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Quantum Monte Carlo dynamics: The stationary phase Monte Carlo path
integral calculation of finite temperature time correlation functions

J.D. Doll and Thomas L. Beck

Los Alamos National Laboratory, MS G-738, Los Alamos, New Mexico 87545

David L. Freeman

Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

(Received 21 April 1988; accepted 21 July 1988)

We present a numerically exact procedure for the calculation of an important class of finite
temperature quantum mechanical time correlation functions. The present approach is based
around the stationary phase Monte Carlo (SPMC) method, a general mathematical tool for
the calculation of high dimensional averages of oscillatory integrands. In the present context
the method makes possible the direct numerical path integral calculation of real-time quantum
dynamical quantities for times appreciably greater than the thermal time (/5#). Illustrative
applications involving finite temperature anharmonic motion are presented. Issues of
importance with respect to future applications are identified and discussed.

1. INTRODUCTION

In recent years path integral methods' have brought
about something of a revolution in the study of many-body
quantum mechanical systems. Previously considered basi-
cally a formal device, path integral methods have been
shown to be a convenient numerical tool as well. In particu-
lar, Monte Carlo based path integral methods offer a general
approach to the study of many-body quantum systems.

Numerical path integral studies have largely focused on
equilibrium systems where calculation of thermodynamic
averages proves to be a problem quite similar in structure to
the corresponding classical Monte Carlo task.” Numerous
applications involving diverse phenomenology in physics
and chemistry have been reported. Equilibrium methods
and applications have been reviewed elsewhere.**

More recently, attention has turned to extending path
integral Monte Carlo methods to the study of dynamical as
well as equilibrium quantities.>** Although formally simi-
lar to the equilibrium problem, the appearance of complex
exponentials as opposed to simple, Boltzmann-like factors
complicates the mathematics of the dynamics problem. The
phase oscillation difficulties associated with the appearance
of these complex exponentials have led in the past to a gen-
eral pessimism concerning the possibility of following real-
time dynamics with Monte Carlo based methods for times
significantly larger than the thermal time, S#.

We discuss here details of a quantum Monte Carlo
method for the direct calculation of real-time quantities.
This method is based on the stationary phase Monte Carlo
(SPMC) approach. Preliminary discussions of the basic
technique and related methods have appeared previous-
ly.%*1213 This work unifies previous efforts and develops a
methodology for the calculation of dynamical properties.
Simply stated, the SPMC method is a general Monte Carlo
technique for performing high dimensional averages of (pos-
sibly) highly oscillatory integrands. Such tasks arise fre-
quently in physical applications. The calculation of finite
temperature time correlation functions is one particular, al-
beit important, example of such an application.
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The essential theme underlying the SPMC approach is
to structure the problem at hand in a manner that avoids the
necessity of building up local phase interferences with nu-
merical Monte Carlo methods. Instead, an averaging pro-
cess is developed that synthesizes this local phase interfer-
ence information, thereby (1) identifying those regions that
will ultimately contribute strongly to the final results and
(2) accelerating the convergence of the method. It proves
possible to formulate this averaging process in a manner that
is both formally exact and computationally practical.

The present discussion will be concerned principally
with Monte Carlo path integral dynamics. We will not con-
sider further other alternate approaches to quantum dynam-
ics, approaches that include basis set techniques,'*'® hybrid
basis set/path integral methods,'”'® analytic continuation
approaches,'® Fourier transform,” and semiclassical*!®
and wave packet methods.?'®

The remainder of this presentation is organized as fol-
lows. Section II briefly reviews the basic SPMC approach
and illustrates the method with a simple, pedagogical exam-
ple. Section III formulates the problem of calculating finite
temperature time correlation functions within the SPMC
framework. We present in Sec. IV applications of the present
approach designed to assess issues of feasibility and general
utility. Section IV’s applications focus on the calculation of
simple finite temperature dipole autocorrelation functions
for anharmonic systems. We conclude in Sec. V with a dis-
cussion of the present results and identify issues of concern
for future applications.

0

Il. SPMC THEORY

We present in this section a brief discussion of the gen-
eral stationary phase Monte Carlo (SPMC) method from
the viewpoint of the technique as a mathematical tool. This
discussion is made without reference to any particular phys-
ical application in order to emphasize the generality of the
approach and to simplify the presentation of the essential
features of the method. We will demonstrate in Sec. I1I that
the calculation of finite temperature time correlation func-
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5754 Doll, Beck, and Freeman: Quantum Monte Carlo dynamics

tions can be reduced to a problem of the type considered
below.
We begin by considering the prototype integral

I(t) =:J~pr(x)ém", (2.1)

where p(x) is an arbitrary (normalized) probability distri-
bution function. We will adopt a one-dimensional notation
in much of the following, understanding that all results easi-
ly generalize to multidimensional form.

