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Ecology, 89(11), 2008, pp. 2980-2985 
? 2008 by the Ecological Society of America 

SPATIAL DENSITY DEPENDENCE SCALES UP BUT DOES NOT PRODUCE 
TEMPORAL DENSITY DEPENDENCE IN A REEF FISH 

Graham E. Forrester,1'4 Mark A. Steele,2 Jameal F. Samhouri,3,5 Bryn Evans,3 and Richard R. Vance3 

1 
Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island 02881 USA 

2Department of Biology, California State University-Northridge, 18111 Nordhoff Street, Northridge, California 91330-8303 USA 

3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606 USA 

Abstract. Field experiments provide rigorous tests of ecological hypotheses but are 

typically of short duration and use small spatial replicates. We assessed empirically whether 

the results of experiments testing for density dependence applied at larger spatial domains and 

explained temporal population dynamics. We studied a small coral reef fish, the goldspot goby 

{Gnatholepis thompsoni), in the Bahamas. We assessed the effects of interactions with 

conspecifics and with an ecologically similar species, the bridled goby {Coryphopterus 

glaucofraenum). Two density manipulations on small reef patches revealed that goldspot goby 

mortality over one month increased as conspecifics became crowded. On five large natural 

reefs, we correlated the initial year-class density of both species (annual larval settlement) with 

the subsequent decline of goldspot goby year-classes for five years. Mortality was correlated 

with conspecific density among reefs for all years, but not among years for all reefs. Thus, 

spatial density dependence in mortality scaled up qualitatively from small patches to entire 

reefs but was not associated with temporal density dependence. Our results support the 

conclusion that field experiments may be extrapolated to larger spatial domains with care, but 

that using small spatial comparisons to predict temporal responses is difficult without knowing 
the underlying biological mechanisms. 

Key words: coral reefs; density dependence; field experiments; fish; mortality; spatial scaling; temporal 
density dependence. 

Introduction 

Temporal density dependence is necessary for popu 
lation size to be regulated within bounds over time 

(Murdoch 1994). That is, as a population increases in 

density through time its per capita rate, of growth must 

decrease. For many groups of animals, density depen 
dence has been assessed primarily by analyzing time 

series of abundance (e.g., Brook and Bradshaw 2006), 
which presents a variety of methodological challenges 

(e.g., Shenk et al. 1998). Experimental manipulation of 

density is a more direct method to test for density 

dependence but is often difficult in nature (Harrison and 

Cappuccino 1995). The field experiments conducted to 
date have been particularly valuable in testing for 

density dependence that could lead to such population 

regulation and in identifying its underlying biological 
causes (Harrison and Cappuccino 1995). Most such 

studies, however, have focused on spatial density 

dependence, which does not necessarily lead to temporal 

density dependence (Stewart-Oaten and Murdoch 1990), 
and the populations studied have typically occupied 

Manuscript received 19 September 2007; revised 27 February 
2008; accepted 19 May 2008. Corresponding Editor: S. R. 
Thorrold. 

4 
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small patches of habitat. Given the possibility that the 

intensity of density dependence may change as spatial 
scale increases (e.g., Chesson 1996), it is unclear whether 

the results of these small-scale studies can be extrapo 
lated to scales more relevant to management and 

conservation. 

Reef fishes are excellent subjects for experimental tests 

of density dependence because they are easily observed 

and manipulated in situ. Such studies have been 

particularly valuable in demonstrating the prevalence 
of spatial density dependence across small habitat 

patches (reviewed in Hixon and Webster 2002, Osenberg 
et al. 2002), and more recently in identifying the causes 

of this density dependence (e.g., Hixon and Carr 1997, 

Carr et al. 2002, Holbrook and Schmitt 2002, Forrester 

and Steele 2004). The habitat patches used for these 
studies are almost always less than 10 m2 in area, and 

