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The interaction of rare gas atoms with graphite surfaces. I. 
Single adatom energies 

David l. Freeman* 

Battelle Memorial Institute, Columbus, Ohio 43201 
(Received 9 August (974) 

The Gordon-Kim local density method is applied to the calculation of the interaction energy of 
helium, neon, argon, and krypton with the basal plane of graphite. In all cases, the binding site is 
found to be above the center of a hexagon, but the barrier to migration to other sites is less than 
50 call mole. Comparisons are made with other studies on these systems, and the role of 
non-two-body additive effects is discussed. 

I. INTRODUCTION 

Essential to the understanding of the kinetic and ther
modynamic properties of atoms physisorbed on solid 
surfaces is the cietermination of the interaction potential 
between the adatoms and the substrate. Accurate quan
tum mechanical calculations of the interaction potential 
in physisorption are very difficult because the system 
has low symmetry, the number of electrons is large, 
and the forces between the adatoms and the substrate 
are quite weak. As a consequence, most studies which 
have attempted to calculate adatom-surface interactions 
have employed simplifying assumptions in order to make 
the problem tractable. 1 

For physisorption studies on insulators, the most 
commonly used approach is to assume that the net po
tential is the sum of two-body potentials between the ad
atom and the surface atoms of the solid. 1- 14 This tech
nique has been applied extenSively to the calculation of 
adsorption potentials between rare gas atoms and the 
surfaces of rare gas crystals, 1-6 and to the physisorp
tion of various nonpolar atoms and molecules on 
graphite. 1,7-14 For the case of adsorption of rare gas 
atoms on rare gas crystals, the two-body potential pa
rameters are chosen from gas phase data. The basic 
errors in such a calculation arise from the neglect of 
non-two-body additive interactions. A recent calculation 
by Bennett of argon adsorbed on argon crystal has shown 
that the non-two-body additive contributions can alter the 
binding energy by up to 12% and modify the barrier to 
surface migration by 70%.15 Since the barrier to surface 
migration has an important influence on the thermody
namic properties of thin films, errors as large as 70%, 
even for small migration barriers, can be quite signif
icant. For the case of rare gas adsorption on graphite, 
in addition to the errors due to non-two-body additive 
effects, the choice of potential parameters is ambiguous. 
As Sams has pOinted out, there are a variety of reason
able rare gas-carbon potential parameters that can be 
used, and the different choices can yield very different 
results. 13 For example, when potential parameters were 
chosen from the combining rules of Fender and Halsey, 16 

the calculated binding energies differed from experiment 
by as much as 67%, whereas when the combining rules 
of Hudson and McCoubrey17 were used, the binding ener
gies never differed from experiment by more than 10%.13 
Since there is no a priori way of chOOSing one combining 
rule over another, Sams concluded that the agreement 

with experiment obtained by many authors using this 
technique has been fortuitous. 

Because graphite is believed to have one ofthe smooth
est surfaces found in nature (i, e., the barrier to surface 
migration by an adatom is small), there has been consid
erable experimental and theoretical attention paid to rare 
gas films on graphite. 18-20 As a consequence, it is im
portant to determine accurate potential energy surfaces 
for this system. Because the previous calculations have 
neglected non-two-body additive effects and have used un
certain parameters, it would be most useful to apply a 
technique that is free of these problems. 

To circumvent many of the difficulties that arise in 
problems involving the electronic structure of the sur
face of a solid, a variety of calculations have employed 
density functional techniques based on the work of Hohen
berg and Kohn.21,22 Recently, Smith, Ying, and Kohn 
have applied density functional methods to hydrogen 
chemisorption on metals, 23 and Kleiman and Landman 
have used the method to compute the repulsive interac
tion between helium atoms and metal surfaces. Z4,25 One 
of the more successful density functional techniques is 
due to Gordon and Kim (GK). Z6 The GK method was de
veloped to study intermolecular forces between closed
shell species, and it has been successfully applied to in
teractions between closed-shell atoms and ions. For the 
rare gas dimers Nez, Arz, Krz, and Xez, the GK method 
predicts binding energies good to about 10%, and to even 
better accuracy in the repulsive region of the potential 
curves. The GK method has also been used to calculate 
interactions between the rare gases and some simple di
atomic molecules. Z7,Z8 Recently, Bennett applied the GK 
method to compute the interaction potential between an 
argon atom and the (100) face of argon crystal. 15 Since 
graphite can be regarded as a closed-shell system, it 
seems natural to apply the GK method to rare gas ad
sorption on it. 

In what follows, we present the results of a GK calcu
lation of the interaction energy between the basal plane 
of graphite and adatoms of helium, neon, argon, and 
krypton. Because the GK technique failS to give the cor
rect dispersion forces, we do not expect to attain the 
same accuracy for adsorption of an infinite crystal as 
GK obtained for atom-atom interactions. However, the 
GK technique does not require any uncertain parameters, 
and it does include non-two-body additive contributions. 
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942 David L. Freeman: Interaction of rare gas atoms with graphite. I 

The application of the GK method to rare gas adsorption 
on graphite can be expected to provide more reliable po
tential surfaces than are presently available. 

