
University of Rhode Island
DigitalCommons@URI

Chemistry Faculty Publications Chemistry

2009

The Thermodynamic and Ground State Properties
of the TIP4P Water Octamer
E. Asare

A-R. Musah

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/chm_facpubs

Terms of Use
All rights reserved under copyright.

This Article is brought to you for free and open access by the Chemistry at DigitalCommons@URI. It has been accepted for inclusion in Chemistry
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.

Citation/Publisher Attribution
Asare, E., Musah, A.-R., Curotto, E., Freeman, D. L., & Doll, J. D. (2009). The Thermodynamic and Ground State Properties of the
T1P4P Water Octamer. Journal of Chemical Physics, 131(18), 184508. doi: 10.1063/1.3259047
Available at: http://dx.doi.org/10.1063/1.3259047

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@URI

https://core.ac.uk/display/56696024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/chm_facpubs?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/chm?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/chm_facpubs?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1063/1.3259047
mailto:digitalcommons@etal.uri.edu


Authors
E. Asare, A-R. Musah, E. Curotto, David L. Freeman, and J. D. Doll

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/chm_facpubs/4

https://digitalcommons.uri.edu/chm_facpubs/4?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


The thermodynamic and ground state properties of the TIP4P
water octamer

E. Asare,1 A-R. Musah,1 E. Curotto,1,a� David L. Freeman,2 and J. D. Doll3
1Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania, 19038-3295, USA
2Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881-1966, USA
3Department of Chemistry, Brown University, Providence, Rhode Island 02912-9127, USA

�Received 29 January 2009; accepted 15 October 2009; published online 13 November 2009�

Several stochastic simulations of the TIP4P �W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W.
Impey, and M. L. Klein, J. Chem. Phys. 79, 926 �1983�� water octamer are performed. Use is made
of the stereographic projection path integral and the Green’s function stereographic projection
diffusion Monte Carlo techniques, recently developed in one of our groups. The importance
sampling for the diffusion Monte Carlo algorithm is obtained by optimizing a simple wave function
using variational Monte Carlo enhanced with parallel tempering to overcome quasiergodicity
problems. The quantum heat capacity of the TIP4P octamer contains a pronounced melting peak at
160 K, about 50 K lower than the classical melting peak. The zero point energy of the TIP4P water
octamer is 0.0348�0.0002 hartree. By characterizing several large samples of configurations
visited by both guided and unguided diffusion walks, we determine that both the TIP4P and the SPC
�H. J. C. Berendsen, J. P. Postma, W. F. von Gunsteren, and J. Hermans, �Intermolecular Forces,
Reidel, 1981�. p. 331� octamer have a ground state wave functions predominantly contained within
the D2d basin of attraction. This result contrasts with the structure of the global minimum for the
TIP4P potential, which is an S4 cube. Comparisons of the thermodynamic and ground-state
properties are made with the SPC octamer as well. © 2009 American Institute of Physics.
�doi:10.1063/1.3259047�

I. INTRODUCTION

Neutral water clusters have been the focus of intense
research for over three decades. A number of studies have
focused on locating important low-lying minima and com-
puting binding energies.1–22 Equal effort has been directed
toward the simulations of thermodynamic and spectroscopic
properties.23–43 Central to all these investigations is the issue
of modeling, as accurately as possible, the potential energy
surface. A number of potential energy surface models have
been proposed. For example, the MCY �Matsuoka Clementi
Yoshimine� potential25 is among the earliest models derived
by fitting a number of configuration interaction computations
on the dimer. A number of empirical or semiempirical poten-
tials are obtained by fitting experimental and simulated prop-
erties of liquid water44–51 or ice.52,53

In the present work, we focus on the water octamer for
two main reasons. First, a good deal of information is avail-
able in the literature about the water octamer. Second, its
global minimum is a cubic structure, making it the smallest
of the clusters with a compact and relatively highly symmet-
ric global minimum. As such, the water octamer serves as an
ideal testbed for theories and numerical methods for the
simulation of more complex systems that contain water.54–62

Despite the relatively small size of the water octamer, its
global optimization has proved to be challenging. Stillinger
and David3 report the first optimized structure of the octamer
using a model that includes polarization corrections. Brink

and Glasser4 report quite a different global minimum, cubic
in shape with D2d symmetry. Wawak et al.7 also find a global
minimum with D2d symmetry using the MCY potential.2 On
the other hand, Tsai and Jordan,9 and independently, Wales
and Ohmine,8 find two competing cubic structures, lying
close in energy, one with D2d, and one with S4 symmetry.
Two of the potential surfaces tested by Wales and Ohmine8

are four-site models and favor the S4 isomer energetically.
The other two are three-site models and favor the D2d cube
instead. Hartke17 uses the TIP4P �Ref. 50� potential �a four-
site model� and the genetic algorithm to optimize water clus-
ters with up to 21 molecules. In the latter work, it is reported
that clusters up to n=10 are solvable with one generation,
demonstrating the power of the genetic algorithm. Neverthe-
less, the issue of which of the two low-lying cubes, the D2d

and the S4, has the lowest energy is related to the quality of
the potential energy model itself. High level ab initio com-
putations of the binding energies of the two isomers have
been performed.32 The difference between the binding ener-
gies of the two isomers is smaller than the error in the best
potential energy model fitted to the ab initio points, and
smaller than the estimated correlation effects beyond the
second-order Møller Plesset �MP2� complete basis set
limit.32 Therefore, to resolve the differences between the two
minima, theories more accurate than the MP2 limit are nec-
essary. The general consensus is that TIP4P approximates
much better the true potential energy surface compared to the
SPC or SCP/E, models. However, it is known that to get
relative energies closer to the MP2 complete basis set limita�Electronic mail: curotto@arcadia.edu.
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results, one needs to include polarizable models.
Despite the daunting difficulties encountered in the for-

mulation of a reliable potential energy model for the octamer,
a number of simulations of the water octamer have been
published. The characteristic vibrational frequencies have
been computed with two different potentials.6,13 Thermody-
namic properties have been computed in the NVT
ensemble,23,28 in the NPT ensemble,29 and in the presence of
external electric fields.41 Isomerizations and the melting tran-
sition have been studied using molecular dynamics.27 The
bulk of the simulations of the water octamer in the literature
have treated the motion of the nuclei classically. Yet, large
quantum effects can be expected given the light mass of the
nuclei involved. The intermolecular contributions of the zero
point energy for the D2d and the S4 configurations have been
computed with the rigid body diffusion Monte Carlo
�DMC�,13 whereas the equilibrium properties of the quantum
water octamer have been simulated with the variational
Gaussian wave packet method.43

