predicted by approximate, zero-point energy based
quantum analyses, and the structures that emerge from nu-
merically exact, diffusion Monte Carlo calculations. The
present section focuses on classical results. Sections IV and
V subsequently consider the corresponding quantum-
mechanical results.

A simplex method17 is used to find the lowest potential
energy structures of nickel and palladium clusters with 2–10
atoms with and without hydrogen. Between 1000 and 10 000
clusters in random configurations are used as starting points
for the simplex minimization. The lowest energy structures
with and without hydrogen are compared. For reasons of
space detailed cluster structures are not presented here, but
are available from the authors upon request.

Examination of the global minimum geometries for
nickel clusters with a hydrogen atom reveals stable binding
sites in tetrahedral, octahedral, and three-fold hollow sites. In
clusters not large enough to have octahedral sites, binding in
tetrahedral sites occurs. Once there are sufficient atoms to
form octahedral sites, that is at least six, there is a preference
for octahedral sites. For reasons that will be discussed below,
the exception to this is the nine-atom-nickel cluster where
hydrogen binds on an outside, three-fold hollow site.

Comparing the global minimum geometries of the nickel
clusters with a hydrogen atom to those without reveals rear-
rangements of the nickel clusters with the inclusion of a hy-
drogen atom. Figure 2 shows the global potential energy
minima of nickel clusters with a hydrogen atom. In general,
the geometry of the nickel clusters with and without the hy-
drogen is qualitatively the same. Bond lengths change upon
addition of the hydrogen by only a few percent. The largest
bond length change, about five percent, occurs for Pd7. Ni7
and Ni10, however, show significant changes upon addition
of hydrogen. The global minimum potential energy structure
of Ni7 without the hydrogen is pentagonal with an atom cap-

FIG. 1. Comparison of classical EAM data~Ref. 10! ~open circles!, zero-
point harmonic corrections to EAM data~solid circles!, CEM ~Ref. 11!
~open triangles!, and MD/MC-CEM~Ref. 11! ~open diamonds! bare nickel
cluster data with experimental atomic ejection data~Ref. 12! ~solid tri-
angles!.
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ping both the top and bottom as seen in Fig. 3. The global
minimum potential energy structure of the seven-atom-nickel
cluster with the hydrogen has a structure incorporating a
larger binding site for the hydrogen, namely an octahedral
site. The preference of a larger hydrogen binding site is also
seen in the ten-atom-nickel cluster as a comparison of Figs. 2
and 3 reveal. In both cases, where hydrogen induces a rear-
rangement of the cluster, the local minimum closest to the
global minimum for the bare cluster has an octahedral site.
These are examples of how the presence of a single hydrogen
atom can lead to different substrate structures.

In general, the global minimum structures for nickel
clusters with a hydrogen atom have the hydrogen bound in-

side the cluster. Once again the exception is Ni9H. In this
case, the energy for hydrogen binding inside a tetrahedral
site in the cluster is 0.03 eV higher than hydrogen binding
outside the cluster. The most notable difference between the
structure of Ni9H and the other structures in Fig. 2 is that
enlarging a tetrahedral site to accommodate a hydrogen
would compress adjacent tetrahedral sites. Using the present
EAM potential, the preferred binding site of the hydrogen
atom on the fcc~111! nickel surface is a three-fold hollow on
the outside.3,6

The global potential energy minimum structures for pal-
ladium clusters with a hydrogen atom are the same as those
for nickel clusters with the exceptions of Pd7H, Pd9H and
Pd10H which are shown in Figs. 4 and 5. In these cases, there

FIG. 2. Mininum energy structures of nickel clusters of sizes 4 to 10 atoms
with a hydrogen atom. For purposes of identification, the H atom is shown
without bonds to the nickel atoms.

FIG. 3. Minimum energy structures for nickel clusters of sizes 7 to 10
atoms.

FIG. 4. Minimum energy structures for palladium clusters of sizes 7, 9, and
10 atoms with a hydrogen.

FIG. 5. The five lowest potential energy isomers of Pd10H and their poten-
tial energies are shown.
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is no rearrangement of the palladium atoms upon addition of
the hydrogen to either the seven or ten-palladium-atom clus-
ter. Further, for Pd9H, the tetrahedral site is preferred over
the outside site. This is not surprising since hydrogen readily
percolates18 through bulk palladium but has to be
‘‘pounded’’ into nickel.4 This suggests that palladium can
accommodate hydrogen in its smaller binding sites far better
than nickel can. The lattice constant in palladium is 3.89 Å
while in nickel it is 3.52 Å. The difference indicates that the
lattice structure is more open in palladium than in nickel. A
similar trend is seen in the clusters. The distances between
hydrogen and the metal atoms defining a tetrahedral site are
1.467 Å in Ni4H and 1.602 Å in Pd4H. The hydrogen-metal
distances in an octahedral site are 1.662 Å in Ni6H and 1.815
Å in Pd6H.

