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Toward a Monte Carlo theory of quantum dynamics®
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We consider in the present paper an extension of numerical path integral methods for use in
computing finite temperature time correlation functions. We demonstrate that coordinate
rotation techniques extend appreciably the time domain over which Monte Carlo methods are
of use in the construction of such correlation functions.

I. INTRODUCTION

An important recent development in the theory of
many-body systems has been the emergence of a variety of
Monte Carlo based methods suitable for the study of prob-
lems in equilibrium quantum mechanics.’?> These methods
are proving valuable for studies of both ground state and
finite temperature equilibrium systems. The developments
and associated applications in this rapidly growing area are
discussed elsewhere.'™

There are well-known parallels between the formal
structure of equilibrium and time-dependent quantum me-
chanics: the former involves density matrix elements at a
real temperature while the latter involves density matrix ele-
ments at a complex temperature. Numerical difficulties as-
sociated with the appearance of complex exponentials in the
dynamics problem as opposed to simple decaying terms in
the equilibrium case, however, have discouraged a parallel
development of Monte Carlo approaches to quantum dy-
namics. Some progress has been made for the restricted
problem of generating short-time dynamical information, a
situation where the numerical problems are less severe. For
this case analytic continuation methods®® and direct Monte
Carlo techniques™® have been explored. Although not a
complete solution, short-time information by itself is often
quite useful in problems of spectroscopy and kinetics. Basis
set methods®!° are of use in problems where the associated
dimensionality does not prove overwhelming,.

The present paper reports a number of related develop-
ments that suggest that the range of applicability of Monte
Carlo methods in quantum dynamics is larger than previous-
ly suspected. Although it is too early to see clearly the full
scope of possible future work, it appears now that a number
of important problems in quantum dynamics can be pursued
using methods closely related to current equilibrium ap-
proaches. After a discussion of quantum-mechanical time
correlation functions in Sec. II A, we indicate in Sec. II B
how slight generalizations of equilibrium quantum Monte
Carlo methods can be used to compute the complex tem-
perature density matrix elements required to describe quan-

*) This manuscript reports independent work and was submitted essentially
simultaneously with the following manuscript.
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tum dynamics. Several numerical examples are presented in
Sec. I11.

Il. THEORY

In this section we consider the methods aimed at the
construction of quantum-mechanical time correlation func-
tions. In particular, we show that it is possible to extend
equilibrium Monte Carlo path integral approaches for use in
dynamical problems. Several related equilibrium formula-
tions have been presented previously and are reviewed else-
where.? For simplicity, we restrict ourselves in the following
to a one-dimensional notation with the understanding that
the formal extension to more dimensions is straightforward.
We also note that the present developments are readily
adapted for use in conjunction with influence functional
methods which can further simplify problems having a natu-
ral “primary system plus bath” structure.

A. Time correlation functions

We begin by considering the structure of a typical quan-
tum-mechanical time correlation function. As discussed
elsewhere,!! it is convenient to organize the calculation of
time correlation functions in a manner that avoids the con-
struction of pure propagators. Thus, rather than studying
correlation functions of the type

C .5 (t) =trlexp( — BH)A exp(iHt /%) B

Xexp( — iHt /i) 1/tr exp( — BH), 2.1
it is convenient to study related correlation functions
Gup (1) =tr[Aexp(—B*H)Bexp(—B.H)]/
trexp( — BH), (2.2)
where 3, is given by
B.=B/2+it/h 2.3)

It is easy to show that the Fourier transforms of C,, (¢) and
G .5 (1) are related by

G4p (@) = exp( — Bhiw/2)C ,p (@), (2.4)

and thus that the two functions have the same information
content. However, G5 (¢) is the more convenient function
for numerical study since the propagator factors are always
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paired with a corresponding Boltzmann-like term.

The formal structure of G, (#) suggests a particular
direction with respect to numerical evaluation. Expanding
Eq. (2.2) ina coordinate representation gives, assuming that
A and B are operators that depend only on position,

Gap (2) =J-dx dx’|(x’le"B‘Hlx)le(x)B(x’)/

fdx dx'| (e P x) 2, 2.5)

where we have used the fact that the partition function nor-
malization can be written as

jdx (x|exp( — BH) |x)

= fdx dx'(x|exp( — B *H)|x") (x'|exp( — B.H)|x).
(2.6)

Equation (2.5) gives the time correlation function G 5 (¢) as
an average over a probability distribution, an average remi-
niscent of those that arise in equilibrium calculations. Here,
however, the distribution is not a simple equilibrium factor,
but rather a temperature and time-dependent probability
distribution that properly expresses the dynamical correla-
tion of the coordinates x and x'.