One of our groups has been involved in the development
of quantum methods for the efficient simulation of molecular
aggregates.63–71 Constraining intramolecular degrees of free-
dom proves crucial in overcoming convergence difficulties
with path integral Monte Carlo �PIMC� and DMC simula-
tions of molecular clusters. The time scale difference be-
tween the intramolecular and the intermolecular degrees of
freedom in typical molecular aggregates is sufficiently large
to cause inefficiencies in DMC simulations, and to make the
convergence of PIMC simulations a formidable task.67 In a
recent study we use a relatively simple harmonic model for
condensed matter with typical force constants for the inter-
molecular and intramolecular degrees of freedoms and ana-
lytical finite Trotter-number solutions of the path integral to
quantify the efficiency gains of path integral simulations of
molecular matter with holonomic constraints.67 For a differ-
ence in the values of the intramolecular and intermolecular
spring constants as small as two orders of magnitude, con-
straining the high frequency degrees of freedom increases the
numerical efficiency of the path integral substantially for
both linear and cubically convergent estimators.67 Similar
gains are found in another recent study aimed at developing
DMC strategies for systems constrained holonomically.72

Holonomic constraints produce curved, non-Euclidean
spaces. Consequently, the successful formulation of PIMC
and DMC algorithms is highly dependent on the choice of
coordinates. Using angular variables in PIMC
simulations48,51,73–78 is possible only with the time-sliced for-
mulations, and by neglecting precession effects for non-
spherical tops. The latter approximation produces linearly
convergent path integral methods. Precession effects contrib-
ute to second order. A number of approaches for rigid body
DMC simulation methods can be found in the literature.79–86

Virtually all of these use schemes to avoid angular variables
altogether. Clearly, variational �VMC� and DMC are much
simpler in flat manifolds.87–102 The works we have cited are
applications of VMC and DMC to clusters in Cartesian co-
ordinates, and constitute only a small sample of the most

recent investigations. On the other hand, diffusion in mani-
folds remains a topic of research in pure mathematics as well
as mathematical physics.103

In both PIMC63–70 and DMC71,72 simulations in curved
spaces, we find it highly advantageous to make use of ste-
reographic projections. Our methods based on stereographic
projection coordinates have been tested on a number of
simple systems solvable by basis set methods, and several
molecular clusters.64,67,69 We extend the reweighted random
series method104–110 and the finite difference estimators108 for
cubically convergent path integral simulations to
manifolds.68 DMC simulations are nearly as straightforward
to implement in curved spaces mapped with stereographic
projection coordinates as they are with Cartesian
coordinates.72 As the only difference, the distribution of the
diffusion step in curved spaces is generally not a simple
Gaussian, and several straight-forward rejection techniques
have been tested successfully.71 Water clusters in the dimer
through the octamer range have already served to gauge the
feasibility of the stereographic projection path integral
�SPPI� methods.68 Recently, we have explored the possibility
to control the adiabatic approximation for water by allowing
for couplings with high frequency modes.70

In a recent article we develop and test several impor-
tance sampling strategies for stereographic projection DMC
in curved manifolds.72 In order to guide DMC, we propose a
family of one parameter trial wave functions for VMC in
stereographically projected manifolds. We find that guided
DMC in manifolds is feasible, is orders of magnitude more
efficient compared to unguided DMC, can overcome prob-
lems with nonconfining potentials, and can suppress quasier-
godicity effectively. In particular, we find the Green’s func-
tion stereographic projection DMC �GF-SPDMC� approach
to have the simplest implementation and the best statistical
behavior.72

The purpose of the work reported in the present article is
to determine the quantum thermodynamic and ground state
properties of the TIP4P water octamer. Specifically, we for-
mulate the following two sets of goals:

�i� obtaining the quantum and classical heat capacity of
the TIP4P water octamer and comparing these quan-
tities to the corresponding ones for the SPC water
octamer from previous variational43 and path integral
simulations.67 In Ref. 67 we use a three-site SPC
model with a flexible extension49 identical to the one
used by Frantsuzov.43

�ii� computing the ground state energy and characterizing
structurally as much as possible the ground state wave
function. The distributions of random walkers from
guided DMC are for the product �0�T, where �T is
the variational wave function used to guide DMC and
�0 is the true ground state wave function. By compar-
ing distributions of �0�T, with those for ��T�2, we
wish to obtain qualitative, but important information
about the structural nature of the true ground state
wave function �0.

The rationale for the first set of goals is as follows. The
TIP4P model is a four-site model for water, therefore one
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would anticipate significant differences in the thermody-
namic properties when comparing with the SPC model for
water. Given the difficulties encountered while trying to re-
solve which hydrogen bonding arrangement is favored ener-
getically for the real water octamer by potential models, it is
highly likely that future simulations of more complicated
systems, such as clathrates for example,54–62 will require re-
producibility tests of quantitative results with two or more
models. The classical heat capacity of the octamer has
proved to be sensitive to the details of the potential energy
surface.23,28,29,41 Little is known about how the quantum heat
capacity and energy change when models of the potential
energy vary.

