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The present paper explores a simple approach to the question of parallel tempering temperature
selection. We argue that to optimize the performance of parallel tempering it is reasonable to require
that the increase in entropy between successive temperatures be uniform over the entire ensemble.
An estimate of the system’s heat capacity, obtained either from experiment, a preliminary
simulation, or a suitable physical model, thus provides a means for generating the desired tempering
ensemble. Applications to the two-dimensional Ising problem indicate that the resulting method is
effective, simple to implement, and robust with respect to its sensitivity to the quality of the
underlying heat capacity model. © 2008 American Institute of Physics. [DOL: 10.1063/1.2907846]

I. INTRODUCTION

Stochastic quadrature methods are valuable tools in the
study of many-body systems. In particular, they offer a gen-
eral approach to broad classes of both classical' and
quantum-mechanical problems.2 A common practical issue
associated with the application of these methods is coping
with the “sparse” probability distributions that accompany
activated or ‘“rare-event” processes. Unless special care is
exercised, the random walk procedures typically used to
implement such stochastic approaches can become trapped in
the myriad of the system’s local potential minima or
“inherent structures,” thereby producing an inefficient,
or even improper sampling of the underlying probability
distribution.

Parallel tempering methods provide a general and effec-
tive technique for dealing with sparse sampling issues.”™®
The essence of these procedures is to create an ensemble of
replicas of the system of interest corresponding to a range of
one or more control parameters and to utilize the resulting
ensemble to improve the sampling. For example, if the tem-
pering control parameter involved is the system’s tempera-
ture, the strategy is to use information from the ensemble’s
high-temperature members, where activation barriers are
more easily surmounted, to improve the sampling at lower
temperatures, where barrier crossings are otherwise exponen-
tially suppressed. In practice, this is accomplished by intro-
ducing attempted exchanges of configurations between en-
semble members. For these attempted moves to be useful,
the temperature range of the ensemble must be sufficiently
large that its higher energy members can surmount relevant
activation barriers and the spacing must be sufficiently small
that exchange attempts between the various temperatures are
statistically significant.

The efficiency of the parallel tempering method depends
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on the details of the control parameter selection. A number of
techniques for guiding this selection are available and have
been reviewed elsewhere.®” One fruitful line of the develop-
ment is represented by the works of Kofke,® Kone and
Koﬂ&e,9 and Predescu et al.,lo who have explored connec-
tions between the success of tempering exchanges and the
heat capacity of the system being studied. More recently,
Predescu ef al.'' have explored ensemble selection schemes
based on alternative performance metrics such as the
“effective fraction.” Trebst and co-workers '*"'® have exam-
ined the optimization of generalized ensembles from the
point of view of stochastic flows in the control parameter
space, work that has subsequently been unified and extended
by Nadler and Hansmann.'"

The present paper examines a simple, intuitive approach
to the question of parallel tempering temperature selection.
As in the works of Kofke,8 Kone and Kofke,9 and Predescu
et al.,'’ the system’s heat capacity plays a central role. After
introducing the basic idea in Sec. II, we examine its relation-
ship to existing methods. In Sec. III, we compare the perfor-
mance of various temperature selection techniques when
applied to a common problem.

Il. FORMAL DEVELOPMENTS

In its most basic form, conventional parallel tempering
involves the creation of an ensemble of equilibrium simula-
tions of the physical system in question that covers a range
of temperatures, denoted here by {T,}, m=1, M+1. Sam-
pling moves involve a mixture of conventional Metropolis
displacements at the individual temperatures as well as at-
tempted exchanges of information between different data
streams. One has great freedom in selecting both the range of
temperatures as well as the details of the exchange attempts.
Indeed, it is guidance concerning the selection of such
procedures that we seek.

© 2008 American Institute of Physics
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Kofke,8 Kone and K0ﬂ<e,9 emphasize the notion that the
probability of accepting tempering exchange attempts be-
tween different ensemble members is related to the entropy
differences involved. To optimize the performance of parallel
tempering, we suggest that it is reasonable to supplement this
idea and to require that the increase in entropy (or “informa-
tion”) between successive temperatures be uniform over the
entire ensemble. That is, if AS is the overall entropy differ-
ence between the minimum and maximum temperatures of
the ensemble, T and T}, (presumed known), the sugges-
tion is to require the entropy increase between each succes-
sive pair of temperatures, 7,, and T,,,; to be a constant,
AS/M, for all m. Explicitly, assuming a constant volume,

