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Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering
study in the canonical ensemble
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The heat capacity and isomer distributions of the 38-atom Lennard-Jones cluster have been
calculated in the canonical ensemble using parallel tempering Monte Carlo methods. A distinct
region of temperature is identified that corresponds to equilibrium between the global minimum
structure and the icosahedral basin of structures. This region of temperatures occurs below the
melting peak of the heat capacity and is accompanied by a peak in the derivative of the heat capacity
with temperature. Parallel tempering is shown to introduce correlations between results at different
temperatures. A discussion is given that compares parallel tempering with other related approaches
that ensure ergodic simulations. ©2000 American Institute of Physics.@S0021-9606~00!51223-9#

I. INTRODUCTION

Because the properties of molecular aggregates impact
diverse areas ranging from nucleation and condensation1 to
heterogeneous catalysis, the study of clusters has continued
to be an important part of modern condensed matter science.
Clusters can be viewed as an intermediate phase of matter,
and clusters can provide information about the transforma-
tion from finite to bulk behavior. Furthermore, the potential
surfaces of clusters can be complex, and many clusters are
useful prototypes for studying other systems having complex
phenomenology.

The properties of small clusters can be unusual owing to
the dominance of surface rather than bulk atoms. A particu-
larly important and well studied example of a property that
owes its behavior to the presence of large numbers of surface
atoms is cluster structure.2–4 The structure of clusters can
differ significantly from the structure of the corresponding
bulk material, and these differences in structure have impli-
cations about the properties of the clusters. For example,
most small Lennard-Jones~LJ! clusters have global potential
surface minima that are based on icosahedral growth pat-
terns. The fivefold symmetries of these clusters differ sub-
stantially from the closest-packed arrangements observed in
bulk materials.

While most small Lennard-Jones clusters have geom-
etries based on icosahedral core structures, there can be
exceptions.2,5–7 A notable example is the 38-atom Lennard-
Jones cluster@LJ38#. This cluster is particularly interesting
owing to its complex potential surface and associated phe-
nomenology. The potential surface for LJ38 has been de-
scribed in detail by Doye, Miller, and Wales5 who have care-

fully constructed the disconnectivity graph8,9 for the system
using information garnered from basin hopping and eigen-
vector following studies of the low energy potential minima
along with examinations of the transition state barriers. The
general structure of this potential surface can be imagined to
be two basins of similar energies separated by a large energy
barrier with the lowest energy basin being significantly nar-
rower than the second basin. Striking is the global minimum
energy structure for LJ38 which, unlike the case for most
small Lennard-Jones clusters, is not based on an icosahedral
core, but rather is a symmetric truncated octahedron. The
vertices defined by the surface atoms of LJ38 have a mor-
phology identical to the first Brillouin zone of a face cen-
tered cubic lattice,10 and the high symmetry of the cluster
may account for its stability. It is interesting to note that
recent experimental studies11 of nickel clusters using nitro-
gen uptake measurements have found the global minimum of
Ni38 to be a truncated octahedron as well. The basin of en-
ergy minima about the global minimum of LJ38 is narrow
compared to the basin about the next highest energy isomer
which does have an icosahedral core. The difference in en-
ergy between the global minimum and the lowest minimum
in the icosahedral basin is only 0.38% of the energy of the
global minimum.5

Characteristic of some thermodynamic properties of
small clusters are ranges of temperature over which these
properties change rapidly in a fashion reminiscent of the di-
vergent behavior known to occur in bulk phase transitions at
a single temperature. The rapid changes in such thermody-
namic properties for clusters are not divergent and occur
over a range of temperatures owing to the finite sizes of the
systems. In accord with the usage introduced by Berry, Beck,
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Davis, and Jellinek12 we refer to the temperature ranges
where rapid changes occur as ‘‘phase change’’ regions,
rather than using the term ‘‘phase transition,’’ that is re-
served for systems at the thermodynamic limit. As an ex-
ample LJ55 displays a heat capacity anomaly over a range in
temperatures often associated with what has been termed
‘‘cluster melting.’’13 Molecular dynamics and microcanoni-
cal simulations performed at kinetic temperatures in the
melting region of LJ55 exhibit van der Waals type loops in
the caloric curves and coexistence between solidlike and liq-
uidlike forms.

In recent studies, Doye, Wales, and Miller14 and Miller,
Doye, and Wales15 have examined the phase change behav-
ior of LJ38. These authors have calculated the heat capacity
and isomer distributions as a function of temperature using
the superposition method.16,17 In the superposition method
the microcanonical density of states is calculated for each
potential minimum, and the total density of states is then
constructed by summation with respect to each local density
of states. Because it is not possible to find all potential
minima for a system as complex as LJ38, the summation is
augmented with factors that represent the effective weights
of the potential minima that are included in the sum. The
superposition method has also been improved to account for
anharmonicities and stationary points.17 For LJ38 Doye
et al.14 have identified two phase change regions. The first,
accompanied by a heat capacity maximum, is associated with
a solid-to-solid phase change between the truncated octahe-
dral basin and the icosahedral basin. A higher temperature
heat capacity anomaly represents the solid–liquid coexist-
ence region, similar to that found in other cluster systems.
The heat capacity anomaly associated with the melting tran-
sition in LJ38 is steeper and more pronounced than the heat
capacity peak that Doyeet al.14 have associated with the
solid-solid transition. Because the weights that enter in the
sum to construct the microcanonical density of states are
estimated, it is important to confirm the findings of Doye
et al.14 by detailed numerical simulation. Such simulations
are a goal of the current work and its companion paper. As is
found in Sec. III, the simulations provide a heat capacity
curve for LJ38 that has some qualitative differences with the
curve reported by Doyeet al.14