The rationale for the second set of goals is similar. The
sensitivity to small variations in the shape of the potential in
classical simulations is probably exacerbated by the presence
of the two low-lying cubes, which are nearly degenerate. In
larger clusters, the number of nearly degenerate minima con-
figurations with different arrangements of the hydrogen bond
grows significantly.17 In ice, these different arrangements are
nearly degenerate and give rise to a residual entropy as the
temperature approaches 0 K.111,112 These complications make
the simulations of physical properties of large water clusters
and solid bulk water systems extremely challenging. It is our
hope that the characterization of the ground state wave func-
tion of the water octamer can offer a glimpse into the role
that quantum effects play in determining important simulated
properties. In particular, we pose ourselves the following
fundamental question: If certain hydrogen bond arrange-
ments are nearly degenerate, is it possible that the smearing
of the hydrogen atoms by quantum fluctuations in the ground
state, and by thermal effects, is sufficiently extensive to wash
out largely any differences predicted by slightly different nu-
merical models of the potential energy surfaces? It is reason-
able to expect that different properties in the ground state
will be more sensitive to small changes than others, and that
different size clusters will behave differently. Therefore, the
scope of the investigation necessary to answer with some
generality this question is greater than what we can accom-
plish with the present study. Nevertheless, our result should
serve to lay the path for future investigations.

Lastly, both the SPPI and GF-SPDMC are relatively re-
cent developments. It would be reassuring and instructive to
find evidence that both approaches yield consistent results.
Therefore, we compare the ground state energy obtained by
the rigid body DMC against its value estimated with SPPI,
and the finite difference estimator at several low tempera-
tures.

The rest of the article is composed of three sections. All
our simulation methods are in Sec. II. The results are pre-
sented and discussed in Sec. III, and our conclusions are in
Sec. IV.

II. SIMULATION METHODS

A. Stereographic projection path integral

In a series of works63–70 we have extended the re-
weighted random series approach104–110 to the imaginary
time path integral in manifolds that are mappable by stereo-

graphic projections. The random series expansion of the path
consists of km core terms and an additional 3km tail terms,

q̃��u� = qr
��0� + ��1/2�

k=1

km

ak
��k�u� + ��1/2 �

k=km+1

4km

ak
��̃k�u� ,

�1�

q̃� is the closed path �q̃��0�= q̃��1�� with u=� /��. The tail
terms are formulated in such a way that the partial averaging
method constructed on Eq. �1� is identical to the partial av-
eraging method derived from the original random series rep-
resentation of the Brownian bridge.104–110

The centerpiece of the imaginary time path integral ap-
proach is the density matrix ��q ,q� ,��. In manifolds the fol-
lowing equation is convenient for developing the proper im-
portance sampling algorithms,113–115 and to derive the
expressions for the finite difference estimators of the energy
and heat capacity,

��q,q�,�� = � 1

2	
�ND/2

��2��−D/2J�


	 d�a�rexp
− �	
0

1

duU�q̃��u��� , �2�

where U�q̃��u�� is the quantum action,

U�q̃��u�� = −
N

2�
ln�det g���q̃��u���

+
1

2
g���q̃��u��q̇�q̇� + V�q̃��u�� , �3�

d�a�r is the measure of the space of the series coefficients,

d�a�r = �
k=1

4km

�
�=1

D

dak
�, �4�

and J� is a constant Jacobian67 that results from transforming
the Wiener measure over the time-sliced space to the space
of all the random coefficients ak

�.
In Eq. �3�, g�� is the Hessian metric tensor,116,117 which

can be represented with a block-diagonal matrix,67

g�� = g�1� 0 0

· · · · · ·

0 0 g�n� � . �5�

Each block in Eq. �5� represents the molecular metric tensor,
a 6
6 block-diagonal matrix,

g�i� =
m 0 0

0 m 0 0

0 0 m

0 G�i�
� , �6�

where m is the total mass of the water molecule and G�i� is
the metric tensor associated with the orientations.

To compute the integral in Eq. �2�, we use the trapezoid
rule with N=km+1 points, and we evaluate the Hessian met-
ric tensor and the potential at the end point of every interval
uj = j /N. The end point choice yields a constant curvature for
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the quantum Jacobian that we can simply ignore.18 Addition-
ally, we can ignore the difference between the Jacobian ob-
tained from the manifold and the Jacobian obtained in R9n,
with infinitely stiff springs replacing the holonomic
constraints,115 since their ratio is a constant.70 To implement
the Metropolis algorithm, we move the center of mass or the
orientation of a randomly selected molecule, and we translate
one path variable for each coordinate moved, e.g.,
ak

6�i−1�+1 , ak
6�i−1�+2 , ak

6�i−1�+3 → �ak
6�i−1�+1 , ak

6�i−1�+2 , ak
6�i−1�+3��.

The integer k is in �1�k�4km�, and is selected randomly
from a uniform distribution.

The estimators for the energy and heat capacity are com-
puted using the following two expressions, respectively,67

�E�� =
D

2�
+� �

����	
0

1

duU�q̃��u���� , �7�

CV

kB
=

D

2
+

D2

4
+ D�� �

����	
0

1

d�U�q̃��u����
+ �2�
 �

����	
0

1

duU�q̃��u����2�
− �2� �2

��2��	
0

1

duU�q̃��u����
− 
−

D

2
− �� �

����	
0

1

duU�q̃��u�����2

. �8�

The derivatives with respect to � in Eqs. �7� and �8� are
evaluated numerically. Previous work on SPC water
clusters67 has indicated that SPPI simulations with the
Fourier–Wiener reweighted random series are converged
with kmax=32 at and above 50 K for the energy, and above
100 K for the heat capacity.

The potential energy used in our simulations is the
TIP4P �Ref. 50� model, added to a smooth Lee–Barker–
Abraham spherical cavity,118

VLBA = V0�
i=1

8 � rO,i − RCM

2RC
�20

, �9�

where rO,i is the location of the oxygen atom for the ith
water molecule, RCM is the center of mass of the cluster,
V0=1 hartree, and RC is 12.0 bohr.

