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Abstract

Equations of states are used to model fluid behavior. At a given temperature and 
pressure, for example, a mixture of water and alcohol might form a liquid and vapor 
phase, with the vapor phase being richer in alcohol and the liquid phase richer in water. 
In many industrial processes, such as distillation or extraction where mixtures of different 
compounds need to be separated, knowing how the fluid mixture will behave at various 
conditions helps make the operations more efficient and economical. 

While many equations of state exist, they differ in their accuracy in modeling 
systems and in their mathematical complexity. In particular, the Statistical Association 
Fluid Theory (SAFT) equation is a model that holds great promise as a predictive model 
because of its basis in statistical mechanics. Unlike many other equations of state, it is 
able to account for non-spherical shaped molecules, attraction and repulsion between 
molecules and site-site interactions. But while it has been able to successfully model a 
wide range of fluid systems where other models have failed, the SAFT equation is also 
mathematically complicated. This work focuses on the numerical difficulties and issues 
that arise in using the SAFT equation, and how they can be resolved. 

Numerical difficulties encountered in calculation of compressibility roots, mole 
fraction of unbonded sites, partial derivatives of the association term, and phase equilibria 
are addressed. Implications of simplifying assumptions about association strengths on 
different sites are also discussed. From the work done, it has been found that strategies 
making use of physically sound quantities in the SAFT model were successful in 
overcoming computational difficulties, which supports the predictive capabilities of the 
model. Current work is thus aimed at using the SAFT equation to model more 
complicated fluids, such as self-assembling surfactant systems, where it is expected that 
correct use of the sound physical basis of the model will lead to accurate results.

Keywords: SAFT, unbonded sites, compressibility roots, surfactant



Introduction

While the successful predictive capabilities of the Statistical Associating Fluid 
Theory (SAFT) equation of state have been well established (see, for example, Chapman 
et al, 1990: Huang and Radosz, 1991), few studies have revealed the numerical issues 
involved with using this equation. This report outlines the details of the numerical 
challenges encountered in calculating the monomer fraction (XAi), compressibility roots, 
and partial derivatives of the association term, with explanations of the strategies that are 
used to resolve these issues. 

As the SAFT equation of state is capable of modeling various sized molecules 
with sites that can associate with other sites, future work includes testing the ability of the 
SAFT equation to model self-assembling systems, such as micelles and lamellae. To 
prepare for this, the use of unequal association strengths, which has not been reported in 
previous SAFT literature, is explored in detail with two numerical experiments.

We begin with a brief introduction of the SAFT equation.

Simplified SAFT Equation of State

Statistical Associating Fluid Theory, or SAFT, is an equation of state, which 
assumes fluid molecules are composed of spherical segments that can interact to form 
chains and associate at specific bonding sites. The equation of state is given in terms of 
residual Helmholtz energy as a function of molar density, with contributions from 1) 
Hard sphere effects, 2) Dispersion effects, 3) Chain formation, and 4) Association. The 
compressibility factor, Z, and the residual chemical potential may be derived by 
differentiation of Ares with respect to molar density and mole number, respectively.

SAFT has an advantage over other equations of state (like the Van der Waals 
EOS) because it takes into account the possible chain-like shape and size differences in 
the fluid molecules, and the effects of any association between molecules such as 
hydrogen bonding. It also has a solid basis in statistical fluid theory, with the hard sphere 
and dispersion terms analogous to the van der Waals molecular co-volume and attraction 
terms, and the chain formation and association terms based on Wertheim’s theory (see 
Wertheim, 1985). SAFT has thus been successful in modeling behavior of many real
fluids, pure components and mixtures alike.  

Parameters that need to be determined for each fluid component modeled are v00, 
the molar volume of a segment at T=0 K, µ, the potential well depth, and m, the number 
of segments in the molecule. If the fluid molecules associate, two additional parameters 
are required: εAB, the energy at the interaction site, and κAB, the volume of the interaction 
site. These parameters can be obtained by fitting experimental liquid density and vapor 
pressure data to the SAFT model.



The SAFT equation is as follows; each term is discussed in more detail below. 
Symbols used are defined in the appendix. 