Owing to the complex structure of the potential surface
of LJ38, the system represents a particularly challenging case
for simulation. It is well known that simulations of systems
having more than one important region of space separated by
significant energy barriers can be difficult. The difficulties
are particularly severe if any of the regions are either narrow
or reachable only via narrow channels. The narrow basin
about the global minimum makes simulations of LJ38 espe-
cially difficult. There are several methods that have been
developed that can prove to be useful in overcoming such
ergodicity difficulties in simulations. Many of these methods
use information about the underlying potential surface gen-
erated from simulations on the system using parameters
where the various regions of configuration space are well-
connected. One of the earliest of these methods is
J-walking18 where information about the potential surface is
obtained from simulations at high temperatures, and the in-

formation is passed to low temperature walks by jumping
periodically to the high temperature walk. Closely allied with
J-walking is the parallel tempering method19–23 where con-
figurations are exchanged between walkers running at two
differing temperatures. A related approach,24 similar in spirit
to J-walking, uses Tsallis distributions that are sufficiently
broad to cover much of configuration space. Another recent
addition25 to these methods is the use of multicanonical
distributions26 in the jumping process. Multicanonical walks
are performed using the entropy of the system, and multica-
nonical distributions are nearly independent of the energy
thereby allowing easy transitions between energy basins. As
we discuss in the current work, we have found the parallel
tempering method to be most useful in the context of simu-
lations of LJ38. A comparative discussion of some of the
methods outlined above is given later in this paper.

In the current work we apply parallel tempering to the
calculation of the thermodynamic properties of LJ38 in the
canonical ensemble. In the paper that follows27 we again use
parallel tempering to study LJ38, but using molecular dy-
namics methods along with microcanonical Monte Carlo
simulations. Our goals are to understand better this complex
system and to determine the best simulation method for sys-
tems of comparable complexity. The contents of the remain-
der of this first paper are as follows. In Sec. II we discuss the
methods used with particular emphasis on the parallel tem-
pering approach and its relation to the J-walking method. In
Sec. III we present the results including the heat capacity as
a function of temperature and identify the phase change be-
haviors of LJ38. In Sec. IV we present our conclusions and
describe our experiences with alternatives to parallel temper-
ing for insuring ergodicity.

II. METHOD

For canonical simulations we model a cluster withN
atoms by the standard Lennard-Jones potential augmented by
a constraining potentialUc used to define the cluster

U~r !54«(
i , j

N F S s

r i j
D 12

2S s

r i j
D 6G1Uc , ~1!

wheres and« are, respectively, the standard Lennard-Jones
length and energy parameters, andr i j is the distance between
particlesi and j. The constraining potential is necessary be-
cause clusters at defined temperatures have finite vapor pres-
sures, and the evaporation events can make the association of
any atom with the cluster ambiguous. For classical Monte
Carlo simulations, a perfectly reflecting constraining poten-
tial is most convenient

Uc5(
i 51

N

u~r i !, ~2!

with

u~r !5H ` ur2r cmu.Rc

0 ur2r cmu,Rc
, ~3!

wherer cm is the center of mass of the cluster, and we callRc

the constraining radius.
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Thermodynamic properties of the system are calculated
with Monte Carlo methods using the parallel tempering
technique.19–23 To understand the application of the parallel
tempering method and to understand the comparison of par-
allel tempering with other related methods, it is useful to
review the basic principles of Monte Carlo simulations.

In the canonical ensemble the goal is the calculation of
canonical expectation values. For example, the average po-
tential energy is expressed

^U&5
*d3NrU ~r !e2bU(r )

*d3Nre2bU(r )
, ~4!

whereb51/kBT with T the temperature andkB the Boltz-
mann constant. In Monte Carlo simulations such canonical
averages are determined by executing a random walk in con-
figuration space so that the walker visits points in space with
a probability proportional to the canonical densityr(r )
5Z21 exp@2bU(r )#, whereZ is the configurational integral
that normalizes the density. After generatingM such con-
figurations in a random walk, the expectation value of the
potential energy is approximated by

^U&M5
1

M (
i 51

M

U~r i !. ~5!

The approximate expectation value^U&M becomes exact in
the limit thatM→`.

A sufficiency condition for the random walk to visit con-
figuration space with a probability proportional to the density
r(r ) is the detailed balance condition28,29

r~r0!K~r0→rn!5r~rn!K~rn→r0!, ~6!

wherer0 and rn represent two configurations of the system
andK(r0→rn) is the conditional probability that if the sys-
tem is at configurationr0 it makes a transition torn . In many
Monte Carlo approaches, the conditional probability is not
known and is replaced by the expression

K~r0→rn!5T~r0→rn!acc~r0→rn!, ~7!

where T(r0→rn) is called the trial probability and acc(r0

→rn) is an acceptance probability constructed to ensure
K(r0→rn) satisfies the detailed balance condition. The trial
probability can be any normalized density function chosen
for convenience. A common choice for the acceptance prob-
ability is given by28,29

acc~r0→rn!5minF1,
r~rn!T~rn→r0!

r~r0!T~r0→rn!G . ~8!