In Sec. II we briefly review the GK method and discuss 
our extension of it to the interaction of adatoms with 
graphite. In Sec. ill we give our results, and we pre
sent our conclusions in Sec. IV. 

II. APPLICATION OF THE GORDON-KIM METHOD 
TO RARE GAS-GRAPHITE INTERACTIONS 

The details and assumptions of the GK method are 
given in Ref. 26, and an analysis of the method has been 
given by Kim and Gordon.29 Here we only discuss the 
GK method in direct reference to our calculations on 
graphite surfaces. 

The GK method is used to calculate the interaction po
tential between Closed-shell systems in the region of 
Significant overlap of the electronic charge distributions. 
It is assumed that the charge denSity of the interacting 
system is given by the sum of the unperturbed charge 
densities of its composite closed-shell parts. In this 
approximation, the charge density for the system of a 
rare gas atom interacting with a graphite surface is 
given by 

p(r) = Pa(r) + ps(r), (1) 

where p(r) is the total charge density (including both the 
electrons and the nuclei), Pa(r) is the atomic charge 
density, and ps(r) is the surface charge density of graph
ite. In their calculations on the interactions between 
closed-shell atoms, GK took Hartree- Fock densities 
for the electronic contribution to Pa(r), and we have 
done the same. For the electron density of neon and 
argon, we used the analytic Hartree- Fock wavefunctions 
of Huzinaga, McWilliams, and Domsky. 30 The neon basis 
consisted of 5 s orbitals and 4 p orbitals, and the argon 
basis consisted of 8 s orbitals and 8 p orbitals. The 
helium and krypton Hartree- Fock wavefunctions were 
taken from Clementi. 31 The helium basis consisted of 
5 s orbitals and the krypton basis consisted of 10 s or
bitals, 9 p orbitals, and 5 d orbitals. Unfortunately, 
densities of the same accuracy are not available for 
graphite. Instead, we generated the electronic contribu
tion to ps(r) from the reasonably accurate two-dimen
sional band wavefunctions of Painter and Ellis. 32 A dis
cussion of the sensitivity of the GK method to the elec
tron density function will be given later in this paper. 

By using two-dimensional band wavefunctions, we have 
modeled our surface by a single plane of carbon atoms. 
Since the spacing between sheets in graphite is large 
(3.37 A), the energy, due to the other layers, will only 
affect contributions to the long-range dispersion energy. 
These contributions are inherently assumed to be zero 
by the GK technique. The contribution to the GK energy 
from other than the surface layer of carbon atoms is ex
pected to be negligible, and this single layer approxima
tion therefore should introduce no significant additional 
errors not already due to the approximations of the GK 
method. 

From Ref. 32, the wavefunction for the mth band state 

at crystal momentum k and point r is given by 

1fim (k, r) = L Am/k) e lk
•
R

" rpJ(r - R" - a j ), (2) 
J. " 

where J1 sums over the unit cells located at R" in the 
two-dimensional lattice, j sums over the Slater basis 
functions rpJ(r-~ - aJ) centered at R" +a}> Qllocates 
each of the two carbon atoms in a graphite unit cell, and 
the Amj(k) are expansion coefficients. Details concern
ing the basis set used, the geometry of the graphite lat
tice, and the number of terms included in the sum on J1 
in Eq. (2) can be found in Ref. 32. Defining ps(r), to be 
the electronic contribution to ps(r), we have 

ps(r)= ~fd2kl1fim(k, r)12. (3) 

USing Eqs. (2) and (3), we can write 

ps(r)=L rrrrpl(r-H.,-adrpJ(r-R,,-aj), (4) 
I,J 
",V 

where the density matrix rrr is given by 

rr;=~Jd2kA;:;I(k)AmJ(k)exprik. (RJ1-Rv)]. (5) 

We found that the direct evaluation of Eq. (4) was too 
time-consuming for practical GK calculations. To make 
the GK calculation pOSSible, we found it necessary to fit 
the graphite density obtained from Eq. (4) to a function 
that could be easily evaluated. We divided one of the 
12 equivalent sectors of a graphite unit cell, shown in 
Fig. 1, into 1026 regions and fit 254 evaluated grid 
points [from Eq. (4)] in each region to a function of the 
form 

3 2 

( ) "" B -/liR J k I F x, y, z = ~ ~ IJk! e x y z . (6) 
;=1 i,k, 1,0 

In Eq. (6), R is the distance between the carbon atom 
located at position B in Fig. 1 and the point at (x, y, z) 

in the shaded region of Fig. 1. The nonlinear param
eters (31 were optimized, and the coefficients BIJk! were 
chosen by a least squares fit to the grid points of the 
function F. It was found that F(x, y, z) approximated 
p"s(r) to three significant figures. Since the expansion 
coefficients AmJ(k) supplied by Painter and Ellis were 
also given to three figures, we considered this fit ade
quate. 