Ares = Ahs + Adisp + Achain + Aassoc

Eq. 1

1) Residual Helmholtz energy from hard sphere effect for a mixture

where

for k = 0,1,2,3

Eq. 2
For a pure component:
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Eq. 4

The residual Helmholtz energy from hard sphere effects takes the spherical shape 
of the molecule segments into account. This term assumes fluids are made of spheres that 
occupy a non-zero volume and that will bump off each other during collision (repulsion). 

In the equations above, Eq. 2 is the hard sphere equation for mixtures derived by 
Mansoori et al2. Equation 3, which applies to pure component hard spheres, is an 
equation derived by Carnahan and Starling1, obtained by writing the virial coefficients in 
closed form series. Virial coefficients for hard spheres are based on statistical mechanics, 
where a partition function for hard spheres (which is a function of the pair potential 
between the particles) is integrated over all the pairs of particles in the system. 

In the expression for η, Eq. 4, the first term [(1/6) π Nav ρ] is simply the packing 
fraction of the molecule segments, which is the ratio of space occupied by the spherical 
segments to the total space available. The terms that follow the first in Eq. 4, which 
represent the effective hard sphere diameter, come from the pair potential equation used. 
In this case, the potential between hard spheres is modeled by a square well potential. 

2) Residual Helmholtz energy from dispersion effects for a mixture

Adisp  = 

Eq. 5
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The following mixing rules are used:

For a pure component these equations reduce to:

Adisp  = 

Eq. 6

Where

In the Simplified SAFT Equation proposed by Fu and Sandler (1995), the only 
difference from the original equation was the dispersion term used. Equations for the 
dispersion term are generally obtained by fitting a power series to molecular dynamics 
data for square-well fluids, and in the Simplified SAFT model, the dispersion term was 
from Lee et al. (1985), which was a simpler equation than other dispersion terms 
available.

3) Residual Helmholtz energy from chain effects for a mixture

Achain  = 

Eq. 7
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where

           for k = 0,1,2,3

For a pure component:

Achain = 

Eq. 8

Where 

4) Residual Helmholtz energy from association effects for a mixture

Aassoc =

Eq. 9
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For a pure component:

Aassoc =

Eq. 10
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Finally, the chain and association terms of the SAFT equation were derived by 
Chapman et. al. (1990), using Wertheim’s theory. The chain term was derived essentially 
by extending the association to “infinite” association, thereby replacing association bonds 
with covalent, chain-forming bonds. This work largely focuses on the computational 
complexity that results from association.

I. Calculation of XAi, Mole fraction of Unbonded Sites

When performing root-finding calculations to obtain compressibility roots for a 
system with a mixture of associating components, the mole fractions of unbonded sites, 
XAi, must be computed at each iteration. Except for cases with only a single association 
site, values of XAi are obtained by solving a system of nonlinear equations, shown below.  

Eq. 11

Since XAi is a function of the density (or compressibility, Z), the solutions to the 
nonlinear equations change at each value of Z during the root-finding calculations. This 
poses a problem since any initial guess for XAi must be sufficiently close to the correct 
solutions to converge to a physically meaningful value. Otherwise, the calculations would 
converge to an incorrect value outside the range [0,1].

To overcome this problem and provide a good initial guess, the values of XAi

were initialized using explicit expressions for XAi from Huang and Radosz3, which were 
obtained by making a few simplifying assumptions about the association strengths at the 
different sites. For pure components, these expressions provide the actual XAi values
while for mixtures, close approximations to the actual solution are obtained. Table 1 
shows a comparison between the approximate mole fractions of unbonded sites using the 
explicit equations and the actual mole fractions from solving the system of equations, at 
various values of Z and compositions of a binary mixture of water and acetic acid. Note 
that for the most part, the approximate and actual values of XAi are very close, except at 
compositions close to either pure water or pure acetic acid. Despite this disparity, no root-
finding compressibility calculations or phase equilibrium calculations performed have 
ever failed because of convergence to an incorrect set of XAi values when using this 
initialization strategy. This demonstrates that initializing XAi using the approximate 
explicit expressions from Huang and Radosz provides a reliable way to ensure 
convergence to the correct solution.
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Table 1: Mole Fraction of Unbonded Sites for Acetic Acid (1) and Water (2) at T = 
300K, p = 1.013 bar. Site 1 corresponds to –COOH site in acetic acid, and sites 2, 3 
and 4 correspond to –H, -H and –O sites in water respectively. Tolerance = 1e-10.

