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Abstract 

Temperate coastal estuaries worldwide such as Narragansett Bay, Rhode Island are 

impacted by seasonal macroalgal blooms (e.g. Ulva) during warm months, while bloom-

forming macroalgae are rarely encountered during winter.  We assessed the ability of 

distromatic Ulva to overwinter via fragments, recruits, and/or microscopic propagules. We 

documented: a) small tissue fragments in sediment cores and the water column, b) recruits 

and microscopic propagules on field-based settlement tiles, and c) production of 

reproductive propagules, throughout the winter months. Laboratory culturing experiments 

indicated that both fragments and propagules are viable. Our data indicate that bloom-

forming overwintering Ulva simultaneously utilize multiple reproductive strategies. 

 

Key Words: macroalgal bloom, overwintering, propagules, Ulva 

 

 Macroalgal blooms in coastal areas are largely composed of fast-growing species 

that rapidly utilize resources, including many species in the genus Ulva (Valiela et al. 1997, 

Guidone et al. 2013, Smetacek and Zingone 2013). Macroalgal blooms have increased in 

frequency and duration over the past several decades due to several factors, including 

anthropogenic nutrient inputs (Rosenberg 1985, Nixon 1995, Teichberg et al. 2010). Free-

floating macroalgal blooms can have devastating impacts upon the economy of coastal 

areas by fouling beaches and decreasing the productivity of fisheries. Blooms decrease 

dissolved oxygen within the water column contributing to hypoxic events, which can result 

in fish kills, suffocation of benthic fauna, and reduced shellfish recruitment (Deacutis and 

Oviatt 2004, Thomsen and McGlathery 2006). The ability of macroalgae to form these 
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blooms may be associated with their ability to grow vegetatively via fragmentation (e.g., 

Kamermans et al. 1998), in addition to reproduction via microscopic propagules. 

 Macroalgal blooms are a common occurrence within Narragansett Bay, Rhode 

Island, particularly in the shallow areas of the upper bay. Blooms in this system are 

frequently dominated by the green distromatic species Ulva compressa Linnaeus and U. 

rigida C. Agardh (hereafter referred to collectively as Ulva spp., as tubular Ulva species are 

not typically as abundant in this system), but can contain at least thirty different species 

(Guidone and Thornber 2013, Guidone et al. 2013). Blooms occur frequently in the late 

spring and summer, but are rarely observed in the late fall and winter (Newton and 

Thornber 2012, Guidone and Thornber 2013). Since Ulva spp. mats do not occur during 

winter months, Ulva spp. must utilize one or more overwintering strategies that permit 

them to propagate quickly once suitable environmental conditions return. In other regions, 

vegetative fragments of Ulva spp. are capable of surviving low temperatures (Zhang et al. 

2010) while buried within sediments, which may reduce the impacts of freezing 

(Kamermans et al. 1998). In addition, Lotze et al. (2000) found that tubular Ulva spp. 

(formerly Enteromorpha) germlings (recruits) are able to survive the winter attached to 

hard substrates, leading to an early spring increase in Ulva spp. biomass. Furthermore, Ulva 

spp. may produce reproductive propagules (spores/zygotes) throughout the winter as a 

primary overwintering strategy (Liu et al. 2012). Any of these methods may explain 

seasonal summer ulvoid blooms within Narragansett Bay, RI. Here, we present data on the 

overwintering abilities of Ulva spp. as vegetative fragments, attached germlings, and 

reproductive propagules, with implications for the year-round persistence of Ulva spp. 
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 The mean density of Ulva spp. fragments buried in sediments was 7.13 m-3 + 2.12 

(mean +1 standard error) and did not vary significantly among sites or months (F2,7 = 0.47, 

p = 0.64; F3,6.4 = 2.22, p = 0.18; Fig. 1). The mean density of Ulva spp. fragments in the 

water column, averaged across all winter months was 131 m-3 + 40. The mean length of 

fragments was 11.6 + 5.7 mm and 55.2 + 6.2mm (sediment and water column, 

respectively), although fragments as long as 330 mm were present. Buried fragments of 

Ulva compressa and U. rigida were healthy; when subsequently cultured in the laboratory 

for 1.5 weeks (see Fig. 1 legend for culturing details), their biomass remained constant 

(initial vs. final biomass, t16 = 0.65, p = 0.74; data were pooled between species, as they did 

not significantly differ).  