The difficulty in evaluating Eq. (2.1) varies with the
magnitude of the parameter . For small values of ¢, ordinary
Monte Carlo (MC) methods are adequate for the evaluation
of our prototype integral. In particular, applying ordinary
MC methods to Eq. (2.1) produces

(1) -1 i &V
N

n=1

(2.2)

where the points {x, } are selected at random from the distri-
bution p(x). As t becomes large, the phase oscillations aris-
ing from the complex exponential become severe making
attempts to extend Eq. (2.2) by blindly adding more Monte
Carlo points unwise. In order to be successful with ordinary
Monte Carlo methods, it would be necessary to include a
sufficient number of quadrature points in Eq. (2.2) to cap-
ture all of the interference structure arising from the com-
plex exponential, an impractical task for large f. Viewed
from a different perspective, we know from conventional
stationary phase considerations that for large ¢ theintegralin
Eq. (2.1) is dominated by contributions from those regions
where the phase function f(x) is locally constant. This im-
plies that in a brute force Monte Carlo evaluation of Eq.
(2.2) we would be wasting most of our effort in numerically
building up local phase interference information to produce
a null result. Rather than a brute force approach, the key to
progress is to develop a procedure that synthesizes these lo-
cal phase interferences in some alternate fashion, thereby
freeing the Monte Carlo procedure from this difficult task. It
is to the description of such a procedure that we now turn.

As has been shown previously, '’ the integral of interest
can be rewritten identically as

(1) =de,0(X)D(x)e"’f("), 2.3)

where the “damping function” D(x) is given by
D00 = [y Py BEZD gten—ion 2.0
p(x)

and where P(y) is an arbitrary (normalized) probability dis-
tribution. Equations (2.1) and (2.3) are formally identical,
the only restriction being that the x integration must extend
over either an infinite interval or over an interval over which
the phase function 1s periodic.

We can exploit the nature of the damping function in
order to simplify the numerical evaluation of Eq. (2.3). In
order to appreciate the possible simplifications, it is useful to
first examine D(x). If, as is typical in the present applica-
tions, we assume P(p) to be a prelimit delta function (e.g.,
Gaussian) of length scale ¢, P, (y), then the damping func-

tion is given by

D.(x) = f dy P.(y) XY utris -0y (3 5)
p(x)

The exact nature of D, (x), its general calculation, and a
strategy for choosing the optimal value of € are discussed
elsewhere.” The basic structure of D, (x) can be seen by
considering low-order gradient approximations to the exact
result. Assuming that € is small and that P, (y) is a Gaussian,
D_(x) is given approximately by the first order gradient ap-
proximation to Eq. (2.5),

D(x)=D,(x)=exp[ — (etf")?/2]. (2.6)

Higher order gradient approximations as well as cumulant
forms for the damping function are discussed elsewhere.”"”
We see that D(x) acts as a stationary phase “filter,” a filter
that is “transparent” only in those regions where the com-
plex exponential is well behaved (i.e., f* = 0). The action of
D(x) on the complex exponential exp [itf(x)] is thus to
damp out unimportant, nonstationary phase regions, re-
gions that would otherwise be severely oscillatory. With the
high frequency oscillations removed, the numerical evalua-
tion of Eq. (2.3) is a simpler task than the corresponding
evaluation of the original integral. It is important to empha-
size that Eq. (2.3), although simpler than the original inte-
gral, remains formally exact.

The Monte Carlo sampling method used to evaluate Eq.
(2.3) is an important practical matter in the application of
the SPMC technique. In our work we have found two basic
approaches to be convenient. The choice of one approach
over another depends on the details of the particular prob-
lem under consideration. The obvious first approach is to
perform a direct MC evaluation of Eq. (2.3), giving

N

Z D(x,, )e”f(Xn) )

1
I(t) =—
(1) N2

(2.7)

This approach, termed “‘equilibrium importance sampling”
for reasons that will become clear in Sec. I11, utilizes the
same MC quadrature points that would have been used in
Eq. (2.2). Here, however, the damping function builds in the
local interference structure, meaning that in Eq. (2.7) we no
longer require a high density of MC points to capture all of
the local interference effects. In practice this means that, for
a given number of quadrature points, the statistical errors for
the SPMC method, Eq. (2.7), are smaller than for the origi-
nal MC form, Eq. (2.2). Examples documenting such gains
in efficiency have been discussed elsewhere.”'>"?

The equilibrium importance sampling approach makes
use of the damping function only retroactively, as a device
for killing off contributions from unwisely chosen quadra-
ture points. We can, in fact, use the damping function in a
more active manner to improve the choice of the quadrature
points themselves. Under certain circumstances it is useful
to incorporate a positive approximation [cf. Eq. (2.6)] to
the damping function into an importance sampling scheme
by writing Eq. (2.3) as

I =fdxp(x)D0(x) [g%—] ey

ol X

(2.8)

Equation (2.8) can now be evaluated by MC methods,
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where now the quadrature points will be chosen from the
modified weight function, p(x)D,(x), rather than simply
p(x) itself. This “stationary phase importance sampling”
scheme will selectively focus attention on the dominant sta-
tionary phase regions. In situations where multiple station-
ary phase regions exist, care must be exercised in order to
assure that all regions are properly sampled. We are aided in
this matter by the fact that we can analytically characterize
these regions as extrema of the phase function. Furthermore,
guidance concerning the adequacy of particular MC sam-
pling strategies can be gained by comparing results obtained
independently from stationary phase and equilibrium im-
portance sampling approaches. Application of the station-
ary phase importance sampling method generally requires
that we compute by separate means the normalization inte-
gral,

fdxp(x)Do(x)

fdxp(x)

The calculation of this normalization integral poses no spe-
cial difficulties. In particular, its evaluation does not involve
contending with severe phase oscillations. Care must be ex-
ercised, however, to assure ourselves that whatever sampling
scheme is utilizied to evaluate Eq. (2.9) properly covers the
regions where D,(x) is significant.