Z = 0.5

Mole fraction of approx actual approx actual approx actual approx actual
component (1) site 1 site 1 site 2 site 2 site 3 site 3 Site 4 site 4

0.5 9.92E-3 1.40e-2 0.99887 0.99870 0.99887 0.99870 0.99773 0.99813

0.7 9.91E-3 1.18E-2 0.99886 0.99879 0.99886 0.99879 0.99773 0.99845

0.999 9.91E-3 9.92E-3 0.99886 0.99895 0.99886 0.99895 0.99773 0.99895

Z = 0.005

Mole fraction of approx actual approx actual approx actual approx actual

component (1) site 1 site 1 site 2 site 2 site 3 site 3 site 4 site 4

0.3 8.70E-4 1.56E-3 0.89739 0.91669 0.89739 0.91669 0.79479 0.83966

0.5 8.50E-4 1.19E-3 0.89422 0.93132 0.89422 0.93132 0.78844 0.87098

0.7 8.30E-4 9.86E-4 0.89090 0.94970 0.89090 0.94970 0.78180 0.90952

II. Calculation of Partial Derivatives of Association Term

To search for compressibility roots within the feasible region, the terrain method 
of Lucia and co-workers (Lucia and Yang, 2003) was used.  This method requires 
function values, as well as first and second derivatives with respect to the molar density. 
For associating systems, the derivatives of the mole fraction of unbonded sites, XAi, with 
respect to density needed to be calculated. Since the functionality of XAi with respect to 
molar density is not explicitly calculated, many previous studies have used numerical 
methods requiring iterative computations to find XAi and its first and second derivatives8. 

In this study, however, iterative computations during compressibility root finding 
calculations were minimized by using the implicit function theorem to calculate first and 
second partial derivatives of XAi with respect to density. By doing so, only XAi needed to 
be computed iteratively and the derivatives could be calculated explicitly. Details of the 
derivative expressions are given in the appendix.

Once all roots in the feasible region were obtained, the lowest Z value was 
assigned as the liquid compressibility and the highest Z was the vapor compressibility.



III. Compressibility

Nature of SAFT curve used for Root-finding calculations

For non-associating pure components, the SAFT equation of state is a seventh-
order polynomial.  With mixtures and associating components, the order increases. 
Finding and determining the correct compressibility roots, therefore, become much more 
challenging with the SAFT equation compared to simpler models, such as cubic 
equations of state.

To begin the search for roots, a lower bound for the compressibility is calculated 
using the minimum molar volume physically possible (mv00). From numerous 
simulations performed, we have found that above this lower bound, the SAFT equation 
behaves much like a smooth, cubic equation, with three roots. Below the lower bound, 
the SAFT curve has several asymptotes and roots extremely close to each other, making 
root finding extremely difficult. Figure 1 gives an illustration of this.

As the figure shows, the portion of the curve after the first asymptote from the 
right-hand side (near Z = 0.01) is a smooth and well-behaved curve. The lower bound of 
Z always occurs to the left of the first asymptote in the curve. Moreover, the existence of 
this first asymptote, as well as others, is the result of the denominator in the hard sphere 
term, (1-ζ3), approaching zero as ζ3 becomes close to one. It can be easily shown, 
however, that at the suggested physical lower bound of Z, the function always has a value 
of ζ3 less than one, so it is never at the asymptote (see justification in the appendix).

Figure 1: Compressibility roots for Pentane and Ethane mixture at T=240 K, p=10 
bar



Importance of Setting a Lower Bound for Z

The key to success in compressibility root and phase equilibria calculation is 
limiting the search for Z to within the physically meaningful region and using knowledge 
that the SAFT curve is well behaved in this region. Below the lower bound, the erratic 
behavior of the curve might be attributed to certain quantities becoming physically 
meaningless. For example, at some values of Z below the lower bound, the radial 
distribution function g becomes negative. In associating systems, this negative value can 
cause monomer fraction calculations to fail. In the SAFT model, the numerical features 
of the function appear to support the physical significance of quantities within the model.  
Our experience shows that whenever difficulties were encountered during the 
calculations, the reason was the result of physically meaningless quantities being present 
in the model (e.g., negative values of the radial distribution function).  In our opinion, one 
of the desirable features of the SAFT equation is that it holds great promise as a 
predictive model because of its sound physical foundations, as opposed to correlative 
models with no real physical basis.  Thus we are interested in exploiting physically sound 
strategies, like using physically meaningful lower bound and trapping negative values of 
the radial distribution function, in order to preserve the capabilities of SAFT.