B. Green’s function stereographic projection diffusion
Monte Carlo

The integral representation of the imaginary time-
dependent Schrödinger equation is the starting point of the
GF-SPDMC,

��q,� + �� = 	
M

G�q,q�,����q�,��dq�. �10�

In Eq. �10�, M is the manifold and G�q ,q� ,�� is the Green’s
function. G�q ,q� ,�� satisfies the imaginary time dependent
Schrödinger equation,

�G

��
=

�2

2
LBG − �V − ET�G , �11�

and the initial condition

lim
�→0

G�q,q�,�� = ��q − q�� . �12�

In Eq. �11�, LB is the Laplace–Beltrami operator,117

LB =
1
�g

��g���g��, �13�

where g�� is the inverse of the Hessian metric tensor, and g
is the determinant of g��. Equation �10� can be solved
recursively87 by approximating the Green function locally
and introducing an optimized trial wave function �T,

exp�−
g��q�q�

2�
��T�q + q�

�T�q�
exp�− �V − Vref��� ,

�14�

where �T�q� and �T�q+q� are the values of the optimized
trial wave function before the diffusion step is taken and
after the diffusion step is taken, respectively. Each replica is
moved with q distributed according to

exp�−
g��q�q�

2�
� , �15�

and grown or annihilated using

wi =
�T�q + q�

�T�q�
exp�− �V − Vref��� , �16�

as the statistical weight. The spacial dependence of the Hes-
sian metric tensor in Eq. �15� complicates slightly the diffu-
sion part of the algorithm. Several sensible methods have
been tested in this regard,71 using a number of different test
problems. All the schemes are found to converge to first
order72 in �.

The GF-SPDMC strategy needs a trial wave function in
M. In Ref. 72, we explore the following possibility:

�T�q� = A exp�− 1
2�V�q�� , �17�

using the bistable potential and the Stockmayer trimer. The
variational energy,

�E�� =
�Mdqg1/2��T

−1Ĥ�T���T�2

�Mdqg1/2��T�2
, �18�

is computed with parallel tempering119–122 for various values
of �. With the form of �T given in Eq. �17�, ��T�2 is the
equivalent of the importance sampling function for the clas-
sical configuration integral of statistical mechanics,

��T�2 = A2 exp�− �V�q�� , �19�

where � plays the same role as �kBT�−1. The wave function in
Eq. �17� has several desirable features. First, it is the exact
wave function for a harmonic monodimensional system. Sec-
ond, it produces a convenient importance sampling function
for the most important regions of configuration space. When
the parameter � is optimized, we find that �T usually
samples a multitude of potential energy minima decreasing
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the possibility that the guided diffusion walk is biased to-
ward one single minimum of the potential energy surface.
Since the random walk performed to optimize �T is carried
out using parallel tempering, starting the diffusion walk from
a distribution obtained at the optimized parameter with par-
allel tempering gives us confidence that quasiergodicity is
reduced in the diffusion walk. In the unguided DMC case,
quasiergodicity manifests itself with relatively long correla-
tion times when all the replicas become trapped in one
well.72 Third, it reduces the importance of dissociated or
nearly dissociated states when the potential surface is not
confining, as is usually the case with clusters. Finally, the
procedure conveniently produces an optimized wave func-
tion while computing thermodynamic properties of interest
in the classical limit, and ensuring ergodic sampling in M at
the same time.

Using Eqs. �13� and �17�, one derives the following ex-
pression for the local energy estimator:

�T
−1Ĥ�T = V −

�2

2

�2

4
g����V��V −

�

2
g������V

−
�

2
�g����� ln�det�g�� + ���g������V� . �20�

Equation �20� is used to estimate the energy from popula-
tions evolved according to the GF-SPDMC algorithm as
well. The trial wave function �T given in Eq. �17� represents
the compromise we make to embody all the physics of the
system, at the expense of the computer time necessary to
evaluate the derivatives in Eq. �20�.

C. Structural characterization methods

The comparison between two configurations of a cluster
is carried out with the structural comparison algorithm123

�SCA�, which has been modified for the present work. The
algorithm to compare configuration A and B is as follows.
Configurations A and B are translated so that the origin is the
cluster’s geometric center,

�
i=1

3n

ri
�A� = 0, �

i=1

3n

ri
�B� = 0 . �21�

Configurations A and B are rotated so that atom 1 and i,
respectively, are on the z axis �1� i�3n�. One additional
rotation is performed so that atom 2 and j, for configurations
A and B, respectively, are on the x−z plane �1� j�3n , j
� i�. For each of the 3n�3n−1� rotations, a sorting of the
remaining 3n−2 atoms is performed to find the atom of B
that is the closest to atom k of A, for k=2, . . . ,3n. The SCA
metric is the infimum of the set,

A = inf�ij
�A��i,j=1,i�j

3n , �22�

where ij
�A� represent an element of the following set of sums,

ij
�A� = �

k=1

3n

�rk
�A� − PR��i,� j�rk

�B�� , �23�

and the element of the set �PR��i ,� j�rk
�B��k=1

3n is the configu-
ration B rotated and with the labels permuted as described.

The quantity A is most meaningful when the configuration
A is a minimum of the potential energy surface. If A is the S4

cube we use the symbol S4, and if A is the D2d cube we use
the symbol D2d. The atoms are all treated as identical,
namely, no distinction is made between the hydrogen and the
oxygen atoms. We refer to the metric in Eq. �22� as the
all-atoms SCA distance.

Previous applications of the SCA to molecular clusters
involved only the Cartesian coordinates of the centers, unlike
those of every atom as we do here. The measure A in the
present version is sensitive to changes in the orientations of
the water molecules. However, for the purpose of the struc-
tural analysis in the present work we find it necessary to
introduce an additional SCA measure based on the oxygen
atoms alone,

A
�O–O� = inf��A�,ij

�O–O��i,j=1,i�j
n , �24�

where �A�,ij
�O–O� is defined using an equation analogous to Eq.