Equation (2.5) serves to focus our attention on complex
temperature density matrix elements, {(x’'|exp( — B.H)|x).
Were we in a position to compute such elements, G5 (¢)
could be evaluated by Monte Carlo methods"*'? in much
the same way that one evaluates analogous equilibrium aver-
ages. The obvious difficulty in this approach is that our abi-
lity to compute the required complex temperature density
matrix elements is, at present, limited. It has generally been
felt that the primary method by which we approach corre-
sponding equilibrium problems, numerical path integral
techniques, are poorly suited to the present task except at
relatively short times (i.e., times small relative to S#).

We develop in the following section relatively simple
extensions of equilibrium Monte Carlo path-integral meth-
ods that appear to overcome the difficulties traditionally as-
sociated the calculation of the complex temperature density
matrix elements of the type required by Eq. (2.5). Anticipat-
ing that such methods are in fact feasible for the calculation
of the required density matrix elements, we consider for the
moment the problems posed by the Monte Carlo evaluation
of Eq. (2.5). As written, the Monte Carlo evaluation of Eq.
(2.5) requires that we sample from a probability density that
is not available analytically, but rather is itself produced by a
statistical process with noise. Kennedy and Kuti have con-
sidered this type of problem recently and have outlined new
importance sampling methods,”> methods better able to
cope with such noise than the customary Metropolis ap-
proach.'? Alternatively, we may anticipate evaluating Eq.
(2.5) using either an analytically available reference prob-
ability density or a density derived from the numerical path-
integral representation of the complex temperature density
matrix elements.

B. Density matrix evaluation

We consider in this section the problem of devising a
practical means for estimating the density matrix elements
discussed above. Since our approach will be based on exten-
sions of equilibrium Monte Carlo path-integral methods, we
briefly review these techniques to help define notation and to
set the stage for further developments. As developed by
Feynman'* the quantum mechanical density matrix element

p(x'x, B) = (x'|exp( — BH)|x) (2.7)
can be written in a path-integral form, giving

po'x ) = [ Dx(s)

B
Xexv( —f ds{(mx*/2 + V[x(s)] )/ﬁ}).
0
(2.8)

The functional integration in Eq. (2.8) corresponds to the
sum over all possible paths connecting x and x’ satisfying the
boundary conditions

x(s=0) =x, (2.9a)
x(s=p#)=x". (2.9b)

It is convenient to decompose the paths in Eq. (2.8) into a
reference path, chosen to satisfy the boundary conditions in
Eq. (2.9), and a “fluctuation” about the reference path.
Since the deviations from the reference path vanish at the
endpoints (by design), they can be written in a Fourier sine
series.'* Using this expansion and choosing a “free-particle”
reference path gives

x(u)=x+ (x' —x)u+ z a, sin(kwu),
k=1

where the “time” variable, u = s/f#i, ranges over the inter-
val (0,1). The quantum mechanical paths are labeled by the
Fourier coefficients a, and the sum over all paths in Eq.
(2.8) can thus be reduced to an integral over all Fourier
coefficients. It is easy to generalize the above result to utilize
other types of reference paths such as the harmonic oscilla-
tor. Anticipating a Monte Carlo evaluation, we consider not
p itself but the ratio of the density matrix element at (x’,x)
and at atemperature S = 1/k; T toits free-particle counter-
part, p,. Using Eq. (2.10) it is easy to show'* that this ratio
can be written (suppressing the explicit coordinate depen-
dence for simplicity) as

PPy, =fda exp(— i ai/20% —B(V>)/

k=1

fda exp(— i ai/ZOi).
k=1

The two terms in the exponent of the numerator of Eq.
(2.11) originate from the kinetic and potential energy pieces
of the “action” integral in Eq. (2.8). Analytic evaluation of
the kinetic energy term generates the Gaussians in Eq.
(2.11) whose widths, o2, are given by

oz = 2B#/(m7k ?). (2.12)

These second moments have a de Broglie-like dependence on
mass and temperature and decreases with increasing k. The

(2.10)

(2.11)
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potential energy term corresponds to the average of
V[x(u)] over the particular path specified by the a, vari-
ables. Explicitly,

1

V) =J; V [x(u))du.