Imet € (T) AS
f gl _AS. (1)
. T M

This choice of temperatures has the desirable feature that
each successive temperature stream in the ensemble bears the
task of producing a fixed amount of “new” information, a
seemingly equitable way of “sharing” the computational
workload between the ensemble members. It is clear that this
constant entropy increase (CEI) approach can be imple-
mented for general, temperature-dependent heat capacities.
Given the overall temperature range, the number of ensemble
replicas to be used, and an estimate of the system’s heat
capacity (obtained either from experiment, a preliminary
simulation, or a suitable physical model), Eq. (1) provides a
means for generating the desired tempering ensemble. Spe-
cifically, one first integrates the model heat capacity from the
minimum to maximum temperatures, 7; and 7, , to obtain
the overall entropy change AS, and then solves for the suc-
cessive temperatures T,T5, ..., T, that satisfy Eq. (1). De-
pending on one’s wishes, this approach can be implemented
either as a single-step or as an iterative procedure in which
successive estimates of the system’s heat capacity are uti-
lized to refine the quality of the ensemble selection.

Beyond the question of “how” to select the ensemble
temperatures, one must also consider the question of
“how many” temperatures to include. A reasonable estimate
can be obtained by requiring that entropy difference between
successive ensemble members be less than or equal to the
natural entropy fluctuations induced by energy fluctuations at
those individual temperatures. Such a requirement assures at
least a minimal similarity between the configurations
sampled at the two different temperatures, and thus, a rea-
sonable chance that tempering exchange attempts between
those temperatures will be successful. Recalling that the in-
crease in entropy with respect to energy at fixed volume is
given by

aS 1
(5)% @

and denoting the relevant energy fluctuations at a given tem-
perature as o, a reasonable choice of M is thus to require
that the inequality
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AS _ o

T 3)

be satisfied at each of the temperatures in the ensemble.
Expressing the energy fluctuations in terms of the system’s
(generally temperature dependent) heat capacity, Eq. (3)
becomes

AS
e (kpC,)"2. (4)
For a given value of AS, we thus want to select a value of M
that is large enough to assure that Eq. (4) holds at each of the
temperatures in the ensemble.

The CEI approach provides a general means by which
we can select the parallel tempering ensemble. Under par-
ticular circumstances, these general results simplify signifi-
cantly. For example, if the heat capacity is relatively constant
over a particular temperature interval, Eq. (1) suggests that
the differences between successive temperatures be taken as

( kB > 172

ATﬂl m = Tﬂl P > 5
m+1 C, (5)
as suggested by Nymeyer et al.* on the basis of somewhat

different arguments. If, in addition, the heat capacity is con-
stant over the entire interval, Eq. (5) produces a geometric
distribution for the temperatures in the parallel tempering
ensemble.

lll. NUMERICAL EXAMPLE

In this section, we consider the application of the CEI
approach to a specific example, the zero-field, two-
dimensional (2D) Ising model.>! We choose this model both
to illustrate the use of the present technique on a well-
characterized problem and to facilitate the comparison of the
CEI method’s performance to that of other, recently pub-
lished approaches.m’16 With the latter goal in mind, we uti-
lize a tempering ensemble that consists of 21 temperatures
covering the reduced temperature range of 7=(0.1,10.0)
throughout.

The exact, analytical heat capacity of the 2D Ising
system21 is plotted in Fig. 1 as a function of 7. When used in
the CEI model, this heat capacity produces the 21 member
parallel tempering ensemble depicted in Fig. 2. In this figure,
the temperature index N(T), which is an integer index rang-
ing from 1 (lowest temperature in the ensemble) to 21 (high-
est temperature in the ensemble), is plotted as a function of
T. As can be seen by comparing Figs. 1 and 2, within the CEI
model, a maximum in the heat capacity leads naturally to a
“clustering” of the parallel tempering members in the corre-
sponding temperature range. We note also that the strong
temperature dependence of the heat capacity for the 2D Ising
problem produces an ensemble that is far from geometric in
nature.

The system’s exact, analytical heat capacity will typi-
cally not be available for general applications. Consequently,
it is important to assess the CEI method’s sensitivity to the
quality of the heat capacity model used to drive the ap-
proach. Does the approach retain its utility when a heat ca-
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FIG. 1. Shown is the exact, analytical heat capacity for the 2D Ising model
as a function of temperature.

pacity obtained from approximate and/or numerical means is
used as the basis for ensemble selection? In Fig. 3, we show
the exact 2D Ising model heat capacity of Fig. 1 (dashed
line) along with the approximations numerically obtained
from Monte Carlo simulations that utilize 20X20 (solid
circles) and 4 X 4 (open circles) periodic lattice grids, respec-
tively. The CEI tempering ensembles generated by using the
various estimates of the system’s heat capacity are presented
in detail in Table 1. The various CEI ensembles are labeled
according to the heat capacity model used to produce them.
For example, the CEI-S(4) ensemble is obtained by using the
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FIG. 2. Shown are the temperatures in a parallel tempering ensemble se-
lected on the basis of the constant entropy increase model and the heat
capacity results of Fig. 1. For this example, a total of 21 temperatures in the
interval (0.1,10.0) are used. Note the clustering of temperatures in the vi-
cinity of the heat capacity maximum. The dashed line is intended as a guide
for the eye and has no physical significance.
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FIG. 3. Heat capacities for a 2D Ising model as a function of lattice size (L).
The figure shows the analytical results for the infinite lattice (dashed line),
for a 20X 20 grid (solid circles), and for a 4 X4 grid (open circles). These
heat capacity results in conjunction with the CEI method generate the
parallel temperature ensembles listed in Table 1.