�23�,

�A�,ij
�O–O� = �

k=1

n

�rO,k
�A� − PR��i,� j�rO,k

�B� � , �25�

and rO,k
�A� is the position of the kth oxygen atom relative to the

geometric center of the cluster. Using this strategy, we can
determine how translational degrees of freedom are distrib-
uted differently compared with the orientation degrees of
freedom in the GF-SPDMC and the VMC ground state. Dif-
ferences in these distributions from quantum effects are ex-
pected given that the effective mass associated with transla-
tions is approximately a factor of 10 larger than the effective
masses associated with the orientation of the molecules.
When A is the S4 minimum we abbreviate A

�O–O� �what we
call the O-atoms SCA distance� with the symbol S4

�O–O�.

D. Quenching in curved manifolds

To confirm further the results obtained from the struc-
tural analysis, we submit configurations collected during the
random walks to a quenching procedure. The method we
choose is a 0 K Brownian algorithm, which we have recently
developed to study ammonia clusters. To handle the holo-
nomic constraints we begin with the Euler–Lagrange’s equa-
tions,

d

dt
� �L

� q̇�� − � �L
�q�� = 0. �26�

These are invariant under any continuous change of coordi-
nates, and therefore are applicable in any manifold produced
by holonomic constraints. From Eq. �26� we could derive the
geodesic equations for accelerated systems in manifolds116

by rewriting the derivative of the Hessian metric tensor into
a symmetrized version, known as the Christoffel connection
coefficients. However, the connection coefficients116 in ellip-
soid of inertia mapped stereographically have formidable ex-
pressions. Instead, we start with the general following form
of the Lagrangian,
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L = 1
2g��q̇�q̇� − V , �27�

where V is the potential energy and g�� is the Hessian metric
tensor, and insert this into Eq. �26�. This yields the following
expression:

g��q̈� + ���g���q̇�q̇� − 1
2 ���g���q̇�q̇� + ��V = 0. �28�

The first two terms in Eq. �28� result from the time derivative
of the partial of L with respect to q̇�. A trivial rearrangement
yields the equivalent of Newton’s second law in manifolds,

g��q̈� = − ��L+, �29�

where L+ is the Lagrangian with the potential inverted,

L+ = 1
2g��q̇�q̇� + V . �30�

Equation �29� is the starting point for our algorithm. The
acceleration vector is

q̈� = − g����L+. �31�

We integrate Eq. �31� assuming that �g����L+�n is constant
for sufficiently small values of t. Given the initial condi-
tions �q� , q̇��n for step n=0,1 , . . ., we compute ��Ln

+ by finite
difference for �=1,2 , . . . ,d. We then compute the inverse of
the Hessian metric tensor g�� and the product �g����L+�n.
Assuming that �g����L+�n is constant, we can integrate and
update the velocities,

�q̇��n+1 = �q̇��n − �g����L+�nt − ��q̇��nt , �32�

where � is the usual drag coefficient. Using a similar as-
sumption for the velocities, we update the configuration us-
ing

�q��n+1 = �q��n + �q̇��n+1t . �33�

At every step the energy is computed with E�tn+1�= �L+�n+1.
Although we use stereographic projections in this work, the
algorithm can be implemented as written with all types of
regular coordinate transformations �those derived from ana-
lytical maps�, such as Euler angles, quaternions, and so on.
With stereographic projections, occasionally large values are
produced, and the code needs to trap and recover from the
event otherwise floating exceptions occur. We do this simply
by changing the sign of the projection and rescaling its ve-
locity whenever the absolute value of a projection is larger
than an arbitrarily set upper limit. Additionally, it is straight
forward to derive a Verlet-like algorithm from Eq. �29�,
which is useful whenever constant energy dynamics are re-
quired.

III. RESULTS

A. Thermodynamic and ground state properties

The outcome of the SPPI calculations, both for kmax=0
�classical, cf. Eq. �1�� and kmax=32 �quantum� are presented
in Figs. 1�a� and 1�d�. Figure 1�a� is a graph of the energy in
the classical �white squares� and quantum limit �black
squares� in hartree, as functions of the temperature. The error
bars in Figs. 1�a�, 1�b�, and 1�d� are obtained by computing a
95% confidence interval from ten independent parallel
tempering119–122 simulations. Each simulation consists of 107

warm up moves, followed by an additional 107 moves to
accumulate physical property estimates. For the quantum
heat capacity, we repeat a five block simulation twice, the
second time starting from the previously equilibrated con-
figurations. The results from the two simulations are statisti-
cally indistinguishable. A total of 40 walkers is used to
implement the parallel tempering runs between the tempera-
tures of 10 and 400 K. The temperature values are equally
spaced 10 K apart. In Ref. 67 we study the convergence of
the SPPI using the SPC water octamer. We find that the
kmax=32 finite difference estimate of the energy converges
within the statistical error at 50 K and above. The same
applies for the finite difference estimator of the heat capacity
at 100 K and above. Therefore, we do not deem it necessary
to remap the convergence profile for the TIP4P water oc-
tamer in the present work. The classical energy �white
squares in Fig. 1�a�� approaches the value of the global mini-
mum as the temperature approaches 0 K. The quantum en-
ergy is not converged below 40 K, and the data points below
40 K have been excluded from the graph. At 40 K, the value
of the energy is −0.0820�0.0002 hartree. Inflections indica-
tive of phase changes are visible in both curves. The centers
of these features are at 210 K in the classical curve and
170 K in the quantum curve. The quantum effects are sub-
stantial even at 400 K, although the pattern indicates that the
two curves merge at higher temperatures. The differences
between the classical and the quantum energy are in reason-
able agreement with our recent computations of the SPC
octamer.67