In order to apply the SPMC method, we must be able to
evaluate the damping function D(x) for arbitrary values of
x. One convenient approach'? is to write D(x) as

D(x) = Dy(x) + {D(x) — Do(x) }nc -

In Eq. (2.10) D,(x) is an approximate damping function,
typically the first order gradient form in Eq. (2.6). In prac-
tice, if D, is greater than a preselected threshold 8, then an
unbiased MC estimate of the correction to D, (x), the term in
braces in Eq. (2.10), is added to the result. Such an unbiased
MC estimate of the correction to D,(x) can be based on the
expression [cf. Egs. (2.5) and (2.6)]

D(x) — Dy(x)

= deP(y)[p_(_x_—__y_)e“Lf(xfwff(x)] _ e~ W]
px)
(2.11)

If, on the other hand, D (x) is small (i.e., smaller than our
preselected threshold), then we assume in Eq. (2.10) that
the x region in question is unimportant and that further cor-
rections are unnessary. In actual applications the threshold
value & is varied in order to assure that this assumption is
appropriate. It is to be emphasized that the procedure is ri-
gorously exact when the threshold 6 is taken to be zero.
The following section considers a simple example in or-
der to illustrate the basic SPMC approach and to set the
stage for the principal result of the present work, the calcula-
tion of quantum mechanical time correlation functions.

(Dy) = (2.9)

(2.10)

A. lllustrative example

In this section we discuss the application of the SPMC
method to a simple one-dimensional prototypical integral to

illustrate the utility of the method and the application of the
two sampling strategies discussed above. The example we
choose is

=
J‘ dxe- xz/zeit(x‘/_‘& — x)
I(t) = —=

oo
J- dx e~x2/2
- o0

This is of the form of Eq. (2.1) with p chosen to be a simple
Gaussian of unit width and f(x) = x*/3 — x. The distribu-
tion and phase functions are illustrated in Fig. 1. The phase
function has two stationary phase points, x = + 1, and the
complex exponential becomes highly oscillatory as ¢ gets
large.

We now insert D as indicated in Eqs. (2.2) and (2.3)
and examine the effects of the damping function on the inte-
grand. The approximate first order gradient expansion, Eq.
(2.6), is used here to show pictorially the effect of the damp-
ing function. Corrections are applied below in the actual cal-
culation of the integral. The approximate damping function,
the complex exponential, and the product of the two at two
different values of ¢ are presented in Figs. 2 and 3. Notice
first the highly oscillatory nature of the complex exponential

(2.12)

1.2 T T T
(a
08 —
£
aQ
04 -
| | 1
0.0
-4 2 0 2 4
X
8 T T T—
(b)

4 —
ol =
=

-4 [— —

8 ] 1 !

-4 2 0 2 4
X

FIG. 1. Shown in (a) is the distribution function p(x) for the prototype
problem specified by Eq. (2.12). (b) gives the corresponding phase func-
tion.
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FIG. 2. Plotted for the prototype problem specified by Eq. (2.12) (= 10)
is (a) the first-order gradient approximation to the damping function D,
[Eq. (2.6)], (b) the real part of the undamped complex exponential, and
(c) the real part of the product of the complex exponential and D,. The
value of € in D, was chosen as described in Ref. 13 and was 0.2236.

away from the two stationary phase regions. At ¢ = 10, the
stationary phase regions are noticeable at x = + 1, with
strong oscillations elsewhere. At 1 = 100, the signal is barely
recognizable due to the rapid oscillations. When the product
of the complex exponential and the damping function is tak-
en, however, the important regions of the integrand become
apparent. As described above, D, acts as a stationary phase
filter to damp out the highly oscillatory regions.

The characteristics of the two sampling strategies can
also be seen by comparing Fig. 1 with Figs. 2 and 3. The
equilibrium sampling method uses the Gaussian as the im-
portance sampling function and accumulates the product of
the damping function and the complex exponential. This dis-
tribution has appreciable density covering the two stationary
phase regions and there is no problem in passing between the
two during the course of a Metropolis random walk. How-
ever, the set of points generated by this sampling scheme will

1.0 1 | 1
(@)
=
L 051 —
00 | “ A
o4 -2 0 2 4
X
2 T T T
(b)
. .
ol
3
S of -
3
Q
AL i
2 | ] |
-4 -2 0 2 4
X
L T T T
(c)
0.0 S —
T T
7
S
w 04— -
3
o
08 | | 1
-4 -2 0 2 4

X

FIG. 3. Asin Fig. 2, except that t = 100 and € = 0.0707.

contzin a majority of zero values since the stationary phase
points are not selectively visited. On the other hand, if sta-
tionary phase importance sampling is utilized, the sampling
distribution will be sharply peaked at x = + 1 for large ¢.
This sampling function will selectively weight the two sta-
tionary phase regions, but special care may be necessary to
assure that the associated Metropolis Monte Carlo walk ade-
quately samples both stationary phase regions. Both sam-
pling methods were carried out in the present application,
and yielded comparable results.

We performed SPMC evaluation of Eq. (2.12) at three
different large values of ¢ with the two sampling strategies
discussed above, both with and without corrections to the
first order gradient approximation to the damping function.
The ¢ values chosen are large enough so that an analytical
stationary phase estimate of the integral is valid and can be
used as a check on the absolute accuracy of the Monte Carlo
procedure. The results along with the stationary phase val-
ues are presented in Table I.