Unlike the average over the kinetic energy, the average over
the potential energy is not generally available analytically
and must be evaluated through the use of numerical quadra-
ture methods. Since this integral is one dimensional even for
general problems, however, this numerical task is not diffi-
cult. In the present work we have used a trapezoidal quadra-
ture scheme, writing the average of the potential as

(2.13a)

N
Vy= 3y Vix(u,)]/N, (2.13b)
where "=t
u, =n/N. (2.13¢)

The Appendix indicates how standard Fourier transform
methods are of assistance in the evaluation of Eq. (2.13b).

The formally infinite Fourier expansion of the quantum
mechanical paths will, in practice, be truncated at some fin-
ite upper index. The fact that the second moments of the
free-particle Gaussians decay with increasing Fourier index
implies that such a truncation will be practical for typical
interaction potentials. In the simplest implementation of the
Fourier approach, contributions of the higher-order Fourier
expansion coefficients are completely discarded. It is possi-
ble, however, to include such contributions (approximate-
ly) through the method of partial averaging,'®'” a relatively
simple extension of the basic Fourier method. In this ap-
proach the effects of the high-order Fourier coefficients are
included through a mass and temperature dependent effec-
tive potential. The prescription for the construction of this
effective potential and examples of its use are discussed else-
where. %!

Equations (2.10)—(2.12) are appropriate for complex
as well as real values of 5.%!7 In particular, if we have a
complex value of B, 8., given by

B.=B+it/# (2.14)
then Egs. (2.10)-(2.12) provide us with a device for gener-
ating (formally, at least) the corresponding complex tem-
perature density matrix elements. As discussed in the pre-
ceding section, the motivation for examining such matrix
elements is that they arise naturally in the study of finite
temperature time correlation functions. ,

Before proceeding it is useful to illustrate the difficulties
inherent in the direct Monte Carlo calculation of complex
temperature density matrix elements, difficulties that have
effectively discouraged previous efforts in this direction. De-
fining s7 as

si = 2|B.|*#/(mm*k*B), (2.15)
we can rewrite Eq. (2.11) as
plon = [ dnesp| —( § et +8()
k=1
+aepn( S ang-sm)| /
k=1
da exp( — i ai/2st + (it /Bh) i ai/Zsﬁ).
=1 k=
1 (2.16)

From Egs. (2.15) and (2.16) we can see two related prob-
lems exist. First, comparing Eqgs. (2.15) and (2.12), we see
that in the complex temperature case the parameter |5, |*/3
plays the role of an effective temperature. Longer real times
in a dynamics problem are thus analogous to lower tempera-
tures in the equilibrium case. This implies that at longer real
times more variables will be required in the expansions of the
quantum mechanical paths. The low effective temperature, a
technical detail in equilibrium problems, is more trouble-
some in the case of dynamics for reasons that will soon be-
come apparent. A second problem centers on the integrands
in the numerator and denominator of Eq. (2.16). The com-
plex exponentials in each oscillate for nonzero values of ¢,
with the ratio ¢ /5 being a natural parameter describing the
time scale for the onset of rapid oscillations. The rapid oscil-
lations at long times have led in the past to a general pessi-
mism concerning the possibility of developing Monte Carlo
numerical procedures for the evaluation of path-integral
averages in quantum dynamics for times beyond roughly 5#.

We begin our development with an observation. A di-
rect calculation of Eq. (2.16) via Monte Carlo methods
would typically proceed by first splitting up the Gaussian
kinetic energy terms in the numerator and denominator of
Eq. (2.16) into real and imaginary parts. Equation (2.16)
would thus be expressed as the ratio of two separate aver-
ages, each computed using the real portion of the kinetic
energy term as a weight function. We note, however, that so
constructed the denominator would equal
(1 — it /BA) ~*™"? where Kmax 1S the number of terms in-
cluded in the Fourier path expansion. As ¢ (and thus k., )
becomes large, this vanishing contribution would have to be
cancelled by the numerator in order to achieve a finite result.
Although it is easy to see that this would occur formally,
achieving the cancellation numerically would generally be
quite difficult. We conclude from this observation that if we
are to succeed in developing Monte Carlo methods for the
calculation of p, then we must generally avoid transforming
Eq. (2.16) into two separate Monte Carlo problems.