The heat capacities in units of the Boltzmann constant as
a function of temperature in kelvin, obtained from the simu-
lations are graphed in Fig. 1�d�. The classical heat capacity
approaches the equipartition value of 45 Boltzmann’s con-
stant units at low temperatures. For n nonlinear rigid bodies
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FIG. 1. �a� Energy of the TIP4P water octamer as a function of temperature.
The white squares are the classical simulation data, the gray squares are the
quantum results �km=0 and km=32, respectively, in Eq. �7��. �b� Variational
ground state energy of the water TIP4P octamer in hartree graphed as a
function of the parameter T= �kB��−1 �cf. Eq. �20��. �c� Ground state energy
estimate from a single GF-SPDMC with a target population size of 105

configurations and �=10 hartree−1 �cf. Eq. �20��. �d� Heat capacity of the
TIP4P water octamer in units of the Boltzmann constant, as a function of
temperature in kelvin. The white squares are the classical simulation data
and the black squares are the quantum results �km=0 and km=32 respec-
tively, in Eq. �8��.
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the equipartition limit for the constant volume heat capacity
is �6n−3�kB. Two features are visible in both curves. The
peak at 380 K in the classical heat capacity is matched with
one equally broad and nearly as intense at 370 K in the
quantum heat capacity. The sharper melting peak at 210 K in
the classical heat capacity is also matched with a broader and
less intense feature centered around 160 K. These two tem-
peratures correlate closely with the inflections in the energy
visible in Fig. 1�a�. The heat capacity of the TIP4P octamer
is quite different from that of the SCP octamer.67 The melting
peak in the classical heat capacity at 140 K is “washed
away” when the SCP potential is used. The quantum heat
capacity for the TIP4P octamer in Fig. 1�d� has a well de-
fined and relatively intense melting feature compared to the
SCP model.

In Fig. 1�b� the variational energy in hartree computed
using the methods in Sec. II B is graphed. The graph of �E��
is quadratic about the minimum at 190 K, for a relatively
narrow range of values of T, and it deviates significantly
from a quadratic function at higher temperatures. The lack of
symmetry in the �E�� curve is the consequence of the onset
of a phase change that peaks around 210 K. The minimum
value of �E�� is −0.074�0.002 hartree at 190 K. Figure 1�c�
contains the graph of the population energy from a GF-
SPDMC calculation, with N=105 as the target size and with
�=10 hartree−1. The simulation is repeated ten times, and
the energy values between 10 000 and 20 000 hartree−1 are
averaged for each independent run. The resulting block av-
erages are used to estimate the ground state energy at
−0.0823�0.0002 hartree. The statistical error is computed
using the standard error in the mean. If one assumes that the
system is predominantly in the ground state at and below
40 K, then the energy for the kmax=32 data in Fig. 1�a�
should be a reasonable approximation of the ground state
energy. The value of the energy �E�km=32 at 40 K is statisti-
cally indistinguishable from the DMC result, and the “exact”
value of the ground state energy is 11% lower than the varia-
tional energy in Fig. 1�b�.

B. Structural analysis of the TIP4P octamer surface

In order to build meaningful structural identifiers, we
begin by requenching 1291 minima of the octamer, obtained
in our previous work on water clusters.67 These structures
were found using the SPC/F2 potential,49 and we expect to
see some differences with the TIP4P potential. We find 933
distinct structures after requenching. The S4 isomer is
slightly lower in energy compared to the D2d cube, which is
consistent with previous comparisons between three-site and
four-site potential energy models.8 All 933 minima configu-
rations are measured using the all-atoms SCA against the S4

cube, �cf. Eq. �22�� and the O-atoms SCA against the S4

cube, �cf. Eq. �24��. As explained in Sec. III A, we label
these two measures S4 and S4

�O–O�, respectively. Figure 2
contains two graphs of the measures S4 �left panel�, and
S4

�O–O� �right panel� plotted against the energy for all 933
distinct minima. Figure 2 gives us a qualitative glimpse at
the complexity of the TIP4P surface for the octamer. The S4

measure spans a domain 60% larger than S4
�O–O�. The S4 and

D2d cubes are very close in energy and are followed by a
group of nine minima that are cubic in shape. The lowest 11
minima, within −0.1171�E�−0.1128 hartree, can be eas-
ily identified in both the left and the right graph of Fig. 2.
These 11 structures have S4�24 bohr and S4

�O–O�

�2 bohr. An additional six cubes are located within
−0.1108�E�−0.1092 hartree, S4�24 bohr, and S4

�O–O�

�2 bohr. The majority of the minima have energies greater
than �0.11 hartree, S4�25 bohr, and S4

�O–O��2 bohr.
However, none of these are important for the thermodynamic
and ground state properties.

C. Structural analysis of the VMC walk

With SCA we analyze several random walks at �kB��−1

=190 K. After the initial 106 moves to reach the asymptotic
limit, we store 105 configurations to the disk from the walker
at 190 K. The computation is repeated ten times indepen-
dently on ten separate nodes of our computer array. A total of
106 configurations are measured in this manner, using SCA,
against the S4 cube and the D2d cube. We create histograms
of the S4, D2d, and S4

�O–O� properties, using 1000 classes
for the range. The distributions of S4, D2d, and S4

�O–O� from
the 190 K, km=0, random walks can be found in Figs. 3–5
represented with black dots. The distributions obtained from
the walks at �kB��−1=190 K are projections of ��T�2 along
the S4, D2d, and S4

�O–O� “coordinates.”
The S4 and D2d distributions from the variational

simulation at �kB��−1=190 K have multiple features. For
S4, in Fig. 3, the variational simulation yields a distribution
with a relatively intense peak around 20 bohr, a small shoul-
der at 12–14 bohr, and a broad and less intense feature be-
tween 38 and 76 bohr. For D2d, in Fig. 4, the variational
simulation yields a similar distribution; however, the most
intense peak is located at 12 bohr, the small shoulder is
around 20 bohr, and the broad and less intense feature be-
tween 38 and 76 bohr is nearly identical to its S4 counter-
part in Fig. 3.