The inclusion of the damping function in the integrand
increases the efficiency of the Monte Carlo procedure at all

J. Chem. Phys., Vol. 89, No. 9, 1 November 1988
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TABLE I. Listed are the computed values for the model integral in Sec. I A [Eq. (2.2)] for various ¢ values.
For comparison, the stationary phase approximation (SP) is also tabulated. Both the stationary phase impor-
tance sampling (SPIS) and the equilibrium importance sampling ( EIS) results were computed using corrected
first-order gradient approximations to the damping function [cf. Eq. (2.10)]. Uncorrected values obtained
using equilibrium sampling methods are also shown. Since for each individual 7 value all methods utilized the
same number of Monte Carlo quadrature points (200 000), the relative efficiencies of the various approaches

can be judged by comparing the squares of the corresponding statistical errors.

t SP SPIS EIS EIS-D; only MC
10 0.6257 0.6251 4+ 0.0053 0.6174 4+ 0.0036 0.5793 4+ 0.0035 0.6065 + 0.0070
100 — 02141 —0.21354+0.0017 —0.2165+0.0028 —0.173040.0017 —0.2126 4+ 0.0051
1000 0.0674 0.0676 -+ 0.0008 0.0669 + 0.0011 0.0559 + 0.0009 0.0619 4 0.0068

values of ¢, with the greatest improvement being achieved for
the largest value where the integrand is most highly oscilla-
tory. At ¢ = 1000, the efficiency increases by over a factor of
60 relative to the standard Monte Carlo integration. At both
¢t = 100 and ¢ = 1000, a large Metropolis step size was cho-
sen for the stationary phase importance sampling procedure
(which resulted in a correspondingly small acceptance prob-
ability) to permit infrequent “hops” between the two sta-
tionary phase regions. Corrections were applied to the first
order gradient results via the Monte Carlo procedure dis-
cussed above. These secondary Monte Carlo corrections re-
moved the small, systematic error present in the first order
gradient results while increasing the statistical error in the
calculation only slightly.

This simple example illustrates the utility of the station-
ary phase Monte Carlo procedure in the evaluation of inte-
grals of the form of Eq. (2.1). It also gives an indication of
steps that are useful in treating the presence of multiple sta-
tionary phase points. As illustrated in the following section,
the SPMC method is found to work well when extended to
the multidimensional, oscillatory integrals occurring in the
calculation of finite temperature time correlation functions.

lll. FINITE TEMPERATURE TIME CORRELATION
FUNCTIONS

The results of Sec. I describe a generic Monte Carlo
method for the calculation of averages of (possibly) highly
oscillatory integrands. We turn in this section to a more spe-
cific problem, the study of finite temperature quantum me-
chanical time correlation functions. In particular, in the
present section we cast the calculation of such correlation
functions into a form amenable to SPMC evaluation. We
focus first in Sec. IIT A on the calculation of *“thermally sym-
metrized” correlation functions, functions simply related to
the more familiar finite temperature time correlation func-
tions, but functions that are frequently simpler computa-
tional objectives than their more familiar counterparts. In
Sec. I1I B we develop similar procedures aimed at the calcu-
lation of more customary finite temperature time correlation
functions. Illustrative applications of the developments in
the present section are presented in Sec. IV.

A. Thermally symmetrized time correlation functions

We begin by considering quantum mechanical time cor-
relation functions of the type defined by

[4e = P*HBe 5]

tr
G, (1) = , (3.1)
48 trle 27
where the parameter 3, is given by
B.=B/2+it/h, (3.2)

and where B is the customary reciprocal temperature,
1/k, T. As discussed by Berne and Harp®, G, (¢) is closely
related to the time correlation function C,; (2), defined as

tr[eABHAeiHl/ﬁBe— th/ﬁ]

Cap(D) = , (3.3)
2 trle = #7]
through the Fourier transform identity
aAB(“’) = efﬁﬁwze,ug (@), (3.4a)

or, equivalently, through an identity reminiscent of the ap-
proximation due to Schofield**:

C,p (1) = G5 (¢ — iBA/2).

G,, and C; thus contain the same physical information,
although G, (¢) may sometimes be a simpler computational
objective since its propagators always appear in combination
with thermal Boltzmann factors. Miller, Schwartz, and
Tromp® have utilized these thermally symmetrized correla-
tion functions in their formulation of the calculation of ther-
mal rate coefficients.

In what follows we will consider the particular case
where the operators 4 and B in Eq. (3.1) are diagonal in the
coordinate representation. Evaluating the quantum me-
chanical traces in Eq. (3.1) in the coordinate representation
gives

(3.4b)

fdx dx'|{(x'le " P |x) P4 (x)B(x")

Gp (1) = (3.5)

de dx'|(x'|e =P | x) 2

Equation (3.5) expresses the quantum dynamical object of
interest as a simple average over a positive probability distri-
bution function. Equation (3.5) is, in fact, reminiscent of
equilibrium thermodynamic averages. Here, however, the
variables x and x' are dynamically correlated through the
appropriate time and the temperature dependent quantum
mechanical density matrix element.

Equation (3.5) is a convenient starting point for a var-
iety of approaches to the calculation of time correlation

J. Chem. Phys., Vol. 89, No. 9, 1 November 1988



5758 Doll, Beck, and Freeman: Quantum Monte Carlo dynamics

functions. Since we have, at least in principle, statistical pro-
cedures to estimate the complex temperature density matrix
elements that appear in Eq. (3.5), one approach is to regard
the x and x’ integrations in Eq. (3.5) as a Monte Carlo prob-
lem with a “‘noisy”” weight function. The mathematics of this
generic type of problem have been addressed by Kennedy
and Kuti** and deserves further consideration. We have had
practical success following such a line of development. For
example, applications similar to those in Sec. IV have been

J

da exp( —
(¥l ™) = py, (x,x,6.) -

successfully pursued. For the present, however, we choose to
formulate the calculation of time correlation functions as a
single Monte Carlo procedure rather than as a “nested”
(Monte Carlo within Monte Carlo) approach.