To proceed we return to our original path-integral
expression, Eq. (2.11). It is convenient to separate the Four-
ier coefficients that appear in the path-integral into three
broad catagories based on the magnitude of their free parti-
cle widths, o, , given by Eq. (2.12). For k beyond a particu-
lar value, k..., , the o, value will be sufficiently small in mag-
nitude that the associated a, variables will behave in an
essentially free-particle-like fashion. This suggests that we
treat the high-order coefficients by partial averaging.'®!’
Rather than simply truncating the expansions at k = k,,,,
and completely ignoring contributions from higher-order
terms, we utilize a low-order cumulant treatment of the
averages, replacing “the average of the exponential by the
exponential of the average.” The effects of the high-order
Fourier coefficients thus appear through a (complex) tem-
perature and mass dependent potential given in terms of the
original potential, ¥V (x), by

Ve (x,u) = fdy exp[ —y2/20%(u) 1V (x +y)/

fdy exp[ — /207 (u)], (2.17)

J. Chem. Phys., Vol. 87, No. 3, 1 August 1987
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where o”(u) is given by
o (u) = (ﬁcﬁz/m)[u(l —u)

k

max

- /1) Y o sinz(km)].

k=1

(2.18)

This procedure is closely related in spirit to the Feynman~—
Hibbs effective potential construction.'® Here, however, the
averaging process is designed to include only the high-order
terms rather than the entire quantum correction. The value
of k., that is required for any particular problem can be
anticipated by comparing the magnitudes of the partial aver-
aging width and the length scale for variation of the interac-
tion potential.

The effectiveness of partial averaging has been discussed
in detail elsewhere.'®!” A rough indication of its utility is
illustrated in Table 1. We list there the numerical values,
obtained analytically, for the ratio of the x’ = x = 0 density
matrix element to its free-particle value with and without
partial averaging for the case of a parabolic barrier,
V(x) = — mw*x?/2. This ratio is given as a function of the
number of explicit Fourier coefficients retained in Eg.
(2.11) for the particular case of ffiw = 1 and ¢t = 0. We see
from Table I that partial averaging substantially reduces the
number of explicit Fourier coefficients required. Similar re-
ductions have been observed on a variety of equilibrium and
dynamical problems. Although we will not explicitly indi-
cate it in our subsequent notation, we will generally assume
in what follows that the high-order coefficients have been
included using partial averaging.

We now turn to the central issue in the current problem
and consider the integrals over the remaining Fourier coeffi-
cients in Eq. (2.11). A convenient way to avoid transform-
ing Eq. (2.11) into two separate problems is to introduce a
coordinate rotation chosen to render the natural weight
function, in this case the Gaussians from the kinetic energy
term, entirely real. Using a coordinate rotation defined by

a; =a; /o, (2.19)
gives in place of Eq. (2.11) the ratio
kmAx
PPy = fda exp( - E ai/2 —BC(V))/
k=1
kaX
fda exp( -y ai/Z). (2.20)
k=1

TABLE 1. Listed are the ratios of Fourier density matrix elements to their
free-particle counterparts for a Pfiw=1 parabolic barrier
[V(x) = — mw*x*/2]. The results shown are with (PA) and without
(FPI) partial averaging and are shown as a function of the number of ex-
plicit Fourier coefficients retained in the expansion of the quantum paths,
kpax [cf. Eq. (2)]. The k.., = O FPI result is, by construction, the free-
particle value. The exact ratio is given analytically by (B#i/sin ffiw)'/?
and is 1.483 for the present case.

K FPI PA
0 1.000 1.396

1 1.297 1.478

2 1.368 1.482

3 1.400 1.483
20 1.469 1.483
100 1.480 1.483

Im(«)

c,

Re(«)

FIG. 1. The integration contour for the a, integrals in Eq. (2.20). The
original integral runs along the line from point 1 to point 2 in the figure. The
distorted contour includes contours C, and C, as well as the real-a axis.