Of the clusters under study, the one with a structure most
similar to that of the~111! fcc surface is Ni7H. This cluster is
the smallest where both octahedral and tetrahedral sites are
simultaneously present. The classical binding sites for the
cluster, in order of lowest to highest energy, are octahedral,
tetrahedral, and finally surface. This ordering is significantly
different from that in the infinite surface modelled with the
same potential. In the Ni~111! surface the corresponding
classical ordering is surface site, octahedral site in the first
subsurface layer, and lastly the tetrahedral site in the second
subsurface layer.3 From the results it would appear that the
seven-atom-cluster is able to expand to accommodate the
hydrogen internally. As the cluster size increases, however,
the presence of the surrounding atoms apparently makes
such an expansion energetically less favorable and thus alters
the site preference.

While these clusters are not sufficiently large to model
an infinite surface, the binding energies are already begin-
ning to approach those calculated for various infinite
surfaces.3 Classical binding energies are found by subtract-
ing the global minimum potential energy for the cluster with
hydrogen from the global mininum for the cluster without
hydrogen. Figure 6 shows the classical binding energies of
hydrogen on the nickel cluster surfaces and the approach to

the infinite surface values. The classical binding energies of
hydrogen for the most stable binding sites on Ni~111!,
Ni~100!, and Ni~110! fcc surfaces, calculated with the same
potential, are 2.56 eV, 2.66 eV, and 2.71 eV, respectively.6

For the ten-atom cluster, the binding energy for hydrogen is
already 3.643 eV. The palladium clusters show a similar pat-
tern in binding energies as Fig. 7 reveals. The classical bind-
ing energies of hydrogen for the most stable binding sites on
the Pd~100!, Pd~111!, Pd~110! fcc surfaces are 2.91 eV, 2.91
eV, and 3.04 eV, respectively.6 The ten-atom cluster is al-
ready at 3.852 eV.

IV. VIBRATIONAL FREQUENCIES

It is useful to perform normal mode analyses for the
low-lying stable cluster structures of the present systems.
Such frequencies and the classical potential energy minima
provide a convenient, zero-point energy approximation to the
quantum-mechanical energies of the isomers. Because they
reflect both the potential energy minima and its local curva-
ture, the ordering of such zero-point estimates of isomer en-
ergies may differ from the corresponding classical ordering.

A summary of the harmonic estimates of the ground
state of metal clusters with a hydrogen atom is given in
Table II. In preparing these results harmonic estimates of the
ground state energies of nickel and palladium clusters with
and without hydrogen are calculated assuming the structures
are those corresponding to the classical potential energy
minima. When subsequent diffusion Monte Carlo~DMC!
calculations described in the following section reveal that the
quantum ground state geometry differs from the classical
prediction, normal mode estimates are also prepared for the
isomer corresponding to the DMC ground state structure.

We see in Table II that the ordering of the energies of
the Pd7H and Pd10H isomers differ from classical predic-
tions. For example, when modified by zero-point energy, the
classical ground state structure of Pd10H shown in Fig. 5
with an energy of230.303 eV moves up to an energy of
229.566 eV while the isomer predicted classically to have
an energy of230.252 eV becomes229.635 eV. We also

FIG. 6. Hydrogen binding energies of nickel clusters. Both classical and
zero-point harmonic quantum corrections are shown. The classical hydrogen
binding energies on~111!, ~100!, and~110! fcc surfaces calculated with the
same potential are 2.56 eV, 2.66 eV, and 2.71 eV, respectively~Ref. 6!.

FIG. 7. Hydrogen binding energies of palladium clusters. Both classical and
zero-point harmonic quantum corrections are shown. The classical hydrogen
binding energies on~111!, ~100!, and~110! fcc surfaces calculated with the
same potential are 2.91 eV, 2.91 eV, and 3.04 eV, respectively~Ref. 6!.
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note that the classical isomer shown in Fig. 5 with an energy
of 230.251 eV produces a zero-point energy estimate of
229.561 eV. Differences in zero-point energy thus break the
near degeneracy of the classical230.252 eV and230.251
eV structures.