We proceed by expressing the density matrix elements
in Eq. (3.5) in Fourier path integral form, the details of
which are described elsewhere."** Within the Fourier path
integral language the complex temperature density matrix
elements in Eq. (3.5) are given by™®

3 /20 —pV).)

, (3.6)

J-da exp( - ai/Zoﬁ)

k=1

where p, corresponds to the free-particle density matrix element evaluated at the complex temperature f3,,

172
pp (X' xB.) = <2—7r—ﬁ’?%—) exp[ — m(x' —x)*/(2#B.) ],

the Gaussian widths are given by

oy = 2B.H/(mr’k?),

(3.7)

(3.8)

and where the quantum mechanical paths connecting x and x" are parametrized in terms of the Fourier coefficients a by

X, (u) =x+ (X' —x)u + Zak sin(k7u).
k

(3.9a)

The variable v in Eq. (3.9) sweeps over the range [0,1]. Equation (3.6) is the general starting point for the calculation of
complex temperature density matrix elements. The Gaussian terms in Eq. (3.7) are from the quadratic kinetic energy
portions of the original path integral “‘action” integral. While these kinetic energy portions can be evaluated analytically, the
corresponding potential energy average,

1
V)a= f duVix,(u)], (3.10)
0

is generally available only through one-dimensional numerical quadrature. Inserting such path integral forms for each of the
complex temperature density matrix elements into Eq. (3.5), we ultimately obtain

fdxdx/ da db p([a),[b]exp{irf([a],[b])}4(x) B(x')
Gup(t) = ’
fdx dx' dadb p([al],[b])explirf([a],[b])}

(3.11)

where 7 is the ratio of the physical to thermal times {7 = ¢ /(8#/2) ]. The paths x, (#) and x, (u) are parametrized by the
Fourier coefficients a and b by Eq. (3.9a) and by (note the reversed transit from x’ to x)

xp(u) =x"+ (x —xYu+ Y by sin(kmu). (3.9b)
k

With the parametrizations in Eq. (3.9), the path integral “sum over paths” becomes an ordinary multidimensional integra-
tion over the coefficients a and b. The weight and phase functions in Eq. (3.11) are functionals of the paths x, (#) and x,, (u).
Explicitly,

p( [a],[b] ) — I,Ofp (x’,x,[j’r ) 12e7{5. ([a]) + 5, ([bD}
and

Sal,[b]) =S _([a]) —S_([b]). (3.13)

For notational simplicity we have suppressed indications of the dependence of the weight and phase functions on the particle
mass and on the complex temperature 3,. For the x, paths the S, pieces are given in the Fourier path integral method by*®

(3.12)

S, ([al) =3 ai/2s; + §<V>a, (3.14)
k
where
53 =2|B. 17/ [mmk*(8/2)] (3.15)
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and where (V'), is given by Eq. (3.10). The corresponding terms for the x, paths are the obvious extensions of Egs. (3.14)
and (3.10). Additional details concerning the basic Fourier path integral approach can be found in Ref. 25.

The point of the above discussion is that Eq. (3.11) is now of the form considered in the preceding section. In particular,
both the numerator and denominator of Eq. (3.11) are averages over a positive weight function of an oscillatory exponential.
Here the weight function p is (essentially) an equilibrium Boltzmann factor (kinetic p/us potential energy) familiar from time
independent path integral applications. The phase function, on the other hand, is associated with the dynamical (kinetic
minus potential energy ) combination. As the ratio of physical to thermal time increases, the phase oscillations of the complex
exponential become more severe, leading to a stationary-phase-like dynamical structure. These increasingly severe oscilla-
tions, a central obstacle to the development of a general Monte Carlo theory of quantum dynamics, can be treated by the
methods discussed in Sec. 11.

We now consider the practical details of the SPMC calculation of G (¢). Motivated by the developments of Sec. II, we
search for a damping function that will simplify the numerical calculation of Eq. (3.11). This can be accomplished by defining
D_([al,[b]) by [cf. Egs. (2.4) and (3.11)]

exp(ir{f([a —a'],[b—b']) — f([a],[bD}D). (3.16)

D b)) = | da’av P :,fp([a—a’],[b—b’])
.([a].[b]) fadb ) LD

We then insert this damping function, which involves only convolutions over a and b degrees of freedom, into both the

numerator and denominator of Eq. (3.11), giving

fdx dx' dadb p([a],[b])D, ([a]l,[bDexp{izf([a],[b])}4(x)B(x’)

Gp(t) =

(3.17)

fdx dx’ da db p([a],[b]) D, ([a],[b])explirf( [al,[b])}

It is important to recognize that the same damping function
appears in both numerator and denominator of Eq. (3.17), a
consequence of including only convolutions over a and b
degrees of freedom in Eq. (3.16). We have found no difficul-
ties to date caused by not damping the x and x' degrees of
freedom. We know on the basis of general arguments pre-
sented in Sec. II that the damping function leaves the numer-
ator and denominator individually unchanged while simpli-
fying the troublesome phase oscillations otherwise present.
From Sec. II we also know that if the damping function is
computed exactly, then the results obtained from Eq. (3.17)
are formally independent of the choice of the probability
distribution function P_(a’,b’). As a practical matter we
have found that it is convenient to choose P, (a’,b’) to be a
multidimensional Gaussian whose first moments are all zero
and whose second moments are uncorrelated. A procedure
for selecting these second moments is described below. Rea-
sons for choosing P, (a’,b’) to be a Gaussian are that for such
a choice (1) there exists a convenient approximate analytic
approximation to the damping function and (2) it is possible
to develop a simple Monte Carlo correction scheme for esti-
mating corrections to the approximate results so obtained.