The paths in Eq. (2.20) are specified by
Kmax
x(w)=x4+(x' —x)u+ z a, o, sin kwu,
=1
and the , integrations in Eq. (2.20) are now along a line in
the complex a plane from — /0, to « /0. (See Fig. 1.)
Since all o, values are proportional to 8., the rotation angle
is the same for all Fourier coefficients and the Fourier sum in
Eq. (2.21) is distributed along a single line in the complex &
plane. Equation (2.20) is formally equivalent to Eq. (2.11).
When exp( — Za}/2 — B,.{V)) is analytic within the re-
gions bounded by the original contour, the real axis and con-
tours C, and C,, the integrals in Eq. (2.20) can be evaluated
along the distorted contours made up of C;, C,, and the real
axis. Furthermore, if exp( — 3 a2/2 — B.{(V')) vanishes
along C, and C, we have
k,

p/pp = fj da exp( - Ex aip/2 —,BC(V))/

k=1

@ kmax
J‘ da exp(— > ai/Z).

k=1

(2.21)

(2.22)

Equation (2.22) expresses the desired density matrix ele-
ment as a single average of the type discussed elsewhere.'® It
remains to demonstrate that the numerical evaluation of Eq.
(2.22) is feasible for interesting physical systems.

Before presenting numerical examples, we consider the
application of the above results to a model problem where we
can explore the various steps analytically. We consider first
the problem of computing the ratio of the density matrix
element to its free-particle value for the x’ = x = 0 parabolic

barrier, V(x) = — mw?x*/2. It is straightforward to show
that for this problem Eq. (2.22) reduces to
P/ P X
=f daexp[— i ai[(l/Z—Bﬁh’wz/(Zﬂzkz)]}/
- k=1

(2.23)

oc km.lx
f da exp( -3 ai/Z).

— o k=1
Convergence of the a,th integral in the numerator of Eq.

(2.23) is assured if

Re[1/2 — B¥#w?/ (277, ?)] >0, (2.24)
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which implies that ¢ must satisfy
12> B — k0 (2.25)

For a fixed value of B there thus exists a time, given by Eq.
(2.25), beyond which rotation is appropriate for the a,th
integration. For S#iw < 7 the coordinate rotation procedure
is formally correct for all coefficients for all times. For a
general value of 8%, rotation will be appropriate for the high-
er coefficients and inappropriate for the lower ones, imply-
ing that some alternate method of evaluation for these low-
order terms will be required. In contrast to the direct
formulation of the dynamics problem, Eq. (2.16), which ul-
timately led to a ratio of two vanishing Monte Carlo aver-
ages, direct Monte Carlo integration over these few variables
proves to be feasible. Methods designed specifically to cope
with such problems have been discussed elsewhere.'® Our
analysis suggests that the calculation of complex tempera-
ture density matrix elements for barrier type problems
should be relatively easy, even for large real times. Repeating
the above analysis for an ordinary harmonic oscillator,
V(x) = mw*x%/2, leads to the conclusion that coordinate
rotation for the a, th variable is valid for times satisfying

t< (mk /0)V [1 + (Bhiw/mk)?]. (2.26)

For oscillatory problems we thus expect that coordinate ro-
tation using a free-particle reference will work well for all
degrees of freedom for times less than roughly half a vibra-
tional period and then to fail for successive Fourier variables
at the rate of approximately one variable per half vibrational
period. As above, we expect that direct Monte Carlo meth-
ods or their extensions'® will be useful for these integrations
where rotation fails. For bound degrees of freedom an oscil-
lator reference system, rather than the free-particle form dis-
cussed here, may prove advantageous.

We expect remnants of the above structure to survive for
anharmonic potentials and we also expect that a combina-
tion of coordinate rotation, direct Monte Carlo and station-
ary phase Monte Carlo methods'® to be of use in the con-
struction of the relevant averages.