only two recent studies have tested whether spatial 

density dependence extrapolates to spatial domains 

relevant to conservation and management (Steele and 

Forrester 2005, Johnson 2006). Moreover, there is only 
limited evidence that the spatial density dependence 
detected in reef fishes translates to temporal density 

dependence that can regulate populations (Webster 

2003, Steele and Forrester 2005, Johnson 2006, Schmitt 
and Holbrook 2007). We used an abundant coral reef 

fish to determine whether density dependence clearly 

present in small habitat patches also occurs on much 
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larger reefs at any one time and over multiple years on 

any one reef. We examined effects of conspecific density 
and the density of a potentially competing species to 

infer the biological cause of density dependence, and to 

address possible reasons for its extension, or lack 

thereof, through space and through time. 

Methods 

The study species 

We studied the goldspot goby Gnatholepis thompsoni, 
a small coral reef fish common throughout the wider 

Caribbean. Our study sites were located on the Great 

Bahama Bank near Lee Stocking Island (23?46' N, 
76? 10' W). Goldspot gobies are pelagic as larvae for 

?45-80 days and settle to reefs nightly from June 

through September (M. Steele, unpublished data). The 

gobies are ?9-12 mm standard length (SL, the length 
from the tip of the snout to the base of the tail) at 

settlement, become mature by 25 mm SL, and reach a 

maximum size of ?60 mm SL. Subadult and adult 

abundance peaks at roughly 4.5 fish/m2 in late October, 
when the summer's settlers have reached sizes of 20-40 

mm. From late October, abundance steadily declines 

until the next settlement season, and few individuals live 

longer than one year (M. Steele and G. Forrester, 

unpublished data). 
On the reef, goldspot gobies establish small (<5 m2) 

stable home ranges that typically overlap with those of 

conspecifics. Gobies occupy reefs where sand and hard 

substrata are interspersed, because they feed on inver 

tebrates in the sand but seek temporary refuge from 

predators in crevices at the base of corals or rocks when 

threatened or attacked. Goldspot goby habitat prefer 
ences resemble those of the bridled goby {Coryphopterus 
glaucofraenum), and home ranges of the two species 
often overlap (M. Steele and G. Forrester, unpublished 

data). Because bridled gobies compete intraspecifically 
for crevices (Forrester and Steele 2004), we assessed 

whether intra- or inter-specific competition for refuges 

might cause density-dependent mortality in goldspot 

gobies. 

Small-scale spatial density dependence in adult mortality 

We performed two density manipulations to test for 

density-dependent adult mortality. The experiments 
were performed in July-August of 1999 and 2000. These 

experiments employed the same set of replicate patch 
reefs and used similar methods. The 24 patch reefs were 

built in a shallow sandy area near a large natural reef 

(Rainbow Reef). Reefs were made of natural materials 

(limestone, coral rubble, and conch shells) in standard 

ized amounts. All reefs were approximately 1.5 X 1.5 m 

in length, and were located at least 10 m from each other 

and at least 23 m from Rainbow Reef. 

We used a form of response surface design to isolate 

the relative effects of conspecific and heterospecific 

density (Inouye 2001). Some reefs were stocked only 
with goldspot gobies, whereas others received a mix of 

goldspot and bridled gobies (Appendix A). To test 

qualitatively whether density dependence arises from a 

shortage of crevices, we added rubble and shells to the 

reefs in 2000. If density dependence is caused by 
competition for refuges, it should thus be weaker in 

2000 than in 1999. 
Adult gobies of both species (25-35 mm SL in 1999 

and 23-45 mm SL in 2000) were captured from natural 

habitat 2 km away and transplanted to the patch reefs 

after being measured and marked. Marks were spots of 

colored elastomer (Northwest Marine Technology, 
Shaw Island, Washington, USA) injected under the skin 
at various locations on the gobies' bodies to create 

unique codes (Malone et al. 1999). Divers can read these 

marks without recapturing the gobies. Gobies were 

transplanted at least two days before the start of the 

experiment to allow acclimation to their surroundings. 