As discussed in Sec. II it is convenient to have available
an analytic approximation for the damping function. Several
possible such expressions can be obtained from various gra-
dient or cumulant expansions of Eq. (3.16). We have found
the first-order gradient result [cf. Eq. (2.6)]

D, ([a],[b])
1
=exp<— > Z e

k=1

X[(af( [;i;[b]))2+ (aﬂ [;;;[bn)z]) (3.18)

to be especially convenient. This expression involves only

l

first derivatives of the phase function. If required, correc-
tions to Eq. (3.18) can be computed by a Monte Carlo proce-
dure based on the multidimensional generalizations of Eqgs.
(2.10) and (2.11).

In the present applications we have evaluated Eq.
(3.17) using both equilibrium sampling and using stationary
phase or “dynamical” importance sampling. In the former
procedure Monte Carlo points are drawn from the weight
functionp([a],[b]), given by Eq. (3.12). This weight func-
tion corresponds (essentially) to the equilibrium Boltzmann
factor, hence the name ‘““equilibrium” sampling. In the latter
procedure, we include dynamical information in the impor-
tance sampling scheme by sampling from pD, rather than p
itself. These two sampling methods emphasize different re-
gions of the multidimensional (x,x’,a,b) space. Comparison
of results obtained by these two different approaches is one
safeguard against possible sampling difficulties with either
approach if used separately.

Stationary phase importance sampling affords a rather
natural algorithm for the selection of the SPMC parameters,
{€,}. Although in principle the SPMC approach is formally
independent of these parameters if the damping functions
are computed exactly, in practice it is wise to choose these
parameters judiciously. It is obviously inconvenient to have
alarge number (one for each Fourier path integral degree of
freedom) of adjustable parameters in the calculation. In our
applications we have written

€k ZGOAk, (3'19)

where €, is a single adjustable parameter, and A, is the value
of the Metropolis parameter corresponding to the k th Four-
ier degree of freedom that produces a preselected (typically
50% ) acceptance probability for single particle Monte Carlo
moves in that variable. The physical idea contained in Eq.
(3.19) is that we typically want the SPMC width parameter
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to be some small fraction (0.1-0.3) of the natural width of
the sampling distribution (see discussion in Ref. 9). Since
A, is some measure of the width of the sampling distribution
with respect to the k th Fourier degree of freedom, it is con-
venient to slave the corresponding SPMC parameter to this
variable.

B. Direct time correlation functions

In the previous section we have presented the develop-
ments necessary to compute an important class of thermally

!

Cup(t) =

fdx dxr dx” (x!e ﬁH|xl> <x"€iﬂt/ﬁ‘x”><x"]€7 iHr/ﬁ|x)A(xl)B(xu)

Doll, Beck, and Freeman: Quantum Monte Carlo dynamics

symmetrized time correlation functions. We sketch below
how the same methods can be utilized to calculate the more
familiar correlation functions of the type defined by Eq.
(3.3). These “direct” time correlation functions are fre-
quently more closely related to experimentally measured
properties, and, in certain circumstances (e.g., low tempera-
ture), can actually be more readily calculated than their
thermally symmetrized counterparts.

Expanding Eq. (3.3) in the coordinate representation,
again considering the case where 4 and B are diagonal, the
function C g (#) becomes

(3.20)

fdx dx’ dxu<x’e-/jH’x/><x¢leih’z/ﬁ‘x»><xn|e_ th/ﬁlx>

Equivalently, using cyclic invariance of the trace we can
write C,p (1) as
Cus(0)
_ Jdx dx'{xle™F|x"y(x'|e” BHHPH XM A(x)B(X)
jdxdx'<x|eiH’/ﬁ|x’)(x’|e“(B*f'/ﬁ)”[x) )
(321
Sincethese expressionsare equivalent, either canbeutilized to
compute C,; (2). Equation (3.21) is convenient in analyzing
the classical limit of C,, (¢). Focusing on Eq. (3.20) for the
moment, we proceed in much the same way as we did in Sec.
IIT A. Without writing out all of the details, the propagator
and complex temperature density matrix elements in Eq.
(3.21) are first expressed in a Fourier path integral lan-
guage. The manipulations with the complex temperature
density matrix element in Eq. (3.21) are identical to those in
the previous section, with the exception that here the com-
plex temperature is § + it /% rather than 3 /2 + it /#. The
pure propagator term poses no special difficulty, and can be
written down by inspection by taking the £ —0 limit of the
appropriate results of Sec. III A. Having done this the
expression for C,, (¢) is again of the form considered in Sec.
II, meaning that we can proceed with SPMC evaluation as
before. Such applications are currently under study.