In the GK method, the interaction energy is computed 

A 

c 

B 
FIG. 1. One hexagon of the two-dimensional graphite lattice is 
shown. The dashed line is a graphite unit cell, and the cell is 
divided into its 12 equivalent sectors. The graphite density 
function was fit in the shaded region. 
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David L. Freeman: Interaction of rare gas atoms with graphite. I 943 

from a local functional of the density given in Eq. (1). 
The Coulombic contribution to the interaction energy is 
given by the classical expression 

V (~)=fPa(r')Ps(r) d 3rd 3r' 
c ~... I r - r' I . , (7) 

which we write 

(8) 

where 

P(r)= f Pa(~d3r'. 
Ir- r I 

(9) 

Ra is the position of the adatom relative to the surface. 
Since ps(r) is periodic in r, we have 

Vc(R,,) = L (P(r+ RI!)ps(r)d3r, 
I! Jc 

(10) 

where the c in Eq. (10) implies integration over one unit 
cell. From Eq. (10) and 

ps(r) = 6 L o(r - RI! - G';) - ps(r), (11) 
~,i 

we have 

VJRa)=-L (d3rps(r)[p(r+RI!)-iP(G'I)-iP(G'2)]' (12) 
Il Jc 

The kinetic, exchange, and correlation contributions to 

the interaction energy are given by 

Eg(R,,) = fd3riP(r)E GCp(r)) 

- Pa(r)EG<Pa(r» - ps(r)EG(ps(r»}, (13) 

where p(r) and Pa(r) are, respectively, the electronic 
contributions to the total and atomic charge densities, 
and 

EG (p) = ~ (31T2)2/3 p2/3 - t(3/1T )113 p1/3 + E c(P). (14) 

The first term in Eq. (14) is the kinetic energy contribu
tion, and the second term is the exchange energy. The 
correlation energy Ec(P) is given by 

Ec(P) = - 0.438 r;1 + 1.325 r;3/2 - 1.47 r;z - 0.4 r;5/Z, rs> 10; 

Ec(P) = 0.018981nr s - 0.06156, 10> rs > 0.7; 

Ec(P) = 0.0311lnrs - 0.048 + 0.009r slnrs - 0.01 r s, 0.7> r s' 

where 
(15) 

rs= (3/41Tp)1I3. (16) 

Combining Eqs. (12) and (13), the total interaction ener
gy is given by 

E(R,,) = LIIl (Ra), (17) 
Il 

where 

III (Ra) = f d 3r{p(r+ RIl )EG(p(r+ RIl» -Pa(r+ RIl)EG(Pa(r+ RIl )) - ps(r)[P(r+ RIl )+ EG(ps(r» - ip(al) - iP(az)]}' (18) 
c 

In Eq. (18) we have combined all contributions to III (Ra) 
into a single three-dimensional integral. The natural 
coordinate system for performing the integration in Eq. 
(18) is Cartesian coordinates, and the coordinate axes 
are defined in Figs. 2(a) and 2(b). In Fig. 2, the two
dimensional graphite lattice defines the (x, y) plane, a 
possible location for the adatom is denoted by an aster
isk, and unit cell /J. is shown in Fig. 2(a). The integra
tions over the x and y coordinates were performed using 
Gauss-Legendre quadrature. For the Z integration, we 
used Gauss-Legendre quadrature between Z = 0 and the 
location of the adatom. For the region between z = - 00 

and z = 0, and the region between the adatom and z = + 00, 

we used Gauss-Laguerre quadrature. A sufficient num
ber of quadrature points were used to insure conver
gence to three Significant figures for Ill' 

Since contributions to the integral of Eq. (18) fall off 
with the overlap between the closed-shell component 
parts, and the overlap falls off roughly exponentially, 
the series in Eq. (17) converges rapidly. In our calcu
lations we retained enough terms in Eq. (17) so that 
E(Ra) would be accurate to three significant figures. We 
found that it was sufficient in all cases studied to sum 
over all unit cells within 8 a. u. of the projected position 
of the adatom on the (x, y) plane. 