numerical 4 X 4 grid estimate of the system’s heat capacity to
drive the CEI approach, the CEI-S(20) using the numerical
20X 20 grid estimate, and so on. The tempering ensemble
produced by the techniques of Ref. 16 is also shown. Finally,
Table I contains an ad hoc tempering ensemble designed by
a knowledgeable (but anonymous!) researcher familiar with
the replica exchange methods when asked to generate a

TABLE I. Shown are the temperatures of the various parallel tempering
ensembles used for the 2D Ising problem. The results shown correspond to
the CEI-S(exact), CEI-S(20), CEI-S(4) ensembles, the ensemble of
Katzgraber et al. [Ref. 16], and the ad hoc ensemble described in the text.

CEI-S(exact) CEI-S(20) CEI-S(4) Ref. 16 ad hoc
0.1000 0.1000 0.1000 0.100 000 0.100
1.4688 1.4635 1.4310 1.394 883 0.807
1.6866 1.6820 1.6460 1.668 180 1.250
1.8373 1.8332 1.7980 1.871 952 1.514
1.9538 1.9496 1.9220 2.025 904 1.650
2.0478 2.0433 2.0310 2.134 071 1.850
2.1250 2.1201 2.1320 2.205 451 2.000
2.1879 2.1836 2.2270 2255943 2.100
2.2374 2.2386 2.3210 2.297 688 2.221
2.2702 2.2883 2.4150 2335762 2.300
2.3064 2.3365 25130 2.375 000 2.500
2.3603 2.3896 2.6160 2.419 257 2.700
2.4321 2.4518 2.7290 2474513 2.929
2.5265 2.5341 2.8550 2.552927 3.200
2.6473 2.6464 3.0010 2.686 760 3.636
2.8115 2.8019 3.1780 2.900 401 4.343
3.0372 3.0220 3.4060 3.228 705 5.000
3.3708 3.3483 3.7270 3.754 932 5.757
3.9414 3.8847 4.2390 4.617 088 7.171
5.1247 4.9906 5.2970 6.226 545 8.586
10.000 10.000 10.000 10.000 00 10.000
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FIG. 4. A visual depiction of the various parallel tempering ensembles listed
in detail in Table I. Each horizontal line of dots indicates the temperatures
for that ensemble. Successive rows in the figure correspond to (starting from
the bottom of the figure) the CEI-S(exact), CEI-S(20), CEI-S(4), Ref. 16,
and ad hoc ensembles of Table I, respectively.

21-temperature ensemble for the current problem. The pur-
pose of including such an ad hoc ensemble is to obtain a
rough sense of the gain in performance of the various sys-
tematic approaches to ensemble selection compared to that
achievable using purely intuitive selection approaches. To
facilitate a visual comparison of the various ensembles, the
temperature points in the neighborhood of the heat capacity
maximum for the various ensembles are graphically
displayed in Fig. 4.

Figure 5 displays the calculated results for a typical
equilibrium property, the heat capacity, obtained from paral-
lel tempering simulations by using the various ensembles of
Table I. Each simulation depicted involves 300 loops of
400 000 Monte Carlo moves per loop for each of the 21
members of the tempering ensemble. Each of these 400 000
moves consists, in turn, of one attempted exchange of con-
figurations between adjacent, randomly chosen ensemble
temperatures and a conventional Metropolis move for a
single, randomly chosen spin in each of the remaining 19
ensemble members.