IV. APPLICATIONS

We present in this section prototypical applications of
the SPMC approach to the calculation of time correlation
functions. These applications have been selected to demon-
strate the feasibility of the present approach and as a first
step in gaining the experience in utilizing the present meth-
ods that will be necessary to solve more ambitious problems.
For simplicity, the present work emphasizes applications in-
volving the thermally symmetrized time correlation func-
tions discussed in Sec. IIT A. The construction of the more
familiar finite temperature time correlation functions by the
present approach is also feasible (Sec. III B) and such stud-
ies are currently in progress.

A useful first step in applying the SPMC methods is to
consider their application to the calculation of the dipole
autocorrelation function G, (¢) for the harmonic oscillator

V(x) = 0.5mw?x>. The oscillator is convenient since we can
compare our numerical results with analytically available
values. We first examine an important practical issue for the
present method, the number of Fourier coefficients that
might be required in the representations of the quantum-
mechanical paths in order to produce numerical conver-
gence of G, (¢). This convergence issue is examined in Fig. 4
for the particular choice of system parameters m = m,,,
#w/kz = 1000 K, and T = 500 K. For these particular sys-
tem parameters, we see that convergence is accomplished
with a modest number of coefficients. We also see that the
number of coefficients required increases linearly with the
physical time. In general, it will be necessary to verify the

0.3

-0.3

t/(2n/w)

FIG. 4. Shown is the dipole autocorrelation function G, (¢) for the har-
monic oscillator [cf. Eq. (3.1)]. The particular system parameters chosen
were m = m,,, fiw/k; = 1000K, and 7 = 500 K. This figure compares the
exact result (solid line), G, (t) = {#/[2mw sinh(SAw/2) ] }cos wt, with
analogous analytic Fourier path integral values obtained using various
numbers of Fourier coefficients in the path expansions (dotted lines). The
number of path integral Fourier coefficients utilized ranges from one (first
curve to deviate from exact results) to five (the last curve to deviate from
exact results).
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TABLE II. Shown are the results of SPMC calculations of G, (¢) for the harmonic oscillator (m = m, fiw/ky
= 1000 K, T'= S00K). Listed are Monte Carlo values (MC), stationary phase Monte Carlo results (SPMC),

with and without corrections, and the exact analytic results for five Fourier coefficients (k,

= 5). These

max

results at one period were all obtained using 10° Monte Carlo passes. At two vibrational periods the corre-
sponding MC and SPMC-D, results utilized 4 X 10° passes while the corrected results used 16 < 10° passes to

verify convergence.

t/(27/ ) MC SPMC-D, SPMC-corr Exact-k, ..
1 0.0304 + 0.0324 0.0811 + 0.0017 0.0746 + 0.0062 0.0744
2 0.0856 + 0.0459 0.0830 + 0.0021 0.0780 + 0.0023 0.0783

convergence of computed results with respect to the number
of path integral degrees of freedom included in the calcula-
tion.

Selected results from Fig. 4 are reproduced using nu-
merical SPMC methods in Table I1. Results in Table I were
generated from Eq. (3.17) using the first order gradient
form of the damping function, Eq. (3.18), with and without
MC corrections. All results shown in Table IT were obtained
using stationary phase importance sampling methods. Simi-
lar results were also obtained using the equilibrium sampling
methods of Sec. II. For comparison, Table II also presents
the results of ordinary MC calculations. Several things are
evident from Table I1. We see first that SPMC results (with
corrections) converge to the proper values obtained in Fig.
(4) by analytic means. We also see that the quality of the
uncorrected first order gradient results (D, only) is surpris-
ingly good, suggesting that some cancellation of errors
between the numerator and denominator of Eq. (3.17) has
occurred. Also from Table II we see the SPMC method of-

0.1 T

G, (1)

+ kmax =1

x kmax = 3

© kmax=5

t/(2n/w)

FIG. 5. Shown is the dipole autocorrelation function G, () for the per-
turbed harmonic oscillator [ Eq. (4.1)]. The mass, frequency, and tempera-
ture are as in Fig. 4. The exact results (solid line) were obtained via NMM
methods (Ref. 30, P= 64). The SPMC results utilized from one to five
Fourier coefficients and were obtained using stationary phase importance
sampling methods and using an uncorrected, first-order gradient form for
the damping function. The SPMC parameters were chosen according to Eq.
(3.19) with ¢,=03. The SPMC results utilized from
2.5-10% 10* Monte Carlo passes.

fers a substantial gain in efficiency relative to ordinary MC
methods. As demonstrated in Table II we can use this in-
creased efficiency to compute finite temperature time corre-
lation functions for times appreciably longer than the ther-
mal times involved (two vibrational periods for the present
system corresponds to 12.6 times the relevant thermal time
BA/2, at T= 500 K). The results of Table II could be ex-
tended to larger physical times at the expense of including
additional Fourier coefficients.

We now consider the application of SPMC methods to
problems in anharmonic motion. The present examples may
be thought of as prototypes of anharmonic molecular or lat-
tice dynamics. Shown in Fig. 5 are results for the dipole
autocorrelation function, for the perturbed oscillator,

(4.1

The results in Fig. 5 were obtained using the same mass and
frequency factors as in the above harmonic example and us-
ing the uncorrected first-order gradient form of the damping
function, Eq. (3.18). As with the case of the pure oscillator,
we see good agreement with exact results. We note in partic-
ular that the SPMC results accurately reproduce the fre-
quency shifts seen for the anharmonic system relative to the

V(x) = imao*x*(1 + 1x7).

t/(2n/w)

FIG. 6. As in Fig. 5 for the quartic oscillator, Eq. (4.2). The exact results
were obtained via NMM methods (P = 128) and the corresponding SPMC
results were obtained with dynamical importance sampling results (D,-
only, €, = 0.2) and with five Fourier coefficients. The two sets of results
correspond to 7"= 250 and 1000 K, respectively.