III. RESULTS 

To explore the potential surface for rare gas-graphite 
interactions, we computed the energy as a function of z 

from Eq. (17) at three positions above the graphite lat
tice. The positions, shown in Fig. 1, are over the cen
ter of the hexagon (position A), above a carbon atom 
(position B), and over the center of a carbon-carbon 
bond (position C). In Tables I-IV, we have tabulated the 
interaction energy as a function of z for the three posi
tions for helium, neon, argon, and krypton, and we have 
plotted these results in Figs. 3-6. As expected, the 
most strongly bound position for each rare gas atom is 
at the center of the hexagon, but the barrier to migra
tion to different sites over the graphite lattice is quite 
small. To understand the Significance of the calculation, 
we have summarized some of the properties of these 
systems in Table V. In Table V, we have defined ZOA 

(ZOB or Zod to be the vertical position of minimum en
ergy for pOSition A (B or C), and Z~ (Z~ or Z~) to be the 
value of z over position A (B or C) for which the inter
action potential crosses zero energy. The values of Zo 
were determined to within 0.1 a. u., and the values of Z' 
were determined to within O. 2 a. u. If we let E A (If B or 
Bc) be E(ZQA) [(E(ZOB) or E(Zod] for neon, then we have 
defined the relative well depth SI by 

SI =E(ZOI)/E l (19) 

for I=A, B, or C. We have also defined the barriers to 
migration a.EAB , a.EAC, and a.EBC by 

(20) 

for I, J=A, B, or C. The numbers in parentheses in Ta
ble V are taken from the calculations of Steele, 14 and of 

J. Chern. Phys., Vol. 62, No.3, 1 February 1975 

Downloaded 02 May 2013 to 131.128.70.27. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



944 David l. Freeman: I nteraction of rare gas atoms with graphite. 

y 

fOI 

FIG. 2. The coordinates used for the integrations are defined 
.vith the graphite lattice in the ix, y) plane. The asterisk de
tlotes a possible position for the adatom. 

Crowell and Steele, II where the net potential is taken to 
be the sum of two-body 6-12 Lennard-Jones potentials. 
We see that there is fair agreement between the results 
of the GK method and the two-body additive method for 
the binding positions and relative well depths. The mi
gration barriers differ by up to 50%, and as Bennett has 
shown, this sort of difference can be expected from non
two-body additive effects. 15 The well depths determined 
in the present calculation are substantially lower than 
those found by the other method. To see this more 
clearly, in Fig. 7, we have plotted the interaction ener
gy of argon on graphite over position A of Fig. 1 uSing 
the two-body additive method and the results of the pres
ent calculation. Curve A of Fig. 7 is the GK result, 
and curve B was computed from Eq. (2.33) of Ref. 14. 
The parameters used in computing curve B of Fig. 7 
were taken from Steele, 33 and these parameters are 
known to yield binding energies that are in reasonable 
agreement with experiment (perhaps fortuitously; see 
Ref. 13). The poor agreement between our work and 
Steele's work with respect to the well depths makes it 
necessary to examine the errors in the present calcula
tion in some detail. In the following discussion of our 
errors, we assume that the well depths given in Ref. 14 
are correct, and we show that errors due to dispersion 

TABLE 1. Helium on graphite. a 

z" E(ZA)b E(ZB)b E(ZC)b 

3.0 0.0254 0.0510 0.0475 

4.0 0.00344 0.00682 0.00646 

4.4 0.00100 
4.6 0.000370 0.00126 0.00117 

4.8 - O. 0000206 0.000534 0.000482 

5.0 -0.000243 0.0000974 0.0000665 

5.2 - O. 000355 - O. 000149 - 0.000167 

5.3 - O. 000381 - O. 000227 - O. 000236 
5.4 - O. 000394 - O. 000272 - 0.000282 
5.5 - O. 000395 - O. 000303 - 0.000311 
5.6 - O. 000389 - O. 000319 - 0.000325 
5.7 - O. 000377 - O. 000325 - 0.000329 
5.8 - O. 000360 - 0.000321 - O. 000324 
6.0 - O. 000318 - 0.000298 - 0.000299 
7.0 - 0.000119 - 0.000121 - 0.000120 

8.0 -0.0000327 - O. 0000334 - 0.0000334 
9.0 - 0.00000807 - 0.00000821 - 0.00000819 

10.0 - O. 00000187 - O. 00000187 - O. 00000187 

aAll values expressed in atomic units. 
b Z A (ZB or Zc) is the vertical adatom distance over position A 

(B or C) of Fig. 1. 

TABLE II. Neon on graphite. a 

Zb E(ZA)b E(ZB)b E(ZC)b 

3.0 0.0892 0.170 0.158 
4.0 O. 0154 O. 0262 0.0250 
5.0 O. 00111 0.00231 0.00219 
5.2 0.000422 0.00116 0.00109 
5.4 0.00000876 0.000468 0.000424 
5.5 - O. 000124 0.000201 
5.6 - O. 000220 0.0000593 O. 0000331 
5.8 - O. 000330 - O. 000162 - 0.000179 
5.9 - O. 000355 - O. 000226 - 0. 000237 
6.0 -0.000366 - O. 000267 -0.000275 
6.1 - O. 000366 - O. 000290 - O. 000297 
6.2 - 0.000358 - O. 000301 - O. 000306 
6.3 - O. 000345 - 0.000302 - 0.000306 
6.4 - 0.000328 - 0.000296 - 0.000299 
6.5 - 0.000308 - O. 000285 - 0.000286 
6.6 - O. 000287 - O. 000270 - 0.000271 
7.0 - O. 000200 - O. 000196 - O. 000196 
8.0 - O. 0000599 - O. 0000610 - 0.0000608 
9.0 - O. 0000152 - O. 0000154 -0.0000154 

10.0 - 0.00000350 - O. 00000353 - O. 0000035:~ 

aAll values expressed in atomic units. 
bZA (ZB or Zc) is the vertical adatom distance over position 
A (B or C) of Fig. 1. 

contributions and basis set deficiencies in our results 
are of the right magnitude to explain the discrepancies 
of Fig. 7. 