The distribution of the variable S4
�O–O� from the varia-
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FIG. 2. Left graph: A plot of the all-atoms SCA distance �cf. Eq. �22�� from
the S4 isomer as a function of energy measured for 933 distinct minima of
the TIP4P water octamer. Right graph: A plot of the O-atoms SCA distance
from the S4 isomer as a function of energy measured for 933 distinct minima
of the TIP4P water octamer.
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tional simulation in Fig. 5 has only two features, an intense
peak at 3 bohr, and a broad peak between 10 and 24 bohr.
The distributions in Figs. 3–5 allow us to obtain a qualitative
picture of the optimized variational wave function we have
chosen to use and its accuracy. The most important feature of
these distributions is the shoulder easily assigned to the pres-
ence of the S4 cube. To be certain, we quench a sample of
245 602 configuration from the variational walk. Upon
quenching the VMC configuration sample, we obtain 58% of
the replicas collecting in the D2d minimum, approximately
30% in the S4 basin, and the remaining 12% in higher energy
isomers.

The broad peak at large values of S4, D2d, and S4
�O–O�

can be seen in all three graphs. In particular, the presence of
the peak around 15 bohr in the S4

�O–O� distribution indicates
that our ��T�2 distribution oversamples open configurations,
or configurations other than the cube. The presence of molten
states with respect to the molecular centers framework is
responsible for the peaks around 60 bohr in the distributions
of S4 and D2d from the variational walk. The features in
the distributions of the three SCA metrics disappear in the
DMC walk. The oversampling of the variational walk of

higher energy states, including higher energy minima, ob-
tained with the trial wave function in Eq. �17� is consistent
with previous tests72 carried out with the same model.

D. Structural analysis of the DMC ground state

It is very instructive to compare the distributions from
the variational simulation with the equivalent ones obtained
from the GF-SPDMC walk. These are represented by black
lines in Figs. 3–5. To generate S4, D2d, and S4

�O–O� distri-
butions from the GF-SPDMC walks, we write all the walk-
ing configurations at the end of ten independent 2000 step
simulations to files. A total of 795 863 configurations are
generated in this manner and analyzed with the SCA. The
histograms for the values of S4, D2d, and S4

�O–O� are ob-
tained by producing 1000 bins within the range. The distri-
butions from the GF-SPDMC populations are all sharper
than the corresponding ones obtained from the VMC walk.
The S4 distribution from GF-SPDMC in Fig. 3 is a slightly
asymmetric peak between 16 and 27 bohr, centered at
20 bohr. The D2d distribution from GF-SPDMC in Fig. 4 is
between 10 and 20 bohr and peaks around 14 bohr. Finally,
the S4

�O–O� from GF-SPDMC in Fig. 5 is between 2 and
5 bohr and peaks around 3 bohr.

A clear picture of the ground state wave function
emerges by inspecting the graphs in Fig. 2, and the distribu-
tions obtained from the GF-SPDMC simulations in Figs.
3–5. In particular, the relatively narrow S4

�O–O� distribution in
Fig. 5, contained, for the most part, below 5 bohr tells us that
the “shape” of the octamer in the ground state is cubic. The
structure of the ground state of the water octamer, from the
orientation degrees of freedom of the waters prospective, is
more “fluidlike” relative to the translations. To be certain of
the structural character of the guided DMC walk, a sample of
795 863 configurations from the GF-SPDMC simulation are
quenched as well. 100% of the replicas sampled from the
GF-SPDMC walk collect in the D2d minimum. The data in
Figs. 3–5 and in Sec. III C confirm that ��T�2 has a substantial
magnitude over the S4 isomer, whereas the SCA distributions
for the GF-SPDMC simulation and the result of the 795 863
quenches confirm that the product �0�T is exclusively in the
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FIG. 5. A graph of the ground state density projected along the O-atoms
SCA distance from the D2d cube �cf. Eq. �24�� obtained from the VMC
simulations �dots� and the GF-SPDMC simulation �lines�.
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D2d well. Therefore, we conclude with confidence that �0

must have no significant magnitude over the S4 cube, or any
other minimum.

IV. CONCLUSIONS

In the present article we report results of several theoret-
ical investigations carried out on the TIP4P water octamer.
We use the reweighted random series path integral, together
with the stereographic projection manifolds to sample the
orientations of the rigid moieties of the cluster. The stereo-
graphic projection coordinates allow the MC path integral
simulations of aggregates of rigid tops without neglecting
precession effects, which contribute a truncation error of
O�km

−2�. The reweighted random series approach we use in
the present work is cubically convergent. It is instructive to
compare the GF-SPDMC ground state energy with the quan-
tum internal energy at low temperatures for the TIP4P oc-
tamer. If converging properly, and at a sufficiently low tem-
perature, the internal energy should approach the ground
state energy. The agreement between �E�km=32,T=40 K and
�E�GF-SPDMC is reassuring. The agreement we observe is a
clear demonstration that the SPPI approach, with a reason-
able amount of resources, is capable to simulate a complex
system like the water octamer in the full temperature range,
between the classical limit and at temperatures where the
thermodynamics are dominated by the ground state. How-
ever, the km=32 energy in the 40–70 K range does have a
finite, albeit small slope. Below 30 K the energy drops to-
ward the classical energy rather abruptly, indicating that its
estimator is not converging uniformly in the 10–30 K range.
On the full scale, the onset of an energy plateau at low tem-
peratures is visible in Fig. 1�a�. Since, our choice of 40 K is
completely arbitrary, estimating the ground state energy from
path integral simulations in this manner should only be good
to one figure at best.

We can compare the thermodynamic properties of the
water octamer obtained with the TIP4P potential in the
present study, with those obtained from the SPC potential in
Ref. 67. We have a number of minima of the SPC octamer
from previous work,67 and using them we produce graphs of
the two measures D2d and D2d

�O–O� in Fig. 2, since the global
minimum for the SCP isomer is the D2d cube, and the next
isomer in energy is the S4 cube. The all-atoms SCA distance
from their respective global minima is compared with the
same measure used for the TIP4P octamer in Fig. 6. We use
black squares for the TIP4P surface and white squares for the
SPC surface. The energy of the global minimum �D2d cube�
is 0.8 mhartree deeper for the SCP octamer. Beside the minor
shifting in the absolute energy, the two sets of data in Fig. 6
differ in other details. All the cubic isomers of the SPC sur-
face have a D2d

�O–O� smaller than 5 bohr. The D2d and the S4

cubes are nearly equally close in energy, even though the
role of global minimum between the two models is ex-
changed between the two hydrogen bonds arrangements.
However, the energy gap between the global minimum and
the group of noncubic structures is significantly smaller for
the SPC model.