The Metropolis method,30 obtained from Eq.~8! by choosing
T(r0→rn) to be a uniform distribution of points of widthD
centered aboutr0 , is arguably the most widely used Monte
Carlo method and the basis for all the approaches discussed
in the current work. The Metropolis method rigorously guar-
antees a random walk visits configuration space proportional
to a given density function asymptotically in the limit of an
infinite number of steps. In practice when configuration
space is divided into important regions separated by signifi-
cant energy barriers, a low temperature finite Metropolis
walk can have prohibitively long equilibration times.

Such problems in attaining ergodicity in the walk do not
occur at temperatures sufficiently high that the system has
significant probability of finding itself in the barrier regions.
In both the J-walking and parallel tempering methods, infor-
mation obtained from an ergodic Metropolis walk at high
temperatures is passed to a low temperature walker periodi-
cally to enable the low temperature walker to overcome the
barriers between separated regions. In the J-walking
method18 the trial probability at inverse temperatureb is
taken to be a high temperature Boltzmann distribution

T~r0→rn!5Z21e2bJU(rn), ~9!

where bJ represents the jumping temperature that is suffi-
ciently high that a Metropolis walk can be assumed to be
ergodic. Introduction of Eq.~9! into Eq. ~8! results in the
acceptance probability

acc~r0→rn!5min$1,exp@2~b2bJ!~U~rn!2U~r0!!#%.
~10!

In practice at inverse temperatureb the trial moves are taken
from the Metropolis distribution about 90% of the time with
jumps attempted using Eq.~9! about 10% of the time. The
jumping configurations are generated with a Metropolis walk
at inverse temperaturebJ , and jump attempts are accepted
using Eq.~10!. The acceptance expression@Eq. ~10!# is cor-
rect provided the configurations chosen for jumping are a
random representation of the distributione2bJU(r ). The Me-
tropolis walk that is used to generate the configurations at
inverse temperaturebJ is correlated,28 and Eq.~10! is inap-
propriate unless jumps are attempted sufficiently infre-
quently to break the correlations. In practice Metropolis
walks are still correlated after 10 steps, and it is not possible
to use Eq.~10! correctly if jumps are attempted 10% of the
time. In J-walking the difficulty with correlations is over-
come in two ways. In the first method, often called serial
J-walking,18 a large set of configurations is stored to an ex-
ternal distribution with the configurations generated with a
Metropolis walk at inverse temperaturebJ , and configura-
tions are stored only after sufficient steps to break the corre-
lations in the Metropolis walk. Additionally, the configura-
tions are chosen from the external distribution at random.
This external distribution is made sufficiently large that the
probability of ever choosing the same configuration more
than once is small. In this method detailed balance is strictly
satisfied only in the limit that the external distribution is of
infinite size. In the second method, often called parallel
J-walking,31,32 the walks at each temperature are made in
tandem on a parallel machine. Many processors, randomly
initialized, are assigned to the jumping temperature, and each
processor at the jumping temperature is used to donate a high
temperature configuration to the low temperature walk suffi-
ciently infrequently that the correlations in the Metropolis
walk at inverse temperaturebJ are broken. In this parallel
method, configurations are never reused, but the acceptance
criterion @Eq. ~10!# is strictly valid only in the limit of an
infinite set of processors at inverse temperaturebJ . In prac-
tice both serial and parallel J-walking work well for many
applications with finite external distributions or with a finite
set of processors.18,31–38
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In parallel tempering19–23 configurations from a high
temperature walk are also used to make a low temperature
walk ergodic. In contrast to J-walking rather than the high
temperature walk feeding configurations to the low tempera-
ture walk, the high and low temperature walkers exchange
configurations. By exchanging configurations detailed bal-
ance is satisfied, once the Metropolis walks at the two tem-
peratures are sufficiently long to be in the asymptotic region.
To verify detailed balance is satisfied by the parallel temper-
ing procedure we let

r2~r ,r 8!5Z21e2bU(r )e2bJU(r8) ~11!

be the joint density that the low temperature walker is at
configurationr and the high temperature walker is at con-
figurationr 8. When configurations between the two walkers
are exchanged, the detailed balance condition is

r2~r ,r 8!K~r→r 8,r 8→r !5r2~r 8,r !K~r 8→r ,r→r 8!. ~12!

By solving for the ratio of the conditional transition prob-
abilities

K~r→r 8,r 8→r !

K~r 8→r ,r→r 8!
5exp@2~b2bJ!~U~r 8!2U~r !!#, ~13!

it is evident that if exchanges are accepted with the same
probability as the acceptance criterion used in J-walking@see
Eq. ~10!#, detailed balance is satisfied.