As we indicated, the GK method has proved to be re
liable to about 10% for closed-shell atom-atom interac
tions in the region of the potential minimum and where 
the potential is repulsive. Since E(R) becomes zero as 
the overlap between the two closed- shell electronic sys-

TABLE III. Argon on graphite. a 

Zb E(ZA)b E(ZB)b E(ZC)b 

3.0 0.208 0.297 0.279 
4.0 0.0490 0.0641 0.0619 
5.0 0.00689 O. 00927 O. 00897 
5.5 0.00142 0.00229 0.00219 
5.75 0.000200 
5.8 0.0000328 0.000503 0.000438 
5.85 - 0.000114 
5.9 - O. 000243 
5.95 - O. 000355 
6.0 - O. 000451 -0.000145 - 0.000183 
6.2 - 0.000713 - O. 000515 - O. 000540 
6.4 - 0.000826 - 0.000700 - O. 000714 
6.5 - 0.000844 - 0.000745 - 0.000756 
6.59 - O. 000845 
6.6 - O. 000845 - O. 000765 - O. 000774 
6.64 - 0.000840 
6.7 - O. 000829 - O. 000766 - O. 000774 
6.8 - O. 000803 - 0.000754 - O. 000759 
7.0 - 0.000732 - 0.000701 - O. 000705 
8.0 - 0.000322 - 0.000320 - O. 000320 
9.0 - O. 000105 - O. 000105 - 0.000105 

10.0 - 0.0000299 - O. 0000299 - O. 0000299 

aAll values expressed in atomic units. 
bZA (ZB or Zc) is the vertical adatom distance over position 
A (B or C) of Fig. 1. 
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TABLE IV. Krypton on graphite. a 

zb E(ZA)b E(ZB)b E(Zc)C 

3.0 0.289 0.415 0.390 

4.0 0.0741 0.0928 0.0903 
5.0 0.0126 0.0156 0.0153 

6.0 0.000113 0.000541 0.000492 

6.1 - 0.000227 0.000122 0.0000822 

6.15 - 0.0000514 - O. 0000877 

6.2 - 0.000488 - O. 000204 - O. 000237 

6.3 - 0.000685 
6.4 -0.000827 - O. 000640 - 0.000662 
6. 5 - O. 000925 
6.6 - O. 000986 - 0.000865 - O. 000878 

6.7 - 0.00102 - O. 000920 - 0.000931 

6.8 - O. 00103 - 0.000947 - 0.00957 

6.9 - 0.00102 - 0.000954 -0.000961 

7.0 - O. 000994 - 0.000943 -0.000949 

7.1 - O. 000961 
7.2 - 0.000921 - O. 000888 - 0.000892 

7.4 - O. 000825 - O. 000802 - O. 000807 

7.6 - O. 000721 - 0.000708 - 0.000710 

8.0 - O. 000519 - 0.000514 - 0.000515 

9.0 -0.000187 - 0.000187 - 0.000187 

10.0 - O. 0000564 - O. 0000564 - O. 0000564 

aAll values expressed in atomic units. 
bZA (ZB or Zcl is the vertical adatom distance over position A 

(B or C) of Fig. 1.' 

tems goes to zero, it is clear thatE(R) is wrong in the 
dispersive region, where the interaction energy should 
fall off inversely to the sixth power of the interatomic 
separation for atom-atom interactions. For adatom
surface interactions, where we only include the disper
sive contribution to the attractive term, the energy 
should fall off as the cube of the ada tom surface distance. 
Although this incorrect treatment of the dispersion ener
gy by the GK method seems to have only a small effect 
on the binding energy for diatomic systems, the result 
of adding a large number of terms in the infinite system 
we have considered might be Significant. To estimate 
the magnitude of the dispersion error in our results, 

TABLE V. Properties of rare gas-graphite systems. a,b 

He Ne 

ZOA 5.5 (5.5)C 6.0(5.8)C 

ZOB 5.7 6.3 

Zoc 5.7 6.3 

Z;1. 4.7 5.4 

ZiJ 5.1 5.7 
Z' c 5.1 5.7 

Ar 

;;;; 
.£ 
!::::! 