The calculated normal mode frequencies show patterns
similar to those seen in the Ni~111! and Pd~111! surfaces.
The sites in the quantum-mechanical Ni7H and Pd7H struc-
tures are analogous to those in the fcc~111! surface~cf. Fig.
8!. The C3v symmetry of the cluster’s hydrogen environment
mimics the symmetry of the localized surface binding site.
Consequently, the symmetries of the hydrogen vibrational
motion are the same for the cluster and the surface, namely a
symmetric A1 state and a doubly degenerate E state. For
Ni7H and Pd7H systems, the Ni–Ni frequencies range from
105 to 674 cm21 while the Pd–Pd frequencies range from 80
to 402 cm21. Vibrational frequencies for the hydrogen atom
in the clusters and various surface sites are summarized in
Table I. Analysis of the normal mode eigenvectors for the
cluster reveals that there are three modes to which the hy-
drogen atom contributes significantly. Two correspond to de-
generate frequencies associated with ‘‘parallel’’ motion
while one mode is associated with ‘‘perpendicular’’ dis-
placements. Parallel and perpendicular are defined here rela-
tive to the plane of the three atoms in the foreground of Fig.

8. A comparison with surface data show that hydrogen vi-
brational frequencies on clusters are in general higher than
those for hydrogen vibrating on the surface. Within a com-
mon EAM model, the seven-atom cluster and the~111! fcc
surface exhibit the same type of behavior~i.e., the perpen-
dicular vibration is of lower frequency than the parallel vi-
bration except when the hydrogen occupies the tetrahedral
sites!.

From Table I we see that hydrogen’s vibrational fre-
quencies on surfaces and clusters decrease as one goes from
an outside site to an interior octahedral site. This suggests
that the geometry of the surroundings have a large impact on
hydrogen’s behavior. In discussing vibrational frequencies,
however, it is important to keep a number of points in mind.
First, the absolute quality of the predicted frequencies are a
function of the quality of the underlying microscopic force
law. More fundamentally, however, it may ultimately prove
necessary to consider anharmonic effects in order to obtain
an accurate description of the elementary excitations in the
present systems.

V. GROUND STATES

While useful, the approximate quantum-mechanical
treatments of Section IV are incomplete. It is therefore im-
portant to check the quality of the previous section’s conclu-
sions utilizing more rigorous methods. To that end we carry
out diffusion Monte Carlo~DMC! ground state calculations
for the present hydrogen/metal cluster systems. These we
accomplish using importance sampling DMC techniques.
Excellent reviews of the DMC method have been given else-
where.19,20

The basis of the DMC method is that the Schro¨dinger
equation when written in imaginary time (t5 it/\) is

]c~r ,t!

]t
5S (

j

\2

2mj
¹ j
22~V~r !2ET! Dc~r ,t!, ~3!

wheremj is the mass of particlej , V(r ) is the potential of
the system, andc(r ,t) is the wave function of the system.
This is easily recognized as a diffusion equation with a
growth/decay term. Solutions to this diffusion equation de-
cay exponentially fast to the ground state. As a result, a
simulation of diffusion and growth/decay processes for suf-
ficiently long times yields ground state energies and wave
functions. When importance sampling is included, the diffu-
sion moves are biased in the direction of higher trial prob-
ability for the particle. Formally, the above equation is mul-
tiplied by trial wave function,fT(r ). Rearrangement leads to

] f ~r ,t!

]t
5(

j

\2

2mj
¹ j~¹ j f ~r ,t!2 f ~r ,t!¹ j lnufT~r !u2!

2SHfT~r !

fT~r !
2ETD f ~r ,t!, ~4!

where

f ~r ,t!5fT~r !c~r ,t!. ~5!

TABLE I. Summary of normal mode vibrational frequencies for various
sites. Surface theoretical frequencies are those found by Lynchet al. ~Ref.
3!. The frequencies in parentheses are experimental frequencies found by
Ceyeret al. ~Ref. 4!. Parallel and perpendicular refer to the plane formed by
the cluster atoms in the foreground of Fig. 8.

System Parallel(cm21) Perpendicular(cm21)

Ni7H Cluster
Outside 2601 1808
Octahedral 1643 1500
Tetrahedral 2848 3531

Nickel Surface
Outside 1360~955! 1120~1170!
Subsurface Octahedral Site 1137~800! 893~800!

Pd7H Cluster
Outside 2650 1527
Octahedral 1591 1228
Tetrahedral 2445 3147

Palladium Surface
Outside 1736 945
Subsurface Octahedral Site 1604 847

FIG. 8. Ni7H from a perspective that is reminiscent of the fcc~111! surface.