All tempering ensembles used in Fig. 5 produce accurate
estimates of the Ising model’s heat capacity. As indicated in
Fig. 6, however, they do so with differing efficiency. In Fig.
6, we plot the standard deviations of the heat capacity esti-
mates of the 2D Ising model obtained by using the various
tempering ensembles with a fixed number of Monte Carlo
points. The results shown in Fig. 6 are single standard devia-
tion estimates obtained during the simulations corresponding
to the results in Fig. 5. Clearly, the sampling errors vary
depending on the choice of tempering ensemble. Owing to
the similarity of the heat capacities upon which they are
based, the performance of the CEI-S(exact) and CEI-S(20)
ensembles are essentially indistinguishable. Interestingly,
both of these CEI results are also effectively identical in

J. Chem. Phys. 128, 174109 (2008)
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FIG. 5. Shown are the heat capacities computed using the various parallel
tempering ensembles listed in Table I. The results shown correspond to the
Katzgraber et al. (Ref. 16) (solid circles), CEI-S(exact) (open squares), CEI-
S(20) (up triangles), CEI-S(4) (down triangles), and ad hoc (crosses) en-
sembles, respectively. It should be noted that all ensembles produce the
correct results, although with differing levels of efficiency. It should also be
noted that the error bars for these results are too small to be seen in this
figure (cf. Fig. 6).

performance to the ensemble produced by the optimization
methods discussed in Ref. 16. Finally, we note that the sam-
pling errors for the CEI-S(4) ensemble, while somewhat less
efficient than the CEI-S(exact) or CEI-S(20) results, are no-
tably better than those generated by the ad hoc ensemble of

0610 , ,

0008

0.006

Error

0.004

0.002

FIG. 6. Shown are the statistical errors for heat capacities shown in Fig. 5.
The error bars for the various ensembles, too small to be seen in Fig. 5, are
designated with the same symbols used in that figure. Errors are single
standard deviation estimates obtained during the simulations used in the heat
capacity simulations. All simulations utilized a common number of Monte
Carlo points (see text for details). The ensembles are labeled by symbols
specified in Fig. 5. The connecting lines are intended merely to guide the
eye and have no physical significance.
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TABLE II. Shown for the various parallel tempering ensembles listed in
Table I is a measure of likelihood that a configuration successfully transits
the entire ensemble via tempering exchanges without first returning to its
starting temperature. The relevant performance index N, is defined in
greater details in the text. For comparison, the results obtained by using both
a 21-member geometric and equally spaced tempering ensemble are also
given.

Method Ny/ 100
Reference 16 2.2
CEI-S(exact) 2.2
CEI-S(20) 2.2
CEI-S(4) 2.7
ad hoc 4.1
Geometric 142
Equally spaced 153

Table 1. This finding suggests that the CEI method can be of
utility when used with even an approximate model of the
heat capacity.

Although the standard deviation in a computed property
of interest is perhaps the most direct measure of the quality
of the underlying tempering ensemble, we present in Table II
a second metric. We list there the likelihood that a configu-
ration, starting at either of the ensemble’s temperature ex-
tremes, successfully transits the entire ensemble via temper-
ing exchanges without first returning to its starting
temperature. As argued by Predescu et al.,'’ this effective
fraction is a useful metric for judging the quality of the sam-
pling efficiency. The results in Table II are presented as an
index N, defined as the number of such starts required, on
average, to produce a single, successful, direct transit. We
see, for example, from Table II that, on average, roughly
one in 2200 configurations “launched” from the 7=0.1 (or
T=10.0) data stream via a tempering exchange successfully
reaches the T=10.0 (or 7=0.1) data stream directly (i.e.,
without first returning to the data stream corresponding to its
initial temperature). We see that the ranking of the various
ensembles when judged by this measure mirrors that found
in Fig. 6 on the basis of standard deviations. Although not
shown, we note that the ranking of the ensembles obtained in
Fig. 6 and Table II agrees with that based on an eigenvalue
analysis of the relevant transfer matrix that underlies the
tempering exchange process.

IV. SUMMARY

In summary, we have introduced a intuitively appealing
criterion for selecting parallel tempering ensembles. The es-
sential feature of this approach is to require that increases in
entropy between adjacent members of the tempering en-
semble be constant across the entire ensemble. The resulting
constant entropy increase or CEI approach is initiated with
an estimate of the system’s heat capacity obtained from ex-
periment, preliminary simulation, or a suitable physical
model. Applications to the 2D Ising problem indicate that
this method is effective, simple to implement, and relatively
robust with respect to its sensitivity to the quality of the
underlying heat capacity model.

J. Chem. Phys. 128, 174109 (2008)

The focus of the present discussion is on techniques de-
signed to deal with the application of stochastic quadrature to
problems whose underlying probability distributions are
sparse. Such problems present well-known sampling difficul-
ties, difficulties for which parallel tempering methods have
proved to be a valuable tool. Based on the results presented
here, CEI techniques appear to offer a simple means for im-
proving the efficiency of such tempering approaches. It is
important to emphasize that caution must always be exer-
cised when dealing with sparse distributions. As discussed
elsewhere,” for example, tempering methods alone may be
inadequate for the treatment of systems that exhibit low-
temperature, solid-solid transitions. The CEI method pre-
sented here is thus intended as a way to improve the effi-
ciency of tempering approaches in situations where they are
appropriate, as opposed to a means for extending their
intrinsic applicability.
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