Although the basic notions used by both J-walking and
parallel tempering are similar, the organization of a parallel
tempering calculation can be significantly simpler than the
organization of a J-walking calculation. In parallel tempering
no external distributions are required nor are multiple pro-
cessors required at any temperature. Parallel tempering can
be organized in the same simple way that serial tandem
J-walking is organized as discussed in the original J-walking
reference.18 Unlike serial tandem J-walking where detailed
balance can be attained only asymptotically, parallel temper-
ing satisfies detailed balance directly. For a problem as dif-
ficult as LJ38 where very long simulations are required, the
huge external distributions needed in serial J-walking, or the
large set of jumping processors needed in parallel J-walking,
make the method prohibitive. As discussed in Sec. III, par-
allel tempering can be executed for arbitrarily long simula-
tions making the method suitable at least for LJ38.

In the current calculation parallel tempering is used not
just to simulate the system at some low temperature using
high temperature information, but simulations are performed
for a series of temperatures. As is the case for J-walking18

and as discussed elsewhere for parallel tempering,22 the gaps
between adjacent temperatures cannot be chosen arbitrarily.
Temperature gaps must be chosen so that exchanges are ac-
cepted with sufficient frequency. If the temperature gap is
too large, the configurations important at the two exchanging
temperatures can be sufficiently dissimilar that no exchanges
are ever accepted. Preliminary calculations must be per-
formed to explore the temperature differences needed for ac-
ceptable exchange probabilities. In practice we have found at
least 10% of attempted exchanges need to be accepted for the

parallel tempering procedure to be useful. In general the tem-
perature gaps must be decreased near phase change regions
or when the temperature becomes low.

By exchanging configurations between temperatures,
correlations are introduced at different temperature points.
For example, the average heat capacities at two temperatures
may rise or fall together as each value fluctuates statistically.
In some cases the values of the heat capacities or other prop-
erties at two temperatures can be anticorrelated. The magni-
tude of these correlations between temperatures are mea-
sured and discussed in Sec. III. As discussed in Sec. III the
correlations between differing temperatures imply that the
statistical fluctuations must be sufficiently low to ensure any
features observed in a calculation as a function of tempera-
ture are meaningful.

III. RESULTS

Forty distinct temperatures have been used in the parallel
tempering simulations of LJ38 ranging fromT50.0143«/kB

to T50.337«/kB . The simulations have been initiated from
random configurations of the 38 atoms within a constraining
sphere of radius 2.25s. We have chosenRc52.25s, be-
cause we have had difficulties attaining ergodicity with
larger constraining radii. With large constraining radii, the
system has a significant boiling region at temperatures not
far from the melting region, and it is difficult to execute an
ergodic walk with any method when there is coexistence
between liquidlike and vapor regions. Constraining radii
smaller than 2.25s can induce significant changes in thermo-
dynamic properties below the temperature of the melting
peak. Using the randomly initialized configurations the ini-
tialization time to reach the asymptotic region in the Monte
Carlo walk has been found to be long with about 95 million
Metropolis Monte Carlo points followed by 190 million par-
allel tempering Monte Carlo points included in the walk
prior to data accumulation. This long initiation period can be
made significantly shorter by initializing each temperature
with the structure of the global minimum. We have chosen to
initialize the system with random configurations to verify the
parallel tempering method is able to equilibrate this system
with no prior knowledge about the structure of the potential
surface. Following this initiation period, 1.331010 points
have been included with data accumulation. Parallel temper-
ing exchanges have been attempted every 10 Monte Carlo
passes over the 38 atoms in the cluster.

In an attempt to minimize the correlations in the data at
differing temperatures, an exchange strategy has been used
that includes exchanges between several temperatures. To
understand this strategy, we let the set of temperatures be put
into an array. One-half of the exchanges have been attempted
between adjacent temperatures in the array, one-fourth have
been attempted between next near neighboring temperatures,
one-eighth between every third temperature, one-sixteenth
between every fourth temperature, and one-thirty second be-
tween every fifth temperature in the array. We have truncated
this procedure at the fifth near neighboring temperatures, be-
cause exchanges between temperatures differing by more
than fifth neighbors are accepted with frequencies of less
than 10%. The data presented in this work have been gener-
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ated using the procedure outlined above. In retrospect, we
have found exchanges are only required between adjacent
temperatures. We have also performed the calculations
where exchanges are included only between adjacent tem-
peratures, and we have seen no significant differences either
in the final results or in the correlations between different
temperatures. Using the random initializations of the clus-
ters, after the initialization period the lowest temperature
walks are dominated by configurations well represented by
small amplitude oscillations about the global minimum struc-
ture.

For all data displayed in this work, the error bars repre-
sent two standard deviations of the mean. The heat capacity,
calculated from the standard fluctuation expression of the
energy

CV5kBb2@^E2&2^E&2#, ~14!

is displayed in the upper panel of Fig. 1. In agreement with
the heat capacity for LJ38 reported by Doyeet al.,14 the heat
capacity displayed in Fig. 1 has a melting maximum centered
at aboutT50.166«/kB . In contrast to the results of Doye
et al.14 we find no maximum associated with the solid–solid
transition between the two basins in the potential surface.
Rather, we see a small change in slope at aboutT

50.1«/kB . To characterize this region having a change in
slope, in the lower panel of Fig. 1 we present a graph of
(]CV /]T)V calculated from the fluctuation expression

S ]CV

]T D
V

522
CV

T
1

1

kB
2T4

@^E3&12^E&323^E2&^E&#. ~15!

The small low temperature maximum in (]CV /]T)V occurs
within the slope change region.