During acclimation, they were protected from predators 

by a plastic cage (5-mm mesh size) placed over the reef. 

The experiments began upon cage removal and lasted 

28-31 days in 1999 and 35 days in 2000. The reefs were 
censused every 1-3 days for the first two weeks after 

cage removal and every 5-10 days thereafter. In addition 

to surveying the patch reefs, we surveyed nearby 

portions of Rainbow Reef to check for emigrants. At 

the end of the experiment, we captured all gobies on the 

patch reefs to identify any that had been missed during 
the visual counts. As the experiment progressed, we ^ \^ 

attempted to maintain initial target densities by either 

removing untagged immigrants from reefs, or trans 

planting new individuals. Despite these adjustments, 
densities fluctuated slightly during the experiment, and *^" 

we used time-averaged densities when testing for density p?j* 

dependence. The range of time-averaged densities t^s 

(adults per m2) on the reefs extended beyond the natural 

range (0-4.5) in 1999 (0.09-7.82), but not in 2000 (0.36 
3.50). Although all adult gobies on the reefs were 

included in density estimates, only tagged gobies present 
from the start of the experiment were used to estimate 

mortality rates. The instantaneous per capita mortality 
rate (m), with time measured in days, was estimated 

from the initial (/) and final (F) density of marked 

gobies on a reef as 

m= [ln(/)-ln(F)]/d 

where d is the number of days between the start and the 

end of the experiment. 

Large-scale spatial and temporal density dependence 
in adult mortality 

We performed an observational study over five years 

(1998-2001 and 2003) to test for a large-scale correlation 

between goby density and mortality. We studied the 

gobies on five large natural reefs spread over 25 km. 

Each reef contained 3000-15 000 m2 of goby habitat and 
was isolated from any other suitable habitat by at least 

100 m of sand and seagrass. After settlement, gobies do 

not move among reefs this far apart (M. Steele, 
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I unpublished data), and so we are confident that losses 

Each year, we monitored settlement to the five sites for 

most of the settlement season, though the duration (7-12 

weeks) and timing (start dates 8 June-11 July; end dates 
26 August-13 September) of the sampling period varied 
from year to year. We used a method previously shown 

to provide good estimates of cumulative daily settlement 

(for details see Steele and Forrester 2002). Briefly, newly 
settled gobies were collected weekly from five plots (1.5 X 

1.5 m in area) on each reef that were located in a 

stratified random fashion. Plots were enclosed with cages 
of plastic mesh (5-mm openings) that were permeable to 

settling gobies but excluded larger fishes that prey on 
them. When testing for density dependence, we used a 

simple time-averaged measure of settler density (no. 

settlers-m~2-wk_1) that reflects relative differences in 

year-class strength among sites and years. 
We estimated the density of adult and sub-adult gobies 

in late October when their abundance was at its annual 

peak. Divers counted gobies within 25 1.5 X 1.5 m 

quadrats per site that had been placed using a stratified, 
random design. The standard length of each goby was 

estimated visually, and each goby was assigned to one of 

nine 5 mm wide size classes. (Prior trials with over 200 

captured gobies had revealed that visual length estimates 

were always accurate within 2 mm of actual size.) To 

determine which gobies were survivors from the summer's 

settlement, we used a statistical relationship between 

length and age (n > 60 per site), derived from analysis of 
otolith growth rings (M. Steele, unpublished data). 

The instantaneous per capita mortality rate was 

estimated separately for each site in each year. For 

simplicity, we assumed that each weekly settler cohort 

arrived at exactly the midpoint of the week in which it 
was collected. Let t? represent the middle day of the zth 

week, xtj represent the estimated density of individuals 

that settled on the reef during week /, and XT the density 
of gobies in all cohorts combined that remained on the 

day T of the October count. Then, assuming that all 

individuals experience the same instantaneous per capita 

mortality rate m (Caley 1998), it follows that these 

quantities are related by the expression 

where /max is the number of weekly cohorts. We used this 

expression to calculate m from the other quantities 

Estimating the strength of density dependence 

We tested for the presence and strength of density 

dependence by using linear regression or analysis of 

covariance (ANCOVA). In both the experimental and 

observational studies, we tested for possible competition 
between goldspot gobies and bridled gobies by compar 

ing regression or ANCO VA models that contained terms 

0.12 

0.10 

o 
E 

? 0.08 
'o. 
03 
? 