 We found evidence of Ulva spp. germling recruitment from July through October 

2012 on our monthly ('short-term') settlement tiles from Chepiwanoxet, while recruitment 

was only observed in September 2012 for Oakland Beach (Fig. 2A, B).  Although germling 

biomass did not differ significantly between our two sampling sites or among months 

(January 2012 - March 2013; F1,14 = 3.05, p = 0.10; F14,14 = 1.04, p = 0.47, respectively), 

there was a significant interaction term (F14,116 = 1.88, p = 0.03; see Table 1 for total algal 

recruitment).  We found no correlation of Ulva biomass with other algal biomass (r2 = 

0.04), indicating that monthly Ulva recruitment is not linked to the recruitment of other 

algal species on our tiles.  

 By contrast, our 'long-term' settlement tiles exhibited much higher biomass of Ulva 

recruits (Fig. 2C, D; Table 1 for total algal recruitment). For the first tile deployment 

(deployed in September 2011, removed from January - May 2012), Ulva biomass reached a 

maximum in April-May 2012 at both sites, although it did not significantly differ between 
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sites or among months (F1,4.0086 = 1.64, p = 0.27; F4,4 = 2.10, p = 0.24).  The biomass of Ulva 

recruits was positively correlated with the biomass of other algal recruits on the tiles (r2 = 

0.30, p < 0.0001). 

 For the second tile deployment (deployed in May 2012, removed from June 2012-

March 2013), we found relatively low Ulva germling biomass (mean 0.01 + 0.005 g . 100 

cm-2) that again did not significantly differ between sites or among months (F1,10.68 = 3.63 p 

= 0.08; F9,9 = 0.97, p = 0.52, respectively). For this deployment, the biomass of Ulva 

recruits was not correlated with other algal recruitment (r2 = 0.004, p = 0.54). However, 

when we compare Ulva biomass from the two deployments (only including data from tiles 

in the field 4 months or more, to standardize among deployments), there was a nearly 

eightyfold difference in mean Ulva recruit biomass (0.78 g vs 0.02 g . 100 cm-2) between 

the two deployments (F1,109 = 18.67, p < 0.0001), indicating significant year-to-year 

variability.  

Short-term tiles deployed in the field for one month and then cultured in the 

laboratory under simulated spring conditions for two months indicated that distromatic 

Ulva spp. are producing reproductive propagules throughout the winter months, as 

distromatic blades were present every month. We found no significant differences among 

months or sites in Ulva recruit density (p > 0.05 for both; mean of 1.4 + 0.65 recruits . 100 

cm-2; see Fig. 2 legend for methods). 

Overall, our data indicate that Ulva spp. within Narragansett Bay utilize multiple 

mechanisms to survive the winter. Our data show that Ulva spp. are able to successfully 

overwinter as buried fragments, and we found that fragments are also present in the water 

column during the winter. Additionally, sediment fragment densities were consistent 
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throughout the winter months and among our three sample sites, although the lack of 

statistical significance among months may be due, in part, to high variability in fragment 

density and/or low replication. As our cultured fragments were viable throughout the winter 

months, in this system, Ulva spp. fragments can survive winter conditions and proliferate in 

the spring months when Ulva spp. blooms commence. These fragments may act in a similar 

way to terrestrial ‘seed banks’, providing a mechanism for species' persistence in years 

where there is reduced reproductive propagule production and/or recruit survival (Fenner 

and Thompson 2004). 

Our settlement tile data support previously observed patterns of Ulva spp. biomass 

in Narragansett Bay, RI (Guidone and Thornber 2013). On long-term tiles, Ulva spp. 

reached maximum biomass from March through May 2012. By contrast, our short-term 

tiles show increased recruitment from mid summer to early fall 2012 at Chepiwanoxet, and 

in September 2012 at Oakland Beach. These patterns suggest that Ulva spp. are 

overwintering as microscopic germlings upon the benthos, likely settling during the late 

summer or early fall and initiating growth in the early spring when light levels, nutrient 

levels, and temperature are high enough to support growth (Lotze et al. 2000, Liu et al. 

2012). This explains the overall lack of Ulva spp. biomass throughout the winter months 

and the rapidly forming blooms observed in mid spring (Guidone and Thornber 2013). 

 The decrease in Ulva spp. biomass between May and June 2012 on long-term tiles 

is likely due to Ulva spp. individuals becoming too large and dislodging from the 

settlement tiles. These dislodged individuals become free-floating thalli which may 

fragment, contributing to Ulva spp. bloom formation. 
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Our data provide increasing evidence for the multiple strategies that bloom-forming 

Ulva spp. can employ to survive harsh winter conditions. Macroalgal blooms are 

recognized as an increasing phenomenon and problem worldwide (Smetacek and Zingone 

2013); while numerous environmental factors contribute to bloom formation (Valiela et al. 