10·1r------------------------------------, 

10-
5 ::===::::::=::r:::!::=======:::::;===\ 0.0 

-0.00010 

-0.00020 

w 
-0.00030 

-0.00040 

-0.00050L.--~--~-~--~-~--~-~. 
3 ~ 

FIG. 3. The interaction energy for helium on graphite as a 
function of the adatom-surface distance. The positions A, B, 
and C are defined in Fig. 1. 

Kr 

6.6(6.4)C 6.8 (6. 6)C 

6.7 6.9 
6.7 6.9 
5.8 6.1 
5.9 6.1 

5.9 6.1 

E(ZOA) - 0.000395 (- 0.000798) -0.000366 (-0.00162) - 0.000845 (- O. 00361) - O. 00103 (- O. 00435) 
E(ZOB) - 0.000325 (- o. 000737) - 0.000302 \- 0.00152) -0.000766 (-0.00349) 
E(Zoc) -0.000329 (-0.000744) - 0.000306 (- 0.00153) - 0.000774 (- 0.00351) 

SA 1.08 (0.492) 1. 0 (1. 0) 2.31 (2.23) 

SB 1. 08 (0.484) 1. 0 (1. 0) 2.54 (2.29) 
Sc 1.08 (0.485) 1. 0 (1. 0) 2.53 (2.29) 
6.EBA 0.000070 (0.000054) 0.000064 (0.000088) 0.000079 (0.00010) 
6.ECA 0.000066 (0.000062) 0.000060 (0.000099) 0.000071 (0.00012) 
6.EBC 0.000004 (0.000007) 0.000004 (0.000011) 0.000008 (0.000015) 

aAll values expressed in atomic units. 
bThe numbers in parentheses are taken from Ref. 14 unless otherwise indicated. 
cReference 11. 
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- O. 000954 (- O. 00422) 
- O. 000961 (- 0.00423) 

2.81 (2.68) 
3.16 (2.78) 
3.14 (2.76) 
0.000076 (0.00012) 
0.000069 (0.00013) 
0.000007 (0.000011) 
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FIG. 4. The interaction energy for neon on graphite as a func
tion of the adatom-surface distance. The positions A, B, and 
C are defined in Fig. 1. 

we followed Steele14 and assumed the net rare gas-graph
ite potential to be the sum of two-body 6-12 potentials; 
i. e., we assumed an interaction energy of the form 

E(Ra) '" .L:4&gs{(~)12 _ (~)6}, 
J raJ raj 

(21) 

where raj is the distance between the ada tom and the jth 
carbon atom, and 8gs and aKS are Lennard-Jones param
eters which we have taken from Steele. 33 We considered 
the case of an argon atom at its equilibrium position (as 
found by Steele) and summed Eq. (21) over all the carbon 
atoms that we included in the GK calculation. The dif
ference between this result and the total result given in 
Ref. 14 gives a measure of the dispersion error in the 

present calculation due to all carbon atoms in the sur
face layer and all other layers that the GK method in
herently assumes not to contribute to the interaction en
ergy. For the case of argon at equilibrium, we found an 
error of 0.00103 a. u. or 2g;o of the total. Althouth this 
dispersion error is substantial, it does not completely 
explain the apparent error of 76% which we found in the 
present calculation relative to Steele's results. 14 

The other ma.ior source of error which we consider is 
the graphite density function. To obtain the excellent re
sults for atom-atom interactions, GK used Hartree
Fock density functions generated from basis sets at the 
Hartree- Fock limit. The Painter and Ellis basis set 
consisted of one function for the core electrons and was 
of double zeta quality for the valence electrons. 32 Ad
ditionally, the exponents were not optimized. It is ex
pected that a small basis set will yield a density function 
that is roughly correct near the nucleus, where the con
tribution to the Hartree- Fock energy is greatest but too 
small in the asymptotic tail. This incorrect behavior 

10-3 

10-4 

10'5 
0.0 

-0.00020 

-0.00040 

-0.00060 

-O.OOOSO 

-0.001 0L.--.....J...--.L..-~-~l:_-_:_-___:':--_7. 
3 

FIG. 5. The interaction energy for argon on graphite as a func
tion of the adatom-surface distance. The positions A, B, and 
C are defined in Fig. 1. 
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FIG. 6. The interaction energy for krypton on graphite as a 
function of the adatom-surface distance. The positions A, B, 
and C are defined in Fig. 1. 

can be expected to give poor GK results. 