0.06 H 

0.04 

0.02 

o.oo+?wxm 
0 2 4 6 

Mean adult density (no./m2 

10 

Fig. 1. Small-scale spatial density dependence in adult 

mortality. Plotted are relationships between instantaneous per 
capita mortality of adult gobies (calculated on a daily basis) and 

time-averaged adult density on small replicate patch reefs. 
Adult density was manipulated in two experiments: the first in 
1999 (black symbols) and the second in 2000 (open symbols). 

for conspecific density only, heterospecific density only, 
and the summed density of both gobies. The strength of 

density dependence was measured as the slope (b) of the 

best-fit relationship between mortality and density. For 

the large-scale observational study, the data were 

analyzed with ANCO VA in two different ways: one to 
test for spatial density dependence and one to test for 

temporal density dependence. To test for spatial density 

dependence, data were grouped by year so the ANCOVA 

model included terms for effects of settler density (a 
covariate) and differences among years (a categorical 

factor) and their interaction. To test for temporal density 

dependence, data were grouped by site, so the ANCOVA 

model included terms for effects of settler density, 
differences among sites (a categorical factor) and their 

interaction. There were no significant effects of the 

categorical factors or interactions in the ANCOVAs {P 

always >0.05) and, because they are of less interest than 

influences of density, we will not describe them further. 

Results 

Small-scale spatial density dependence in adult mortality 

In both small-scale experiments, mortality of adult 

goldspot gobies increased significantly with conspecific 
density (regression for 1999, r2 = 0.19, P = 

0.019; 

regression for 2000, r2 = 0.51, P = 
0.001; Fig. 1). The 

strength of this density dependence, however, was 

almost six times less in the 1999 than in 2000 (regression 
for 1999, m = 

0.0037; regression for 2000, m = 
0.0214). 

As the number of crevices usable as refuges from 

predators was greater in 2000 than in 1999, the direction 

of this difference is opposite to the expectation if refuge 
shortage were the cause of density dependence. 
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Fig. 2. Large-scale spatial and temporal density depen 
dence in overall mortality. Plotted are relationships between 
instantaneous per capita mortality of gobies from settlement to 

adulthood (calculated on a daily basis) and time-averaged 
settler density on five large reefs. Data are (a) grouped by year 
to test for spatial density dependence and (b) grouped by site to 
test for temporal density dependence. Regression lines are 

displayed separately by (a) year or (b) site as a visual guide; see 

Results: Large-scale spatial and temporal density dependence in 

mortality for the results of statistical analyses. 

We found no evidence that mortality of goldspot 

gobies was influenced by bridled goby density. Goldspot 
goby mortality was unrelated to the density of either 

bridled gobies alone (regression for 1999, r2 = 0.03, P = 

0.209; regression for 2000, r2 = 0.01, P = 
0.326) or both 

species combined (regression for 1999, r2 = 0.01, P = 

0.837; regression for 2000, r2 = 0.12, P = 
0.099). 