J. Chem. Phys., Vol. 89, No. 9, 1 November 1988



5762 Doll, Beck, and Freeman: Quantum Monte Carlo dynamics

TABLE III. Shown are the first four energy levels for the quartic oscillator
[Eq. (4.2)]. The system parameters were m = m and fiw/k, = 1000 K.
The results were obtained by diagonalizing the Hamiltonian within a basis
of corresponding harmonic oscillator wave functions. Results below were
obtained using 16 oscillator basis functions.

n E, (au.)

0 0.093 600 1072
1 0.335403x 1072
2 0.658 1251072
3 1.027 901 x 102

harmonic oscillator result. We conclude from these results
that the SPMC methods can yield useful information for the
quantum dynamics for anharmonic systems for times appre-
ciably larger than the thermal time. Figure 5 also indicates
that the convergence of the computed results with respect to
the number of Fourier coefficients included is similar to the
corresponding harmonic oscillator results.

As a last application, we present in Fig. 6 dipole auto-
correlation functions computed for the quartic oscillator

(4.2)

We have again utilized the mass and frequency factors dis-
cussed above. We present results for this system to empha-
size that the present method in no way utilizes an underlying
harmonic structure to obtain a solution. The quartic oscilla-
tor is intrinsically anharmonic, as can be seen from the quan-
tum mechanical energy levels listed in Table II1. At low tem-
peratures, the behavior of G, () will be harmonic in
character since only transitions from the ground to the first
excited state will be significant. From the energy levels listed
in Table III we thus predict that at low temperatures the
period of G, (¢) will be approximately 2600 a.u. Since the
energy level spacings are not uniform, there will be a tem-
perature dependence in the frequency of the dipole autocor-
relation function, the effective period of G, (¢) decreasing
with increasing temperature. It is gratifying to see that the
SPMC method accurately reproduces these results for the
quartic oscillator. In particular, the SPMC results capture
the temperature dependence of the anharmonic frequency
and accurately predict the observed dephasing at elevated
temperatures.

Vix) = lmo’x*.

V. SUMMARY AND DISCUSSION

The present work has been directed at what has been
historically perceived as a principal stumbling block to the
development of quantum Monte Carlo dynamics, the math-
ematical difficulties associated with performing high dimen-
sional averages of highly oscillatory integrands. We have
summarized an approach, the stationary phase Monte Carlo
method, that addresses this principal issue and provides a
general framework for the discussion of such problems. This
technique appears to expand appreciably the scope of nu-
merical path integral techniques with regard to the general
study of quantum dynamics.

The basic result of the work presented here is that we
have cast the calculation of an important class of finite tem-
perature time correlation functions in a form amenable to

Monte Carlo evaluation. Since such Monte Carlo based
methods are relatively insensitive to issues of dimensionali-
ty, the present results suggest a feasible route to the more
general study of many-body quantum dynamics. Using the
present methods, we have been able to evaluate quantum
mechanical time correlation functions for prototype prob-
lems designed to model molecular or lattice dynamical mo-
tion for times appreciably greater than the thermal time 57
We are gratified by the level of success achieved, especially in
view of the often expressed pessimism concerning the feasi-
bility of such developments.

As a cautionary counterpoint to our enthusiasm con-
cerning the present results, we wish to emphasize that the
methods discussed here are relatively new and their capabili-
ties and limitations are, as yet, incompletely characterized.
Although the results discussed here provide a new and hope-
fully significant tool for the discussion of such problems,
important practical matters remain. One obvious issue is re-
lated to the number of path integral degrees of freedom that
will be required for general dynamical studies. As indicated
in Sec. ITl, the number of such degrees of freedom will be
larger than required for analogous equilibrium applications,
and will increase linearly with increasing physical time. This
increase in the number of path integral degrees of freedom
will likely necessitate new developments in Monte Carlo
sampling methods, at least in more ambitious applications.
We know from previous work that the number of explicit
degrees of freedom can be reduced using partial averag-
ing?*?” and influence functional methods.' Nonetheless, we
anticipate that sampling methods, appreciably more intelli-
gent than the brute force sweeps over individual degrees of
freedom that were utilized in the present study, will ulti-
mately be required. Staging methods™ are a first step in this
direction. Ideally, these new methods would have the intelli-
gence to identify relevant length scales and important collec-
tive degrees of freedom. Multigrid methods*” are one possi-
ble approach to this problem. A second concern relates to
possible sampling difficulties associated with the stationary
phase importance sampling method. The tedious, if familiar,
concern involves assuring that the stochastic walk underly-
ing the Monte Carlo procedure adequately samples all rel-
evant configuration space. It is appropriate to note that this
problem is a generic Monte Carlo issue, not unique to the
present application. As such, there exists a backlog of experi-
ence in related matters on which we can build. In the present
application we anticipate that our ability to charcaterize
analytically the underlying stationary phase regions will
prove of assistance. Furthermore, we expect that the combi-
nation of equilibrium and stationary phase sampling meth-
ods discussed in Sec. ITI will provide at least a partial safe-
guard against shortcomings of either approach used
individually. These cautionary remarks notwithstanding, we
feel that the methods described here represent an important
step toward the ultimate development of a general Monte
Carlo theory of quantum dynamics.
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