To explore the magnitude of the errors we might ex
pect from the use of small basiS sets, we performed a 
GK calculation on Ar2 with a minimum basis consisting 
of 3 s orbitals and 2 p orbitals, and the extended basis 
used in the argon-graphite calculations. Both basis sets 
were taken from Huzinaga, McWilliams, and Domsky.30 
The results of this calculation are plotted in Fig. 8, 
where curve A is the extended basis result and curve B 
is the result of the minimum basis calculation. We note 
that the well depth for the minimum basis set calculation 
is in error by about 68%, and the equilibrium internu
clear separation is in error by about O. 5 a. u. The mini
mum basis also gives too large a repulsive interaction. 
In the adatom-graphite calculations, the ada tom electron 

density is much more accurate than the graphite electron 
density. Closer to this situation is the interaction be
tween an argon atom in an extended basis and one in a 
minimum basis. The results of this calculation are given 
in curve C of Fig. 8. In this case, the equilibrium ge
ometry is the same as predicted by the extended basis 
results of curve A, but the well depth is still in error 
by about 56%. This well depth error is quite large, and 
it is clear that we can blame the difference between the 
results of this work and that of Ref. 14 on both an inade
quate graphite density function and dispersion errors. 
We expect that the equilibrium geometries computed in 
this work are reasonably accurate. 

If we assume that the well depths found by Steele are 
correct and that 2g)h of the difference between our re
sults and Steele's is due to dispersion, then 4~ of the 
error is attributable to the density function. This error 
is smaller than the error we found for the Ar2 interac
tion potential computed with one argon atom in a mini
mum basis and one in an extended basis. This fact im
plies that the graphite density fun~tion is of intermediate 
quality. As we have indicated, we expect that the as
ymptotic tail of this density will go to zero too quickly, 
but we expect the density at intermediate distances to 

10' 

10° 

10"' 