9690 Chen et al.: Nickel and palladium clusters

J. Chem. Phys., Vol. 105, No. 21, 1 December 1996



This is a diffusion equation with a superimposed drift.
In the present work, we use a Gaussian trial wave func-

tion of the form

fT~r !5e2
1
2(
i, j

di j ~r i j2ci j !
2
. ~6!

The values fordi j andci j are found by minimizing the vari-
ance in the eigenenergy found by the trial wave function for
configurations obtained using standard DMC. This is done
for a cluster of two nickel atoms and a hydrogen. The result-
ing values fordi j andci j are used in the trial wave function
in the rest of the clusters. For physically reasonable choices,
the ultimate results of the method are independent of the trial
function used, although the efficiency of the approach varies
with its choice.

Ground states are found for palladium and nickel clus-
ters with a hydrogen atom. Results are summarized in Table
II. All atoms are treated quantum mechanically. About 1000
walkers are used in the simulation. Initial walker configura-
tions are generated by selecting replicas of approximately the
ten lowest lying stable minima of the potential energy. Time
steps ranging from 53 1027 ps to 53 1023 ps are used. The
number of steps ranges from 10 000 to 100 000. From 5 to
10 independent runs are done for each time step. While
DMC is exact in the limit of zero time step, the ground state
energy found using the smallest time step value is not always
preferred. In some cases, the ground state energy at the
smallest time step has a larger variance than that at larger
time steps because of serial correlations. In practice, we use
a time step that provides simultaneously a small variance
with a ground state energy that does not differ significantly
from that found at smaller time steps.

Ground states are not found for all bare clusters since a
harmonic approximation to the ground state energy repre-
sents these adequately. For example, the DMC ground state
energies for Ni7 and Pd7 are 219.2660.03 eV and
216.8860.01 eV, respectively. The ground state energies
using a harmonic approximation are219.277 eV and
216.864 eV.

Our ground state studies indicate that hydrogen in these
systems is localized. This agrees with the findings of Rick
and Doll on the Pd~111! fcc surface modeled with EAM
interactions.5

The ground state structures of the clusters generally re-
flect the minimum potential energy structures. The excep-
tions are Pd7H and Pd10H systems. To gain insight into the
details of these systems it is convenient to analyze the cor-
responding DMC ground state wave functions. In general,
for an N-atom system the wave functions depend on 3N
spacial variables. In order to portray this high-dimensional
object, we have adopted the following procedure: We begin
by noting that the DMC calculation consists of Markoff se-
quences of ‘‘walkers’’ in this 3N dimensional space. Each
walker is a composite mathematical ‘‘cluster’’ in which the
positions of the ‘‘atoms’’ correspond to those in physical
systems. The DMC algorithm provides a set of stochastic
rules by which the walker is advanced. It is important to
recall that the walker configurations are representative of
f~r ,t!. As t becomes large, f~r ,t! approachesf0(r )fT(r ).
Weighting each DMC configuration by 1/@fT(r )# thus pro-
duces an object that is representative off0(r ). In order to
visualize the resulting configurations, it is convenient to di-
vide three dimensional space into cells and to accumulate for
thenth walker configuration,rn, a value of 1/@fT(rn)# in the
cells corresponding to the position of each ‘‘atom’’ of the
DMC walker. The center of mass for the walker remains at
rest during the calculation. Provided that the cluster does not
rotate appreciably during the calculation~a condition that is
met in the present work!, isosurfaces of the resulting histo-
gram provide a sense of the ground state wave function.
Using similar procedures while constraining various atoms to
be in determined positions would allow us to examine vari-
ous projections of the many-body ground state. Representa-
tive isosurfaces off0(r ) are shown in Fig. 9 for Pd7H and
Pd10H. The observed structures of these clusters are similar
to the structures of Ni7H and Ni10H. The minimum potential
energy structures for these systems are shown in Fig. 2. The
quantum mechanical character of the hydrogen in these clus-
ters seems to induce a preference for a larger binding site. In

TABLE II. Summary of ground state energies for hydrogen with metal clusters. The minimum used for the
harmonic estimates is that corresponding to the primary structure found in the DMC ground state. Usually, this
corresponds to the classical global minimum except for Pd7H and Pd10H. In these cases, the harmonic ground
state found with the classical global minimum is in parenthess. The error bars given are one standard deviation.

No. Metal
Atoms

Nickel E0 ~eV! PalladiumE0 ~eV!