1997), the strategies that these algae employ during non-bloom periods are also critical to 

their interannual persistence.  
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Table 1: Mean total wet mass (in grams) of all algal germlings upon 100 cm2 

settlement tiles (n = 5/treatment/site/date), from January 2012 - March 2013. Empty 

cells indicate zero algal biomass present; see Fig. 2 legend for method details. 

 Chepiwanoxet Point Oakland Beach 
Month-Year Short term Long term Short term Long term 

Jan.- 2012  4×10-5   0.865   0.128  
 Feb.    1.740  1×10-4  0.137 

Mar.    9.037    0.927  
Apr.  15.190   2.860  
May.    4.081   3.773  
Jun.  4×10-4 5×10-4  5×10-4  3×10-4 
Jul.  0.093   0.488   0.001  0.004  
Aug.  0.064    2.655   0.195  0.113 
Sep.  5.368  33.694   0.377   4.181  
Oct.  0.216 15.362  0.280  0.245 
Nov.    3.229   3×10-4  0.116 
Dec.    3.741    0.242 
Jan.- 2013    2.539   0.006   0.032  
Feb.    2.194   5×10-5  0.707  
Mar.    0.543    4×10-4 

 
  



Running head: Ulva spp. overwintering strategies    
 

11 

Figure Legends 

Figure 1: Mean density of distromatic Ulva spp. fragments (± one standard error) in 

sediment core samples from November 2010 - February 2011. N = six cores (166 cm3 each) 

were collected monthly at each of three bloom-impacted sites in Narragansett Bay, RI 

(Warwick City Park, Oakland Beach, and Chepiwanoxet Point -- all in Warwick, RI) 

during spring low tide. At each site, we laid out two 30 m transects. Along each transect, 

we collected one core from 1 m subtidal, one core at the water line, and one core 9 m 

horizontally away from mean lower low water (all cores were collected below the S. 

alterniflora zone). We counted all distromatic Ulva spp. fragments in each core and 

determined a collective wet mass. Other algal thalli were weighed together, per sample, and 

we recorded all genera present (fragments were frequently too small for accurate species-

level designations). A subtidal net sweep (0.08 m-3) was conducted at the same time to 

quantify suspended Ulva fragments. Ulva fragment viability was determined in January and 

February 2011. Using filtered seawater, we cultured ten distromatic Ulva spp. fragments 

(or fewer, depending upon availability, from field collected samples, with an initial size of 

at least 5 x 5 mm), per month. Fragments were cultured for 1.5 weeks to assess viability, 

using broad-spectrum growth lamps, on a 16:8 hour light:dark cycle, at 21-22 °C. All data 

were analyzed using JMP v 10.0 (www.jmp.com). 

Figure 2: Mean Ulva spp. density ± one standard error, on 100 cm2 PVC settlement tiles. 

A) short-term tiles at Chepiwanoxet Point; B) short-term tiles at Oakland Beach Cove; C) 

long-term tiles at Chepiwanoxet Point; D) long-term tiles at Oakland Beach Cove (n = 5 

tiles for each tile type/month/location). To test if Ulva spp. overwinter as attached 

germlings, we deployed tiles covered in Grainger 3M tread medium resilient safety walk at 
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Chepiwanoxet and Oakland Beach Cove, Warwick, RI. At each site, 25 'long-term' 

settlement tiles were placed 30 cm below mean lower low water in September of 2011 and 

five were removed each month, starting in January 2012. From December 2011 onward, 

five additional tiles were placed in the field each month and collected the next month 

('short-term' tiles). We quantified the biomass and number of individuals in each genus 

present on each tile. Settlement tile collection continued until all initial 'long-term' tiles 

were collected (May 2012). At that time, sixty more long-term tiles were deployed at each 

site, and processed in an identical manner (due to tile loss from extreme weather events, 

sampling ended prematurely in March 2013). We assessed Ulva spp. reproductive 

propagule production from November 2012 – February 2013 by placing five additional 

settlement tiles in the field at each site, monthly, for 30 days. Tiles were then cultured in 

the laboratory for two months, with simulated spring water conditions (18-19ºC, 22-28 

psu). After two months, all attached germlings were counted and identified to genus on 

each tile. None of the 'cultured' tiles had visible recruits at the time of field collection. 
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