To interpret the configurations associated with the vari-
ous regions of the heat capacity, we use an order parameter
nearly identical to the order parameter introduced by Stein-
hardt, Nelson, and Ronchetti39 to distinguish face centered
cubic from icosahedral structures in liquids and glasses. The
order parameter has been used by Doyeet al.5 to monitor
phase changes in LJ38. The order parameterQ4 is defined by
the equation

Q45S 4p

9 (
m524

4

uQ̄4,mu2D 1/2

, ~16!

where

Q̄4,m5
1

Nb
(

r i j ,r b

Y4,m~u i j ,f i j !. ~17!

To understand the parameters used in Eq.~17!, it is helpful to
explain howQ̄4,m is evaluated. The center of mass of the full
38 atom cluster is located and the atom closest to the center
of mass is then identified. The atom closest to the center of
mass plus the 12 nearest neighbors of that atom define a
‘‘core’’ cluster of the 38 atom cluster. The center of mass of
the core cluster is then calculated. The summation in Eq.
~17! is performed over all vectors that point from the center
of mass of the core cluster to allNb bonds formed from the
13 atoms of the core cluster. A bond is assumed to be formed
between two atoms of the core cluster if their internuclear
separationr i j is less than a cutoff parameterr b , taken to be
r b51.39s in this work. In Eq.~17! u i j andf i j are, respec-
tively, the polar and azimuthal angles of the vector that
points from the center-of-mass of the core cluster to the cen-
ter of each bond, andY4,m(u,f) is a spherical harmonic. To
verify that the optimal value ofQ4 is obtained, the procedure
is repeated by choosing the second closest atom to the center
of mass of the whole cluster to define the core cluster. The
value of Q4 obtained from this second core cluster is com-
pared with that obtained from the first core cluster, and the
smallest resulting value ofQ4 is taken to be the value ofQ4

for the entire cluster.
In the work of Steinhardtet al.39 fewer bonds are in-

cluded in the summation appearing in Eq.~17! than in the
current work. In the definition used by Steinhardtet al.,39 the
only bonds that contribute to the sum in Eq.~17! are those
involving the central atom of the core cluster. In the defini-
tion used in this work, at low temperatures the sum includes
all the bonds included by Steinhardtet al.39 in addition to
vectors that connect the center of mass of the core cluster
with the centers of bonds that connect atoms at the surface of
the core cluster with each other. For a perfect and undistorted
icosahedral or truncated octahedral cluster, the current defi-
nition and the definition of Steinhardtet al.39 are identical

FIG. 1. The heat capacityCV per particle of LJ38 in units ofkB ~upper panel!
and (]CV /]T)V per particle~lower panel! as a function of reduced tempera-
ture. The small low temperature maximum in the derivative associated with
a change in slope of the heat capacity identifies the transition region be-
tween the truncated octahedral basin and the icosahedral basin. The large
heat capacity peak identifies the melting region.
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numerically owing to the rotational symmetry of the spheri-
cal harmonics. However, for distorted clusters the two defi-
nitions differ numerically. For perfect, undistorted icosahe-
dral clusters Q450 whereas for perfect, undistorted
truncated octahedral clusters,Q4>0.19, and both definitions
of the order parameter are able to distinguish configurations
from the truncated octahedral basin and other basins at finite
temperatures. However, we have found the definition intro-
duced by Steinhardtet al.39 is unable to distinguish struc-
tures in the icosahedral basin from liquidlike structures. This
same issue has been discussed previously by Lynden-Bell
and Wales.40 In contrast, we have found that liquidlike struc-
tures have larger values ofQ4 than icosahedral structures
when the present definition ofQ4 @i.e., the definition that
includes additional bonds in Eq.~17!#, is used. Conse-
quently, as discussed shortly, the current definition ofQ4

enables an association of each configuration with either the
icosahedral basin, the truncated octahedral basin, or struc-
tures that can be identified as liquidlike.

The average ofQ4 as a function of temperature is plotted
in the upper panel of Fig. 2. Again the error bars represent

two standard deviations of the mean. At the lowest calcu-
lated temperatureŝQ4& is characteristic of the global trun-
cated octahedral minimum. As the temperature is raised to
the point where the slope change begins in the heat capacity,
^Q4& begins to drop rapidly signifying the onset of transi-
tions between the structures associated with the global mini-
mum and icosahedral structures. We then have the first hint
that the slope change inCV is associated with an analogue of
a solid–solid transition from the truncated octahedron to
icosahedral structures.

To clarify the transition further, the data plotted in the
lower panel of Fig. 2 represent the probability of observing
particular values ofQ4 as a function of temperature. The
probabilities have been calculated by tabulating the fre-
quency of observing particular values ofQ4 for each con-
figuration generated in the simulation. Different values ofQ4

are then assigned to either icosahedral structures~labeled IC
in the graph!, truncated octahedral structures~labeled FCC!
or liquidlike structures~labeled LIQ!. By comparing the
lower panel of Fig. 2 with the derivative of the heat capacity
plotted in the lower panel of Fig. 1, it is evident that icosa-
hedral structures begin to be occupied and the probability of
finding truncated octahedral structures begins to fall when
the derivative in the heat capacity begins to rise. Equilibrium
between the truncated octahedral structures and the icosahe-
dral structures continues into the melting region, and trun-
cated octahedral structures only disappear on the high tem-
perature side of the melting peak of the heat capacity. Doye
et al.14 and Miller et al.15 have generated data analogous to
that depicted in the lower panel of Fig. 2 using the superpo-
sition method, and the data of Milleret al.15 are in qualita-
tive agreement with the present data. A more direct compari-
son with the data of these authors can be made by
performing periodic quenching along the parallel tempering
trajectories. We then use an energy criterion similar to that of
Doyeet al.14 to distinguish the three categories of geometries
and to generate the respective probabilitiesP. For a given
total cluster energyE, a truncated octahedron is associated
with E,2173.26«, icosahedral-based structures with
2173.26«<E,2171.6«, and liquidlike structures withE
>2171.6«. The quenches have been performed every 104