In summary, we have presented an approach aimed at
the calculation of complex temperature density matrix ele-
ments based on a combination of coordinate rotation and
direct Monte Carlo methods. By partitioning path-integral
variables into classes and treating each of these classes in a
natural way, we have appreciably reduced the difficuity tra-
ditionally associated with the development of a quantum
Monte Carlo dynamics.

l. NUMERICAL EXAMPLES

It is useful to begin our discussion with a simple oscilla-
tor example outlined analytically in the previous section. In
what follows we will artificially evaluate the oscillator den-
sity matrix elements numerically, using a free-particle refer-
ence system and taking no special advantage of the quadratic
nature of the potential energy. Both the a, integrations in
Eq. (2.22) as well as the one-dimensional quadrature of the
time average over the potential energy function, Eq. (2.13),
were evaluated numerically. Specifically, the a, integrations
were performed by ordinary Monte Carlo methods and the

integrations were evaluated by trapezoidal quadrature (see

the Appendix).
Figure 2 displays the real part of the x' = x = 0 parabol-
icbarrier [V(x) = — mw?>x?/2] density matrix element asa

function of time. For these results the complex temperature
was B.=p8/2+it/fi and other parameters were
m=my, w/ky; = 1000 K, and 7= 500 K [a temperature
for which Eq. (2.25) is satisfied for all values of f and k]. For
reference, B#/2 = 316 a.u. at this temperature and 27/
o = 1984 a.u. We see first from Fig. 2 that with coordinate
rotation that it is quite easy to compute density matrix ele-
ments for the barrier problem for values of ¢ large compared
with S#i/2. For comparison, the error estimate for the
t = 2000 a.u. result obtained without rotation methods using
the same number of Monte Carlo points and Fourier coeffi-
cients is of the order of 10'® times larger than when rotation
is used, implying that for this particular circumstance that
rotation methods represent approximately a 10*® gain in
computational efficiency relative to the direct Monte Carlo
approach. The gain in computational efficiency for the rota-
tion method relative to the direct Monte Carlo approach is
substantially larger at longer real times. Similar resulits, al-
beit with slightly larger statistical errors for the same nu-
merical effort, can be obtained for the density matrix ele-
ments for the ordinary harmonic oscillator.

We now turn to a discussion of anharmonic systems and
consider first the problem of particle passage over an anhar-
monic Eckart barrier,

V(x) = V,sech®(x/a). 3.1

We note that since sech(z) vanishes for large
|z| [Re(z) 0], the arguments leading to Eq. (2.22) are
valid. A convenient way to analyze the kinetics associated
with this barrier passage is through the flux autocorrelation
function,® a function expressable in terms of coordinate de-

1.20

1.00

0.80

0.60

Re(p)

0.40

0.20

i

0'000 . 500 1000 1500 2000 2500
t (au)

FIG. 2. Shown is the real part of the x’ = x =0 complex temperature
(B. =B/2+it/#) density matrix element for the parabolic barrier
(m=my, o/ky; = 1000K, T = 500 K) as a function of time. The line cor-
responds to the exact result and the points are produced by a coordinate
rotation Monte Carlo estimate [Eq. (2.23)] using k., = 8 with 2000
Monte Carlo points being used in each estimate.
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rivatives of the complex temperature density matrix ele-
ments. The calculation of this correlation function via
Monte Carlo methods suffices to illustrate that we cannot
only compute the relevant density matrix elements for an
anharmonic barrier problem, but that we can compute them
with sufficient accuracy to extract physically interesting in-
formation. In order to facilitate comparison with Wyatt’s
RRGM calculation,'® we choose as system parameters
m =mpy,V,=2500 cm~!, and @ = 1 a.u. Physically, this
corresponds to a hydrogen atom crossing a 7.15 kcal/mol
barrier. Shown in Fig. 3 is the flux autocorrelation function,
C;(1), evaluated at x = O for this potential computed using
the present coordinate rotation methods.?® The results in
Fig. 3 are in excellent agreement with the corresponding
results in Fig. 2 of Ref. 10(c). Although not plotted, values
of C,(¢) for appreciablly larger times than those shown in
Fig. 3 could be easily generated for the present problem us-
ing the coordinate rotation approach. The integral of C,(¢)
from ¢ =0 to infinity gives the thermal rate constant for
barrier passage.