Harmonic DMC Harmonic DMC

2 26.203 26.22260.001 26.135 26.15060.004
3 29.362 29.4060.01 28.948 28.9760.01
4 213.053 213.0460.01 212.237 212.2560.01
5 215.918 215.92860.002 214.716 214.7460.01
6 220.146 220.11360.001 218.193 218.1560.01
7 222.976 223.0260.01 220.614~220.576! 220.6460.02
8 226.344 226.3460.01 223.624 223.6260.01
9 229.695 229.7160.02 226.571 226.6160.01
10 233.271 233.2260.04 229.635~229.566! 229.6360.02
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each case, the binding site is octahedral. If hydrogen is re-
placed by deuterium in the seven-atom cluster, then the pre-
ferred binding site reverts to the global minimum energy
classical structure. The ground state energies of Pd7H,
Pd7D, and Pd7T are220.6460.02 eV,220.7160.02 eV,
and220.7660.02 eV, respectively.

Finally, we examine the ground states for Pd10H,
Pd10D, and Pd10T. The normal mode based, zero-point en-
ergy analysis of Section IV suggests that quantum-
mechanical effects are important in determining the structure
of this system. Using DMC methods, it is possible to check
these predictions.

The DMC ground states for Pd10H, Pd10D, and Pd10T
have the same dominant structure, namely that of the third
lowest isomer shown in Fig. 5. An interpretation of the
ground state is shown in Fig. 9. The ground state energies of
Pd10H, Pd10D, and Pd10T are 229.6360.02 eV,
229.6760.03 eV, and229.7360.02 eV, respectively.

VI. FINITE TEMPERATURE ENERGY AVERAGES

The finite temperature energy averages are evaluated
with the Fourier path integral method, in which the physical
properties are obtained from the thermal density matrix
r(x,x8,b). For a detailed description of the method, see Ref.
21. Here we apply the temperature differentiation method~T
method! to calculate the total energy. The T method utilizes
the statistical mechanical expression

^E&52~] ln Q/]b!V,N , ~7!

where the canonical partition functionQ is

Q~T,V,N!5E dxr~x,x,b!. ~8!

Using the expression forr(x,x8,b) ~Ref. 21! derived from
the Fourier path integral method, one gets the total energy
for N quantum particles, with finite number of Fourier coef-
ficientskmax, as follows

^E&kmax5^Va&1
1

2b F3N~kmax11!2K (
k51

kmax

ak
2/sk

2L G ,
~9!

whereVa is the average of the potential over the Fourier
path, and the average terms^•••& are over the density
r(x,x8,b) with respect to the space coordinatex and Fourier
coefficientsak . Equal-spaced trapezoidal rule quadrature is
used for the potential integral over the path. Thekmax re-
quired for convergence increases as the system becomes in-
creasingly quantum mechanical, as does the corresponding
computational effort.

To speed up the convergence with respect to the number
of included Fourier coefficients, a partial averaging method
is applied to the calculation. A detailed description of the
physical idea behind the partial averaging can be found in
Ref. 21. With partial averaging the resulting energy expres-
sion is

^E&5^Va&1
1

2b F3N~kmax11!2K (
k51

kmax

ak
2/sk

2L G
12@^Veff&2^Va&#, ~10!

whereVeff is the average of the Gaussian transform of the
system potential over the Fourier path. The last term is
present only when the partial averaging is being utilized.
Gradient partial averaging methods described in Ref. 21 are
used in the present work.

When the path collapses to a single point, that is, the
quadrature point for the potential integration is set to one,
quantum effects go to zero. The energy expression reduces to
the classical result

^E&5^V&1
3N

2b
. ~11!

With the above formalism, we calculate the total energy
of the NinH and PdnH clusters utilizing EAM. Herekmax
ranges from 4 to 40 as temperature varies from 1060 K to 60
K. Test runs show that the quantum contribution of the metal
atoms ~M! increases with increasing cluster size, from
0.3% at M2H to about 1% at M7H. All the atoms are treated
quantum mechanically in the calculation.

Sampling procedures are examined in the present work
to determine whether or not configurations representative of
different structured isomers are included. For example, the
Monte Carlo configuration is quenched every 1200 moves
via simulated annealing techniques. At temperatures above
500 K, transitions between structured isomers are observed.
Below 500 K, the initial isomer is seen to persist throughout
the entire one million Monte Carlo move run.