MC steps for each temperature, and the results of these
quenches are plotted in Fig. 3. Using the energy criterion, the
behavior we observe is qualitatively similar to the data of
Doye et al.14 However, the largest probability of observing
icosahedral structures is found here to be substantially lower
than Doyeet al.14 The data accumulated more recently by
Miller et al.15 using the superposition method include contri-
butions from more stationary points than in the previous
work of Doye et al.,14 but no reweighting has been per-
formed. As a result, the distributions of isomers look quite
different, especially at high temperatures.14

The assignment of a particular value ofQ4 to a structure
as displayed in Fig. 2, is made by an analysis of the prob-
ability distribution PQ(T,Q4) of the order parameter dis-
played in Figs. 4 and 5. Figure 4 is a representation of the
three-dimensional surface ofPQ(T,Q4) as a function of tem-
perature and order parameter. A projection of this surface
onto two dimensions is given in Fig. 5. The probability den-

FIG. 2. The expectation value of the order parameter~upper panel! and the
order parameter probability distribution~lower panel! as a function of re-
duced temperature. In the lower panel FCC labels the truncated octahedron,
IC labels structures from the icosahedral basin and LIQ labels structures
from the liquid region. The transition between FCC and IC occurs at the
same temperature as the low temperature peak in (]CV /]T)V in Fig. 1.
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sity in Fig. 5 is represented by the shading so that the
brighter the area the greater the probability. The horizontal
white lines in Fig. 5 define the regions of the heat capacity
curve. The lowest temperature horizontal line represents the
temperature at which the slope of the heat capacity first
changes rapidly, the middle temperature horizontal line rep-
resents the lowest temperature of the melting peak and the
highest temperature horizontal line represents the end of the
melting region. An additional representation of the data is
given in Fig. 6, where the probability of observing particular
values ofQ4 is given as a function ofQ4 at a fixed tempera-

ture of 0.14«/kB . In Fig. 6 three regions are evident for
PQ(T50.14«/kB ,Q4) with Q4 ranging from 0.13 to 0.19.
Although the presence of three regions seems to indicate
three distinct structures, all three regions correspond to the
truncated octahedral global minimum. We have verified this
assignment by quenching the structures withQ4 ranging
from 0.13 to 0.19 to their nearest local minima, and we have
found all such structures quench to the truncated octahedron.
To explain the three regions, we have found that there are
small distortions of LJ38 about the truncated octahedral struc-
ture where both the energy andQ4 increase together. These
regions where both the energy andQ4 increase aboveQ4

>0.13 have low probability and account for the oscillations
observed in Figs. 4–6. In the lower panel of Fig. 2, all struc-
tures havingQ4.0.13 have been identified as truncated oc-
tahedra. Quench studies of the broad region visible in Fig. 5
at the lowest values ofQ4 , or equivalently in the first low
Q4 peak in Fig. 6 find all examined structures to belong to
the icosahedral basin. To determine if a given configuration
is associated with the icosahedral basin, one-dimensional
cross-sectional plots are made from Fig. 4 at each tempera-
ture used in the calculation. Figure 6 is a particular example
of such a cross-sectional plot. The maximum present at low
Q4 represents the center for structures in the icosahedral ba-
sin. The next two maxima at higherQ4 represents the mid-
point of the liquid region. Consequently, in generating the
lower panel of Fig. 2, all configurations withQ4 between
Q450 and the first minimum in Fig. 6 have been identified
as icosahedral structures. All other values ofQ4 , represented
by the broad intermediate band in Fig. 5~or the region about
the second two maxima in Fig. 6!, have been identified as
liquidlike structures. To make these identifications, separate

FIG. 3. The probability distributions of observing different structures as a
function of temperature using the energy criterion. The labels are the same
as those defined in the lower panel of Fig. 2, and the data complements the
interpretation of the lower panel of Fig. 2

FIG. 4. The probability of observing configurations with particular values of
Q4 with Q4 displayed along one axis and the reduced temperature displayed
along the other axis. The large peak at low temperatures comes from the
truncated octahedral structures and the broad region with smallQ4 at inter-
mediate temperatures represents structures in the icosahedral basin.