Finally, we turn to a more challenging test of the present
approach and examine the dynamics of an anharmonic oscil-
latory degree of freedom. As an illustration that such prob-
lems can be studied, we consider the dynamics of a system
with a potential of the form

V(x) = Vy(exp{ — [(x + a)/0)*/2

+exp( — [(x —a)/0]%/2}). 3.2)

This potential is plotted in Fig. 4 for the particular param-
eters

Vo=1.139x10"%a.u,,
a=2au,
o=1lau

We have chosen a potential expressed as a linear combina-
tion of Gaussians in order to simplify the partial averaging
process and also since such Gaussian expansions may prove

2.0

1.59

1.0

C (0 (ps2)

0.5

0.0

t(fs)

FIG. 3. Shown is the flux autocorrelation function (x = 0) for the potential
given in Eq. (3.1). The points correspond to k,,,,, = 1 estimates each com-
puted using the methods of Sec. 11 utilizing 10 000 Monte Carlo points for
each estimate. The points are connected by a smooth curve as a visual aid.
The results are in good agreement with those discussed in Ref. 10(c).

a useful general representation for interaction potentials in
conjunction with the present rotation methods. It is straight-
forward to compute the density matrix elements for this po-
tential using a free-particle reference for times exceeding one
vibrational period using a combination of the coordinate ro-
tation and Monte Carlo methods outlined above. To illus-
trate this, we plot in Fig. 5 the flux autocorrelation function
(evaluated at x =0) computed using these methods for
m = my and T = 500 K. The solid line in Fig. 5 corresponds
to results obtained using the NMM method?! (P = 128).
For reference, the relevant thermal time is S#/2 = 7.6 fs.
Several things are evident from Fig. 5. First, we see evidence
of appreciable anharmonic behavior. We also see in the de-
cay of successive maxima of C,(¢) an indication of leakage of
particles initially confined within the potential well through
the Gaussian barriers. (Were we specifically interested in
computing the escape of particles from this potential well,
we would obviously place our flux counting surface in a bar-
rier region rather than at the local minimum of the poten-
tial.) This example illustrates that using the present methods
it is possible to compute accurately physically interesting
finite temperature correlation functions for an anharmonic
oscillatory degree of freedom for times well in excess of 5%
and beyond a single vibrational period.

IV. DISCUSSION AND SUMMARY

We have presented here a number of related develop-
ments that would appear to broaden significantly the appli-
cability of Quantum Monte Carlo methods with respect to
the study of dynamics. Utilizing a combination of techniques
centered around coordinate rotation, we have shown that it
is possible to extend the time domain over which one can
evaluate complex temperature density matrix elements and
associated properties using Monte Carlo methods well be-
yond the B7 value previously thought to represent an upper
limit. The present results suggest that often expressed pessi-
mism concerning the applicability of quantum Monte Carlo

V(x)/kT
H
s

FIG. 4. The potential defined by Egs. (3.2) (7= 500 K).
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FIG. 5. The flux autocorrelation function (x = 0) for the double barrier
potential plotted in Fig. 4. The solid line corresponds to NMM estimates
(P = 128). The points represent calculations in which the methods of Sec.
II were used to estimate the necessary complex temperature density matrix
elements (m =m,, T=>500 K, k,_,, = 16). Finite difference methods
were used to compute the necessary coordinate derivatives. A common
mesh size (0.1 a.u.) was used for both sets of results to facilitate a direct
comparison. The number of Monte Carlo points used varied from 10* for
times out to 40 fs to 10° for the longer times. The relevant thermal time
scale, 5%/2, is 7.6 fs at these temperatures.

methods to problems in dynamics was premature. The sim-
ple examples presented suggest, in fact, that the present ap-
proach will be useful for important classes of dynamics prob-
lems. We caution, however, that additional work will be
required in order to establish the general limitations of the
present methods.

One feature of the present development that requires
further attention is the issue of the representation of empiri-
cal interaction potentials. As in semiclassical S-matrix the-
ory?? for classically forbidden processes, the present proce-
dure probes the behavior of the potential throughout the
complex plane, implying that certain representations of
these interactions will likely be more convenient than others.
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APPENDIX

In performing Fourier path integral Monte Carlo calcu-
lations one needs to compute rapidly quantities of the type

k

S, =3 agsin(kmn/N), n=12,..N,

k=1

(AD)

where the {g, } values are the Fourier coefficients specifying
a particular path. For typical applications we have N= k.,
which means that computing all S, values is apparently a
task of effort proportional to N 2. We note, however that the
sum in Eq. (A1) is of the form of a finite sine transform of
the array {a, }. If the Monte Carlo sampling algorithm for
the g, values involves making simultaneous changes in sev-
eral variables, it is convenient to compute Eq. (A1) using
fast sine transform methods?* to reduce the effort from order
N?toorder Nlog N.
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