FIG. 9. Pd7H and Pd10H DMC ground state structures. One iso-surface of
the DMC distribution of the atoms is shown. In Pd10H both octahedral sites
are equivalent. In the simulation, hydrogen is started out at one of the
octahedral sites. In the time of the calculation, hydrogen does not diffuse to
the other octahedral site. The adiabatic potential energy barrier for hydrogen
to diffuse from one octahedral site to the other is 1.336 eV.
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Average energies are calculated as a function of tem-
perature for different clusters for temperatures above 60 K.
The total Monte Carlo moves for each energy data point is
about 400 000. The error bar shown is one standard devia-
tion. The results are compared with the ground state energy
from DMC and the classical limit. Both quantum and isoto-
pic effects are investigated. We use the global potential en-
ergy minimum as the initial configuration in the energy cal-
culation.

The calculated PIMC results agree with the correspond-
ing DMC results, as can be seen from Figs. 10 to 12. The
PIMC energies approach the ground state energy as the tem-
perature decreases. The finite temperature classical results
also approach the minimum potential energy of the cluster as
the temperature decreases. Among the clusters investigated,
Ni2H and Pd2H are most quantum mechanical. This is con-
firmed by the results shown in Fig. 10. The calculated curve
appears to be flat at temperatures below 100 K because of the

confinement in ground state. We can therefore roughly esti-
mate that the gap between ground state and the lowest ex-
cited state is about 100 cm21. Because of the highly
quantum-mechanical nature of those two clusters (Ni2H nor-
mal mode frequences are 450 cm21, 3022 cm21 and 4302
cm21, Pd2H normal mode frequencies are 246 cm21, 2864
cm21 and 4214 cm21), the approach to the classical limit
with increasing temperature is rather slow.

As the size of the cluster increases, the system becomes
less quantum mechanical and the energy gap between ground
and first excited state becomes smaller. The calculated curve
presented in Fig. 11 does not show a plateau. The absence of
a plateau indicates that the first excitation occurs below 60
K. A much faster approach of the PIMC result to the classi-
cal limit can be seen from the figure as compared with that of
smaller clusters. Figure 12 presents the comparison between
Pd7H and Pd7D clusters. The difference in the quantum cal-
culation between these two isotopes is a result of the differ-
ence of the quantum contribution from H and D. No abnor-
mal isotope effects are observed.

VII. CONCLUSION

The present paper has examined the properties of
NinHi and PdnH clusters withn<10 using a variety of meth-
ods. For the optimum cluster geometry, tetrahedral sites are
found to be the binding sites for H forn<5, whereas octa-
hedral sites are the preferred sites forn>6. The exception to
this rule are Ni9H and Pd9H for which the outside three-fold
hollow and inside tetrahedral sites are the preferred binding
sites, respectively. Hydrogen appears to prefer larger binding
sites, a result that leads to hydrogen induced rearrangement
in Ni10H clusters. Because of differences in metal-metal
bond lengths, no analogous rearrangement is found in palla-
dium clusters.

DMC calculations show that hydrogen is localized in the
present systems. This is consistent with previous surface cal-
culations modeled with the same EAM potential.

FIG. 10. Ni2H and Pd2H average energies as a function of temperature: open
circle, open triangle and dotted line are the results of PIMC, CM and DMC
respectively for the Ni2H cluster. Solid circle, solid triangle and dashed line
are the results of PIMC, CM and DMC, respectively, for the Pd2H cluster.

FIG. 11. Ni7H and Pd7H average energies as a function of temperature: open
circle, open triangle and dashed line are the results of PIMC, CM and DMC
respectively for the Ni7H cluster. Solid circle, solid triangle and dot-dashed
line are the results of PIMC, CM and DMC, respectively, for the Pd7H
cluster.

FIG. 12. Pd7H and Pd7D average energies as a function of temperature:
open circle, open triangle and dotted line are the results of PIMC, CM and
DMC respectively for the Pd7H cluster. Solid circle, solid triangle and
dashed line are the results of PIMC, CM and DMC, respectively, for the
Pd7D cluster.
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DMC ground state structures are similar to the global
potential energy minima with the exceptions of Pd7H and
Pd10H. These exceptions reflect the role of both the potential
and its curvature in influencing structure.

Finally, finite temperature effects are examined by nu-
merical path integral methods. Quantum contributions from
the metal atoms are found to be non-negligable for the total
energies, representing up to 1% of the total energy for
seven-metal-atom clusters. Path integral calculations confirm
that cluster isomerization is an activated process. The acti-
vated nature of the isomerization suggests that care must be
exercised to assure proper low temperature sampling.22
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