FIG. 5. A projection of Fig. 4 onto theT-Q4 plane. The probability is
measured by the shading with increasing probability represented by lighter
shading. The lowest temperature horizontal white line represents the tem-
perature at which transitions between the icosahedral and lowest energy
basins begin. The second lowest temperature horizontal white line repre-
sents the beginning of the melting region, and the highest temperature hori-
zontal white line represents the end of the melting peak of the heat capacity.
The coexistence of icosahedral and octahedral structures continues into the
melting region.
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cross sections of Fig. 4 must be made at each temperature.
Of course, it is impossible to verify that the identification of
all values of Q4 with a particular structure as discussed
above would agree with the result of quenching the structure
to its nearest potential minimum. The differences found by
defining icosahedral, truncated octahedral or liquidlike struc-
tures using either an energy criterion orQ4 is clarified by
comparing Fig. 3 and the lower panel of Fig. 2. Both defini-
tions are arbitrary, and the information carried by the two
classification methods complement each other.

Figure 5 also provides additional evidence that the peak
in (]CV /]T)V is associated with the equilibrium between the
truncated octahedral structures and the icosahedral struc-
tures. There is significant density for both kinds of structures
in the region between the lowest two parallel lines that define
the region with the slope change. Additionally, both icosahe-
dral structures and truncated octahedral structures begin to be
in equilibrium with each other at the beginning of the slope
change region. This equilibrium continues to temperatures
above the melting region.

Another identification of the slope change region with a
transition between truncated octahedral and icosahedral
forms can be made by definingPR(T,R)dR to be the prob-
ability that an atom in the cluster is found at locationR to
R1dR from the center-of-mass of the cluster at temperature
T. A projection of PR(T,R) onto theR and T plane is de-
picted in Fig. 7. The solid vertical lines represent the location
of atoms from the center-of-mass of the truncated octahedral
structure~the lower set of vertical lines!, and the lowest en-

ergy icosahedral structure~the upper set of vertical lines!. As
in Fig. 5, increased probability is represented by the lighter
shading. At the lowest temperaturesPR(T,R) is dominated
by contributions from the truncated octahedron as is evident
by comparing the shaded regions with the lowest set of ver-
tical lines. As the temperature is increased, contributions to
PR(T,R) begin to appear from the icosahedral structures.
The shaded region atR50.45 does not match any of the
vertical lines shown, but corresponds to atoms in the third
lowest energy isomer, which like the second lowest energy
isomer, comes from the icosahedral basin. The equilibrium
between the icosahedral and truncated octahedral structures
observed in Fig. 7 matches the regions of temperature ob-
served in Fig. 5.

We have mentioned previously that parallel tempering
introduces correlations in the data accumulated at different
temperatures, and it is important to ensure the statistical er-
rors are sufficiently small that observed features are real and
not artifacts of the correlations. To measure these correla-
tions we define a cross temperature correlation function for
some temperature dependent propertyg by

g~T1,T2!5
^~g~T1!2^g~T1!&!~g~T2!2^g~T2!&!&

@^~g~T1!2^g~T1!&!2&^~g~T2!2^g~T2!&!2&#1/2
.

~18!

A projection ofg(T1 ,T2) wheng5CV is given in Fig. 8. In
Fig. 8 white representsg51 and black representsg521
with other shadings representing values ofg between these
two extremes. The white diagonal line from the lower left
hand corner to the upper right hand corner represents the
case thatT15T2 so thatg51. The light shaded areas near
this diagonal represent cases whereT1 and T2 are adjacent
temperatures in the parallel tempering simulations, and we

FIG. 6. The probability of observing configurations with particular values of
Q4 as a function ofQ4 at T50.14«/kB . The region fromQ450 through the
first maximum to the first minimum defines the icosahedral basin atT
50.14«/kB , the region from the first minimum to the third defines liquid-
like structures, and the region about the three maxima having the highest
values ofQ4 define the truncated octahedral basin. The oscillations in the
truncated octahedral basin arise from distorted structures of low probability
where both the energy andQ4 rise together.

FIG. 7. The projected probability of observing particles at distanceR from
the center-of-mass of LJ38 as a function ofR and reduced temperature. As in
Fig. 5 increased probability is represented by the lightest shading. The lower
vertical lines represent the location of atoms in the fully relaxed truncated
octahedron and the upper vertical lines represent the location of atoms in the
fully relaxed icosahedral structure that is lowest in energy. Equilibrium be-
tween the icosahedral and octahedral forms are observed in the same tem-
perature range as found in Figs. 2 and 5.
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find g to be only slightly less than unity. More striking are
the black regions off the diagonal whereg is nearly 21.
These black regions correspond to anti-correlations between
results at temperatures near the heat capacity maximum in
the melting peak and temperatures near the center of the
slope change region associated with the transition between
icosahedral and truncated octahedral structures. These corre-
lations imply the importance of performing sufficiently long
simulations to ensure that statistical fluctuations of the data
are small compared to important features in the data as a
function of temperature.

IV. CONCLUSIONS

Using parallel tempering methods we have successfully
performed ergodic simulations of the equilibrium thermody-
namic properties of LJ38 in the canonical ensemble. As dis-
cussed by Doyeet al.5 the potential surface of this system is
complex with two significant basins; a narrow basin about
the global minimum truncated octahedral structure, and a
wide icosahedral basin. These two basins are separated both
by structure and a large energy barrier making simulations
difficult. In agreement with the results of Doyeet al.14 we
find clear evidence of equilibria between structures at the
basin of the global minimum and the icosahedral basin at
temperatures below the melting region. Unlike previous
work we find no heat capacity maximum associated with this
transition, but rather a region with a change in the slope of
the heat capacity as a function of temperature.