IV. Use of Unequal Association Strength at Different Sites

The association term in the SAFT equation of state was developed by Chapman 
et. al. using Wertheim’s first order theory, which gives an important relationship between 
monomer density (or mole fraction of unbonded sites) and the residual Helmholtz energy 
from which other thermodynamic quantities, including compressibility and chemical 
potentials, can be derived. Key to calculating monomer density is the characterization of 
the association strength between different sites on the molecules. 

While the theory does not allow ring like cluster formation, simultaneous bonding 
of one site to two different sites, or double bonding between two molecules, no 
constraints are imposed on the number and strength of association sites on a molecule4. In 
many previous simulations of associating mixtures performed using the SAFT equation 
of state, however, simplifying assumptions about the association strengths of different 
sites were made (see Huang and Radosz, 1991) and still used. For example, a carboxylic 
acid group is considered a single association site, and the two hydrogen atoms on a given 
water molecule are assumed to have equal association strengths.

In our opinion, these assumptions do not account for steric hindrance and, 
whether valid or not, have been incorporated for the specific purpose of simplifying the 
calculations to obtain XAi and also to reduce the number of association parameters 
required. To see this note that each site is characterized by two parameters: an association 
energy (εAB) and an association volume (κAB). Thus a molecule with three sites, for 
example, would have a total of six association parameters. Moreover, if the sites were 
assumed to have equivalent association strengths, then all sites would all have equal 
values of εAB and κAB.  As a result, only two parameters are required for the molecule. 
For certain systems, especially ones with simple self-associating molecules, the 



assumptions might not introduce much error in the subsequent calculations. However, it 
is unknown how the same assumptions might affect compressibility and phase equilibria 
calculations in more complicated systems, such as a self-assembling surfactant in 
solution. To investigate the validity of these simplifying assumptions, the following 
numerical experiments were performed.

Ethanol and water in a mixture are known to form hydrogen bonds: a hydrogen 
bond can form between the oxygen atom of ethanol and the hydrogen atom of water, or it 
can form between the hydrogen atom of ethanol and the oxygen atom of water. Let these 
hydrogen bonds be called WE and EW respectively. Under simplifying assumptions and 
cross-association mixing rules used in previous studies3,5, these hydrogen bonds were 
considered to have equal association strengths. But in reality, this is not true. Relative 
binding energies calculations by Fileti et al. have shown that the EW hydrogen bond has 
a binding energy roughly 20% greater and a bond distance about 4% shorter than the WE 
hydrogen bond6. 

To determine whether the SAFT association term predicts the same 20% 
difference in the hydrogen bond strengths with the simplifying assumptions made, the 
following analysis was done. Fraction contributions of each site-site interaction to the 
mole fraction of bonded sites were first computed, by rearranging Eq. 11 as follows:

1- XAi = Nav ΣΣΣΣΣΣΣΣ (ρρρρ xjXAi XBj ∆∆∆∆AiBj )
Then, the fraction contributions of the mole fraction of unbonded sites to the total 

Helmholtz association energy was computed. From these, the fraction contributions of 
each site-site interaction to the total Helmholtz association energy could then be 
determined.  For example, to determine the fraction contribution of the interaction of site 
1-5 to the total Helmholtz association energy, then the individual fraction contributions of 
the following bolded terms below would calculated and then multiplied together.

1- X1 = Nav(ρ xEX1 X1 ∆11 + ρ xEX1 X2 ∆12+ ρ xwX1 X3 ∆13

+ ρ xwX1 X4 ∆14 + ρρρρ xwX1 X5 ∆∆∆∆15)
Aassoc = xE (ln X1 – 0.5X1 + ln X2 – 0.5X2 ) + xw (ln X3 – 0.5X3  +

ln X4 – 0.5X4  + ln X5 – 0.5X5 ) + 0.5ME + 0.5 Mw

Table 2 shows the results of the analysis for the Ethanol (1) and Water (2) 
mixture, using equal association strengths for the WE and EW bonds. From the result, it 
turns out that the SAFT equation predicts a fraction contribution of 0.078 for the WE 
bond, and a fraction contribution of 0.104 for the EW bond to the total Helmholtz 
association energy. Note that the Helmholtz energy of the WE bond is predicted to be 
slightly lower than the EW bond energy, which is contrary to the ab-initio calculation 
predictions. 