We compare the internal energy at finite temperature for
the two potentials. The energy data for the SPC octamer used
to compare with the TIP4P results were obtained during the
work published in Ref. 67. The absolute values of the km

=0 and km=32 are 1–2 mhartree deeper at 50 K for the SPC
octamer. However, the gap between the classical and quan-
tum internal energy at 50 K is statistically indistinguishable
between the two models. In Ref. 67 we obtain a melting peak
at 140 K in the classical heat capacity of the SCP octamer
that is “washed away” almost entirely by the quantum ef-
fects. For the TIP4P octamer, by contrast, the classical melt-
ing peak at 210 K shifts to 160 K in the quantum limit. The
fact that the energy gap between cubic and noncubic con-
figurations is smaller for the SPC model provides an expla-
nation for the observed differences in the classical and quan-
tum heat capacities.

The structural analysis of the GF-SPDMC walk gives
unequivocal evidence that the ground state wave function of
the TIP4P octamer has D2d symmetry, despite the large “flu-
idlike” behavior of the wave function along the orientation
degrees of freedom relative to the translation ones. Given the
fact that �T, covers both the D2d, and the S4 wells, as the
distributions in Figs. 3 and 4 indicate, and the quenching of
a large number of structures confirms that the distributions of
�0�T, is physically relevant and provides important informa-
tion. Since the distributions for �0�T do not contain, as far as
we can tell, any minimum other than the D2d cube, we con-
clude with confidence that the ground state wave function is
localized within the D2d cube and other minima occur in the
ground state with a probability less than one part in 795 863.
We repeat all the SPDMC simulations for the SPC octamer
and we find that its ground state wave function is predomi-
nantly within the D2d well. One of the motivations for the
present work is to determine if the characterization of the
ground state wave function of the water octamer could offer
a glimpse into the role that quantum effects play in determin-
ing important simulated properties. It does seem possible that
the smearing of the hydrogen atoms by quantum fluctuations
in the ground state is sufficiently extensive to wash out
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FIG. 6. A plot of the all-atoms SCA distance �cf. Eq. �22�� from the global
minimum �S4 cube� as a function of energy measured for all distinct minima
of the TIP4P water octamer �black squares�, compared to the same measure
from the global minimum �D2d cube� for the SCP octamer.
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largely any differences predicted by slightly different models
of the potential energy surfaces. We find that, despite the
profound structural differences among the two global
minima, the zero point energy differences are small, and de-
spite the broad distribution of orientations of the hydrogen
bonds, the ground state wave function is largely contained
inside either a single basin of attraction with the most sym-
metric structure. In that sense, the smearing of the hydrogen
atoms by quantum fluctuations in the ground state, and by
thermal effects below melting, washes out some of the dif-
ferences in the models.

Which potential energy model best represents water
clusters remains an open and difficult question. However, the
results we present suggest that properties, which depend on
relative energy values of the clusters as a function of size at
or near the ground state, should be very similar for both
models in the classical and quantum limits. Clearly, a num-
ber of additional studies are warranted to generalize our find-
ings beyond the SCP and TIP4P octamer cases, especially if
information like the binding energy of hydrogen with water
clusters is desired. For example, it may be insightful to com-
pare our results with simulations obtained with models that
may produce ground state wave functions contained inside a
single basin of attraction other than the D2d cube, such as the
empirical modified potential �EMP�,13 which could favor the
S4 isomer for the ground state.

Finally, the comparisons between the VMC and GF-
SPDMC distributions in Figs. 3–6 give us valuable informa-
tion about the level of accuracy of the variational scheme
used in the present investigation. The “thermal” trial wave
function in Eq. �17� samples configurations that are liquid-
like for both the orientations and the translations of the wa-
ters. The oversampling of high energy states observed in this
work is consistent with the observations made in Ref. 72
when the same type of wave function is tested on the quartic
double well and the Stockmayer trimer. Clearly, the trial
wave function requires an optimal parameter �, which cor-
responds to a thermal state with a significant amount of melt-
ing of the molecular framework. This type of oversampling
along the translational degrees of freedom could be curbed
by alternative trial functions, such as e.g.,

�T�q� = A exp�− 1
2�Veff�q�� , �34�

where

Veff�q� =
g���q0��q� − q0

���q� − q0
��

���2 + V . �35�

In Eq. �35�, g���q0� is the Hessian metric tensor evaluated at
q0, and the latter is a sensible reference configuration, such
as the global minimum. The parameter �, in units of time,
can be optimized starting with a large value since as �
→�, one obtains the trial wave function in Eq. �17�. A more
precise guiding function like in Eqs. �34� and �35� is desir-
able to reduce the statistical error of guided SPDMC. How-
ever, there is a real danger of biasing the DMC walk into a
single basin of attraction �which could also be the incorrect
one�, if Eqs. �34� and �35� are used without any previous
knowledge of the system. The double sum on the right hand

side of Eq. �35� does not have to include all the degrees of
freedom. It may be advisable to only use those degrees of
freedom which are not broadly distributed, such as the posi-
tions of the centers as in the present case. Finally, the opti-
mization of the parameter � can be carried out using parallel
tempering. We did not engage in a systematic investigation
of the behavior of the trial function in Eqs. �34� and �35�
because the issue is tangential to the focus of the present
work. However, a careful systematic investigation of such
variational model is clearly warranted and should be carried
out in simpler Euclidean manifolds first,91–102 using mixed
atomic clusters and a wide range of mass values.
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