We have found parallel tempering to be successful with
this system, and have noted correlations in our data at differ-
ent temperatures when the parallel tempering method is used.
These correlations imply the need to perform long simula-
tions so that the statistical errors are sufficiently small that
the correlations do not introduce artificial conclusions.

We believe that the methods used in this work could be
applied to a variety of other systems including clusters of
complexity comparable to LJ38. For instance, the 75-atom
Lennard-Jones cluster is known to share many features with
the 38-atom cluster investigated here. LJ75 is also character-
ized by a double funnel energy landscape, one funnel being
associated with icosahedral structures, and the other funnel
being associated with the decahedral global minimum. The
landscape of LJ75 has been recently investigated by Doye,
Miller, and Wales6 who have usedQ6 as the order param-
eter. In another paper,2 Wales and Doye have predicted that
the temperature where the decahedral/icosahedral equilib-
rium takes place should be close to 0.09«/kB . This predic-
tion is made by using the superposition method, but no ca-
loric curves have yet been reported for LJ75. The parallel
tempering Monte Carlo method can be expected to work well
for LJ75, and such a parallel tempering study would be an-
other good test case for theoretical methods discussed in this
work.

A useful enhancement of parallel tempering Monte
Carlo is the use of multiple histogram methods13,41 that en-
ables the calculation of thermodynamic functions in both the
canonical and microcanonical ensembles by the calculation
of the microcanonical entropy. In practice the multiple his-
togram method requires the generation of histograms of the
potential energy at a set of temperatures such that there is
appreciable overlap of the potential energy distributions at
adjacent temperatures. This overlap requirement is identical
to the choice of temperatures needed in parallel tempering.

In performing simulations on LJ38 we have tried other
methods to reduce ergodicity errors, and we close this sec-
tion by summarizing the difficulties we have encountered
with these alternate methods. It is important to recognize that
the parallel tempering simulations include in excess of 1010

Monte Carlo points, and most of our experience with these
alternate methods have come from significantly shorter simu-
lations. Our ability to include this large number of Monte
Carlo points with parallel tempering is an important reason
why we feel parallel tempering is so useful.

From experience with other smaller and simpler clusters,
for a J-walking simulation to include 1010 points, an external
distribution containing at least 109 points is required to pre-
vent oversampling of the distribution. Such a large distribu-
tion is prohibitive with current computer technology. Our
J-walking simulations containing about 107 Monte Carlo
points have resulted in data that have not been internally
reproducible, and data that are not in good agreement with
the parallel tempering data. Many long J-walking simula-
tions with configurations initiated at random only have icosa-
hedral structures at the lowest calculated temperatures. To
stabilize the J-walking method with respect to the inclusion
of truncated octahedral structures at low temperatures, we
have attempted to generate distributions using the modified
potential energy functionUm(r ,l)5U(r )2lQ4 . In this
modified potentiall is a parameter chosen to deepen the
octahedral basin without significantly distorting the cluster.
While this modified potential has led to more stable results
than J-walking using the bare potential, the results with 108

Monte Carlo points have not been reproducible in detail. The

FIG. 8. g(T1 ,T2) for the heat capacity as defined in Eq.~18! ~with g
5CV) as a function of reduced temperature along two axes. White shading
representsg51 and black representsg521. The white diagonal line con-
necting the lower left-hand corner with the upper right-hand corner indicates
T15T2 so thatg51. The black areas show anticorrelation from parallel
tempering between the heat capacity calculated at the maximum of the heat
capacity and the center of the change in slope region.
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application of Tsallis distributions24 has not improved this
situation.

We have also tried to apply the multicanonical J-walking
approach recently introduced by Xu and Berne.25 While this
multicanonical approach has been shown to improve the
original J-walking strategy for other cluster systems, in the
case of LJ38 the iterations needed to produce the external
multicanonical distribution have not produced truncated oc-
tahedral structures. The iterations have produced external
distributions having either liquidlike structures or structures
from the icosahedral basin. The multicanonical distribution
is known to have deficiencies at low energies, and this low
energy difficulty appears to be problematic for LJ38. We
have attempted to solve these deficiencies by including prior
information about the thermodynamics of the system. In this
attempt we have chosen the multicanonical weight to be
wmu(U)5exp@2SPT(U)# whereSPT(U) is the microcanoni-
cal entropy extracted from a multihistogram analysis13,41of a
parallel tempering Monte Carlo simulation. In several at-
tempts using this approach we have not observed either the
truncated octahedral structure nor structures from the icosa-
hedral basin with significant probability. The multicanonical
distribution so generated is dominated by liquidlike struc-
tures, and the distribution appears to be incapable of captur-
ing the solid-to-solid transition that leads to the low tempera-
ture peak in (]CV /]T)V . Whether there are other
approaches to generate a multicanonical distribution that are
more successful in capturing low temperature behaviors is
unknown to us.

Much insight about phase change behaviors can be ob-
tained from simulations in the microcanonical ensemble or
using molecular dynamics methods. For example, the van
der Waals loops observed in LJ55 ~Ref. 13! complement the
interpretation of the canonical caloric curves. In the next
paper27 we present parallel tempering results for LJ38 using
both molecular dynamics and microcanonical Monte Carlo
methods.
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