Next, the association strengths of the EW and WE bonds were set unequal to each 
other and adjusted so that there would be the correct 20% difference in the fraction 
contributions of each bond. Then compressibility root calculations were done, with the 
results shown in Table 3. 

Table 2: Fraction Contributions of Each Site-Site Interaction to Helmholtz 
Association Energy for Ethanol (1) and Water (2) at T=283.15 K, p=1.013 bar. Mole 
fraction of ethanol = 0.21, sites 1 and 2 correspond to –H and –O on ethanol 
respectively, and sites 3, 4 and 5 correspond to sites –H, –H, and –O on water 
respectively. 

X1 X2 X3 X4 X5

1-1 0 2-1 0.321619 3-1 0 4-1 0 5-1 0.038622

1-2 0.246213 2-2 0 3-2 0.027618 4-2 0.027618 5-2 0

1-3 0 2-3 0.050097 3-3 0 4-3 0 5-3 0.038753

1-4 0 2-4 0.050097 3-4 0 4-4 0 5-4 0.038753

1-5 0.065685 2-5 0 3-5 0.047462 4-5 0.047462 5-5 0

Table 3: Liquid Compressibility Factor, Z, for Ethanol (1) and Water (2) at 
T=283.15 K, p=1.013 bar. Tolerance = 1e-8.

Mole fraction
Ethanol

Z with equal 
strengths

Z with unequal 
strengths

0.281 1.22E-03 1.24E-03

0.477 1.55E-03 1.58E-03

0.610 1.79E-03 1.82E-03

0.881 2.32E-03 2.33E-03

The resulting compressibility roots for the case using equal association strengths 
and the case using unequal association strengths did not differ significantly. The reason is 
that for this example, it turns out that the contribution of the cross-association interaction 
between ethanol and water to the total residual Helmholtz energy was very little. Self-
association interactions had the largest contribution toward the association Helmholtz 
energy, and the dispersion and hard sphere effects were actually more dominant than the 
association effects. Therefore, even though the simplifying assumptions did not 
necessarily capture the correct physics of the cross-association between alcohol and 
water, in the end this did not matter too much because the compressibility roots obtained 
did not change in either case.

For the next numerical experiment, now consider a water and surfactant mixture, 
where the water molecule has 3 association sites, and the surfactant (lysophosphatidic 



acid) has 4 association sites as shown in Figure 4. This time, the association strengths of 
the site-site interactions in the system are widely different, compared to the alcohol and 
water system earlier where only weak H-O hydrogen bonding occurred. In this system, 
the surfactant molecule has a charged group (site 7), which is known to form strong 
hydrogen bonds in water. At the same time, the surfactant also has hydroxyl groups (sites 
5 and 6) that form weak hydrogen bonds. Literature values of strong hydrogen bonds are 
reported to be 14-40 kcal/mol, while weak hydrogen bonds are less than 4 kcal/mol13. 

To model this system, three schemes were proposed. In the first model, the cross-
association strengths of all the interactions between the two molecules were set equal to 
each other except for the interactions with site 7. Next, in the second model, all cross-
association interactions were set equal except those with sites 7 and 4. Finally, in the 
third model, the cross-association strengths of interactions with sites 7,4,5 and 6 were set 
unequal. Also, the unequal association strengths were adjusted so that the differences 
were about 50 to 100%, compared to the 20% difference in the alcohol and water system 
earlier. Parameters used for the surfactant were values chosen arbitrarily from the range 
of typical values found in literature (values used are given in the appendix). 

Figure 4: Association Sites in Water (1) and Surfactant (2) System



When the effects on the Helmholtz association energy and the total residual 
Helmholtz energy of the cross-association interactions in this system were analyzed, we 
found that now the cross-association interactions contributed significantly to the 
Helmholtz association energy. Unlike the example earlier where the hard sphere and 
dispersion terms were dominant, the association term is now the dominant term. Figure 5 
below shows that when modeled with most of the cross-association strengths equal to 
each other, the water-surfactant mixture behaves almost like an ideal mixture. But when 
modeled using unequal cross-association strengths, the mixture behaves more non-
ideally. 