Large-scale spatial and temporal density dependence 
in mortality 

The large-scale observations of goldspot goby density 

and mortality revealed significant spatial density depen 

dence (Fig. 2a). The ANCOVA detected a significant 

increase in mortality with rising conspecific density (F^i9 WK?KM 
= 13.2, P = 0.002). The strength of density dependence |H|HH 
varied fivefold among years, but these differences were 

iHH^H 
not statistically significant {F4^l5 

= 0.80, P = 0.55).- H^^Hl 
Fluctuations in density of the two goby species were 

HjHHH 
positively correlated spatially so that, in all years, certain 

flHHHj 
sites supported consistently high or low densities of both Hfl^JH 
species (Appendix B). This spatial covariance of the two 

HHjm 
gobies made it difficult to isolate their relative effects on 

hH|HB 
goldspot goby mortality, and we obtained qualitatively HHHH 
similar results from ANCOVAs in which the original JHHHh 
independent variable (goldspot goby density) was 

H^^JH 
replaced by either bridled goby density or the combined 

^H^Hh 
density of both species. In each case, there was a 

^^^^^B 
significant positive relationship between goldspot goby H^HH 

mortality and density (ANCOVA using bridled goby HH^H 
density, FiA5 

= 9.8, P = 0.007; ANCOVA using 
^^^H combined density, Fhl5 

= 17.98, P = 0.001). ^^^W 
This same large-scale study revealed no evidence for 

H|H|^| 
temporal density dependence (Fig. 2b). There was no 

^|HH| 
consistent tendency for goldspot goby mortality rates to flHHH 
be higher in years when conspecific densities were high ^^HHb 
{Fll9 = 0.37, P = 0.550). Although densities of the two 

^^^H 
gobies covaried spatially, there was little temporal HHHH 
correlation between them. That is, "high-" or "low-" 

I^ESI 
density years for bridled gobies did not coincide with 

H^ttpl 
high- or low-density years for goldspot gobies (Appen- IwSlffl 
dix B). This lack of temporal correlation provides an 

HUK91 
opportunity to isolate the relative effects of conspecific lESiifl^ 
and heterospecific density on goldspot goby mortality. hV^H 
However, replacing the original independent variable 

^HEnII 
(goldspot goby density) with either bridled goby density HHEfl| or the combined density of both species produced no 

SmI 
detectable effects on goldspot goby mortality (ANCO- ^|Egl 
VA using bridled goby density, FU5 = 0.26, P ? 0.616; HJIHI 
ANCOVA using combined density, FU5 

= 0.98, P = 
M^IM 

Our finding that spatial density dependence in the 
j^JHj^H 

goldspot goby was detectable both in small habitat 
iHIHH 

patches and also across much larger natural reefs 
flHBHj 

mirrors findings for two other reef fishes, the bridled Bjj^m 
goby and the kelp rockfish {Sebastes atrovirens) (Steele ^^^^H 
and Forrester 2005, Johnson 2006). By contrast, studies 

H|H|^| on another reef fish (Doherty and Fowler 1994, Beukers 
^^^^H 

and Jones 1998), several insects (e.g., Heads and Lawton H^BI^I 
1983, Hassell et al. 1987), and marine invertebrates (e.g., bHHH| 

McGrorty and GossCustard 1995) have revealed spatial HH^Hj 
density dependence at certain scales but not others. In 

^^^^H 
addition to displaying spatial density dependence across ^^^^H a range of scales, bridled gobies and kelp rockfish also 

H|HH 
showed temporal density dependence on large reefs H^BBI 
(Steele and Forrester 2005, Johnson 2006). The mortal- H||^^H 
ity of another reef fish, the yellowtail dascyllus HHjjHj 
{Dascyllus flavicaudus) also responded to both spatial H^Ul 
and temporal fluctuations in density, but in this case on 

jjHjHH 
small reef patches (Schmitt and Holbrook 2007). This 

|^H|H| 
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I lack of demonstrated association between spatial density 
dependence and temporal density dependence in gold 

spot gobies thus stands in contrast to these other three 

fish species. This contrast is especially striking in view of 

the fact that bridled gobies and goldspot gobies are so 
similar biologically and were studied on the same reefs, 
at the same time, and using the same methods (Steele 