1Ci
2 

10
3 

164 

A 

-.0020 

-.0030 

~~~~~~--~--~--~--~~ 
3 4 5 6 7 8 9 10 

Z(O.U.) 
FIG. 7. The interaction energy of an argon atom on graphite 
over position A of Fig. 1 as a function of adatom-surface dis
tance. Curve A is the result of the present calculation and 
curve B was computed from Eq. (2.33) of Ref. 14. 

J. Chem. Phys., Vol. 62, No.3, 1 February 1975 

Downloaded 02 May 2013 to 131.128.70.27. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



948 David L. Freeman: Interaction of rare gas atoms with graphite. I 

------~----------~--

-8/ / 
i / 

\ / ' 
I \./--C / 

-0.00020 
I / 

'I!, I 
\ ! cr 

w -0.00030 \ I \ I 
-0.00040 -

\LA 

-0.00050 ~_-L __ ~ __ ..L-__ L-.._.....J.. __ -I-__ 

3 10 

FIG. 8. Curve A is the extended basis argon-argon interaction 
potential, and curve B is the minimum basis result. Curve C 
was computed with one argon atom in an extended basis and one 
in a minimum basis. 

be fairly accurate. It is clear that at distances far from 
the surface, the variation of the density with respect to 
coordinates parallel to the plane of the surface (i. e., x 
or y in Fig. 2) will be zero. Most of the contribution to 
the migration barrier will come from the density nearer 
to the surface, where it is more accurate. Because the 
migration barrier should depend on the adatom's local 
environment, we would expect the dispersion error to be 
roughly independent of the adatom's (X, y) coordinates. 
This local dependence of the migration barrier explains 
why we appear to have more accuracy for it than for the 
well depths. 

With the exception of helium, there is also good agree
ment between this calculation and that of Ref. 14 for the 

relative well depths. This is not surprising, since we 
would expect the relative well depths to depend most 
strongly on the relative atomic densities, which are quite 
accurate. The anomalous behavior of helium was also 
observed for helium-helium interactions. 26 

In summary, two sources of error in the present cal
culation are due to an inadequate graphite density func
tion and an improper treatment of dispersion forces by 
the GK method. These errors have yielded well depths 
that are too small. We expect other properties that de
pend on the adatom's local environment, such as migra
tion barriers and equilibrium geometries, to be reason
ably accurate. 

IV. CONCLUSIONS 

The GK method has been successfully applied to the 
calculation of relative well depths, barriers to migration, 
and equilibrium geometries for rare gas adsorption on 
graphite. Because of the incorrect treatment of disper
sion forces by the GK method and because of an inade
quate graphite density function, the present calculation 
obtained only about 25% of the well depths found by other 
authors. 11

,14 The desirability of repeating this calcula
tion with a more accurate graphite density function is ob
vious. 

We have verified that the barriers to migration of ad
sorbed rare gas atoms on graphite are very small, and 
it is expected that adsorbed films of rare gas atoms on 
graphite are nearly perfectly mobile. To have a true 
understanding of such films, it is necessary to investi
gate adatom-adatom interactions including many-body 
effects. We expect adatom-adatom interactions to de
pend most strongly on the local environment, at least 
in the repulsive region and near the adatom-adatom po
tential minimum, and the GK method should be suitable 
for such a study. We give the results of such a calcula
tion separately. 34 

ACKNOWLEDGMENTS 

I would like to thank Dr. G. S. Painter and Professor 
D. E. Ellis for providing me with the graphite wavefunc
tions used in this work. I would like to thank Dr. C. W. 
Kern, Dr. 1. Shavitt, Dr. R. A. Craig, and Dr. Y. S. 
Kim for many useful discussions. In particular, Iwould 
like to thank Dr. Shavitt for advice on the numerical as
pects of this work and Dr. Kim for providing the pro
grams used to compute Ar2 potentials. I would also like 
to thank Dr. George Wolken for reading the manuscript 
and making some helpful suggestions. 

*Present address: Department of Physics, The University of 
• utah, Salt Lake City, Utah 84112. 

i D. M. Young and A. D. Crowell, Physical Adsorption of 
Gases (Butterworths, Washington, 1962). 

2W. A. Steele and M. RoSS, J. Chern. Phys. 35, 850 (1961). 
3W. A. Steele and M. Ross, J. Chern. Phys. 35, 862 (1961). 
4W. A. Steele and M. Ross, J. Chern. Phys. 35, 871 (1961). 
5H. E. Neustadter and R. J. Bacigalupi, Surf. Sci. 6, 246 

(1967). 
6F . Ricca, Nuovo Cimento Suppl. 5, 339 (1967). 
7R. M. I3arrer, Proc. R. Soc. Lond. A 161, 476 (1937). 

J. Chern. Phys., Vol. 62, No.3, 1 February 1975 

Downloaded 02 May 2013 to 131.128.70.27. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



David L. Freeman: I nteraction of rare gas atoms with graph ite. 949 

8A. D. Crowell and D. M. Young, Trans. Faraday Soc. 49, 
1080 (1953). 

9E . L. Pace, J. Chern. Phys. 27, 1341 (1957). 
ION. N. Avgul' , A. V. Kiselev, 1. A. Lygina, and D. P. Posh

kus, Bull. Acad. Sci. USSR Div. Chern. Sci. (English transla
tion) 1155 (1959). 

11 A. D. Crowell and R. B. Steele, J. Chern. Phys. 34, 1347 
(1961). 

12A. D. Crowell, J. Chern. Phys. 29, 446 (1958). 
13J . R. Sams, Jr., Trans. Faraday Soc. 60, 149 (1964). 
14W. A. Steele, Surf. Sci. 36, 317 (1973). 
15A. J. Bennett, Phys. Rev. B 9, 741 (1974). 
16B. E. F. Fender and G. D. Halsey, J. Chern. Phys. 36, 

1881 (1962). 
17G. H. Hudson and J. C. McCoubrey, Trans. Faraday Soc. 

56, 761 (1960). 
18M. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean, and 

O. E. Vilches, Phys. Rev. A 8, 1589 (1973). 
19R. L. Elgin and D. L. Goodstein, Phys. Rev. A 9, 2657 

(1974). 
20C. E. Campbell, F. J. Milford, A. D. Novaco, and M. 

Schick, Phys. Rev. A 6, 1648 (1972). 
21p. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964). 

22N. D. Lang, in Solid State Physics, edited by H. Ehrenreich, 
F. Seitz, and D. Turnbull (Academic, New York, 1973), Vol. 
28, p. 225. 

23J. R. Smith, S. C. Ying, and W. Kohn, Phys. Rev. Lett. 30, 
610 (1973). 

24G. G. Kleiman and U. Landman, Phys. Rev. Lett. 31, 707 
(1973). 

25G. G. Kleiman and U. Landman, Phys. Rev. B 8, 5484 (1973). 
26R. G. Gordan and Y. S. Kim, J. Chem. Phys. 56, 3122 (1972). 
27y. S. Kim, Ph. D. thesis, Harvard University, 1973. 
28S. Green, J. Chern. Phys. 60, 2654 (1974). 
29 y . S. Kim andR. G. Gordon, J. Chern. Phys. 60, 1842 (1974). 
30S. Huzinaga, D. McWilliams, and B. Domsky, J. Chern. Phys. 

54, 2283 (1971). 
31 E . Clementi, IBM J. Res. Dev. Suppl. 9, 2 (1965). 
32G. S. Painter and D. E. Ellis, Phys. Rev. B 1, 4747 (1970). 
33The parameters given in Ref. 14 are slightly different than 

Steele actually used in his calculations. For A = (J,.I2. 46, 
Steele actually used 1. 394 rather than 1. 38. We used 1. 394. 
For E,.Ik, we used the same values as given in Ref. 14. We 
would like to thank Professor Steele for sending us the cor
rected parameters. 

34D. L. Freeman (unpublished). 

J. Chern. Phys., Vol. 62, No.3, 1 February 1975 

Downloaded 02 May 2013 to 131.128.70.27. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions


	University of Rhode Island
	DigitalCommons@URI
	1975

	The Interaction of Rare Gas Atoms with Graphite Surfaces. I. Single Adatom Energies
	David L. Freeman
	Terms of Use
	Citation/Publisher Attribution


	tmp.1368028973.pdf.a_rBB