Identifying the underlying biological cause of density 
dependence can help predict whether short-term local 

spatial effects will extrapolate to larger areas or persist 

through time (e.g., Murdoch and Oaten 1975, Kawat 

1997). It is well established that an aggregative response 

by specialist predators can cause spatially density 

dependent mortality of their prey without also causing 

temporal density dependence (e.g., Stewart-Oaten and 

Murdoch 1990). However, goldspot gobies, like most 

small reef fishes, are consumed by a suite of generalist 

predators whose combined influence is unlikely to 

produce density-dependent mortality via aggregative 

response (Latto and Hassell 1988). It is noteworthy that 

a refuge shortage is either confirmed (Holbrook and 

Schmitt 2002, Forrester and Steele 2004, Schmitt and 
Holbrook 2007) or implicated (Johnson 2006) as the 

underlying biological mechanism for density dependence 
in the reef fishes whose mortality is linked to density 
fluctuations in both space and time. This mechanism for 

density dependence may thus be one whose effect 

through space implies a similar effect through time. 

Because goldspot gobies and bridled gobies show 

similar habitat preferences, have overlapping home 

ranges, and seem to share several predators, we thought 
that goldspot goby mortality might be influenced by both 

conspecific and heterospecific density. Our first conjec 
ture was that intra- and interspecific competition for 

refuges was the most likely cause of density dependence 
in goldspot gobies. For marine species with a dispersive 

pelagic phase early in their life history, oc?anographie 

processes can set up patterns of covariation in larval 

settlement among species (e.g., Wing et al. 1998). Distinct 

spatial and temporal patterns in the initial density of 
benthic cohorts could influence the outcome of density 

dependent interactions later in life, though this topic has 
been little studied (White 2007). For example, when 
settlement of two species covaries positively in space, as 

we saw for goldspot and bridled gobies, this should 

intensify spatial density dependence due to interspecific 

competition. If, however, the same two species show no 

temporal covariation in settlement, temporal density 

dependence ought to be weaker and harder to detect. We 

were able to reject this possibility in our study system, 

however, because we found no evidence that interspecific 

competition influences mortality. 
The biological cause of density dependence in gold 

spot gobies thus remains incompletely understood, 

although prior work (Forrester et al. 2006) and the 

experimental results allow us to narrow the list of 

possible mechanisms to those involving conspecific 

density. Superficially, our results seem to contradict 

the view that limited refuges cause intraspecific compe 

tition, because the difference in the strength of density 

dependence between the two small-scale experiments 
was opposite to that expected under refuge shortage. 

However, because we did not survey predators, we 

cannot exclude the possibility that higher predator 
densities increased density dependence during the year 
we added refuges. Indeed, our unquantified field 

observations created the subjective impression that 

predator densities were higher during the second 

experiment. It thus remains possible that goldspot 

gobies compete for refuges chiefly with conspecifics. If 

so, then there must be subtle niche segregation between 

the two gobies that we have not recognized, and the 

simple characterization of refuges that we developed for 

bridled gobies (Forrester and Steele 2004) must not 

adequately describe refuge use for goldspot gobies. 

Finally, density dependence in goldspot gobies could 
also arise from competition for a resource other than 

refuges, especially one whose supply varies through 

time, or result from other temporally variable interac 

tions between goldspot gobies and their predators, 

parasites, or diseases. 

In summary, goldspot gobies provide an example of a 

species that experiences spatially density-dependent 

mortality that does not clearly lead to temporal density 

dependence, a theoretical possibility (Stewart-Oaten and 

Murdoch 1990) that has received relatively little 

empirical study. In this species, it is clear that agents 
of mortality whose effects are unrelated to population 

density also play a key role in driving population 

dynamics (Sale and Tolimieri 2000). Our findings add 

support to the conclusion that the small-scale field 

experiments typically conducted by ecologists to study 

density dependence, and possibly other processes, may 
be extrapolated to larger scales with care. Extrapolating 
the results of studies using spatial replicates to predict 

temporal responses, however, may be more risky, and 

requires a sound understanding of the underlying 

biological mechanisms. 
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