Figure 5: Helmholtz Energy of Association and Total Residual Helmholtz Energy 
for the Water (1)-Surfactant (2) mixture at p=1.013 bar, T=298.15 K.

Finally, when compressibility calculations were done, the compressibility roots 
found were now significantly different, especially at mole fractions far from purity, as 
shown in Table 4. Thus, this example shows that simplifying assumptions made about 
equal association strengths might not only fail to capture the correct physics of the 
system, but eventually fail to give correct compressibility roots and phase equilibria 
behavior. The reason for this is that to perform phase equilibria calculations, the 
composition of phases present in equilibrium would be determined by first assuming a 
particular number of phases present, and then determining phase compositions that 
satisfied equality of chemical potentials. To calculate chemical potentials, the correct 
compressibility roots are required. Therefore, a significant change in the compressiblities 
would change the resulting phase equilibrium predictions.



Table 4: Liquid Compressibility Factor, Z, for Water (1) and Surfactant (2) at 
T=273.15 K, p=0.01 bar. Tolerance = 1e-8.

Mole fraction
Water Z with Model 1 Z with Model 2

0.55 5.61E-03 1.82E-02

0.6 4.67E-03 1.02E-02

0.65 3.89E-03 6.59E-03

0.8 2.16E-03 2.56E-03

Conclusion

From the investigations performed, we have found that strategies which make use 
of the physical quantities present in the SAFT model were successful in overcoming 
numerical difficulties encountered (i.e. use of Z lower bound). We have also seen that use 
of equal association strengths did not introduce much error in simulation of certain 
systems because the association effects were not dominant, but the same assumptions 
would introduce error in systems where the site-site interaction strengths differed widely 
and where association effects were dominant. 

Future Work

Based on the investigation of the numerical aspects of the SAFT equation, 
particularly the limitations of the simplified association site strength calculations, and the 
successful strategies developed for monomer fraction and compressibility root 
calculations, the next step is to use the SAFT equation to model self-assembling systems 
by fitting parameters to surfactant solution data. This includes fitting association 
parameters where the association strengths of different sites are not constrained using 
simplifying assumptions (i.e., are not taken to be equal). It is hoped that by fully utilizing 
the unique capabilities of the SAFT equation to capture association behavior, self-
assembling systems will be modeled correctly.



APPENDIX

Nomenclature

v00 – molar segment volume at T=0 K
µ – potential well depth
m – number of segments in the molecule
εAB – energy of interaction site
κ AB – volume of interaction site
ρ – molar density
Nav – Avogadro’s number
C – constant; 0.333
τ – constant; 0.74048
k – Boltzmann constant; 1.38e-33 J/K
T – temperature
R – universal gas constant 
x – mole fraction
dii – effective segment diameter
gii (dii) – radial distribution function
XAi – mole fraction of molecules not bonded at site A
M – total number of association sites
∆AB– energy of association

Justification for Lower Bound Z not occurring at Asymptote

The denominator in the hard sphere term is  (1-ζ3), where ζ3 = (π Nav ρ m d3)/6 
for a pure component. In the expression for ζ3, the term d is the effective segment 
diameter, given by d= [(v00 6τ )/ (π Nav )]1/3. At the lower bound for Z, the molar density 
is ρ = 1/(mv00). 

ζ3 = (π Nav ρ m d3)/6
ζ3 = (π Nav (1/(mv00)) m [(v00 6τ )/ (π Nav )] )/6
ζ3 = (π Nav (1/(mv00)) m [(v00 6τ )/ (π Nav )] )/6

ζ3 = τ, where τ =  0.74048.

Therefore at the lower bound for Z, the denominator in the hard sphere term,      
(1-ζ3), is always a positive number and not zero, which would cause the asymptote.



Partial Derivatives of XAi using Implicit Function Theorem

For a single association site, XA is given by XA = 1/ (1+ Nav ρXA∆). 

Let G (XA, ρ) = 1/ (1+ Nav ρXA∆), and define F (XA, ρ) = XA – G (XA, ρ).
By the implicit function theorem:

F (XA, ρ) = F (XA, ρ) + F’XA ∆XA  + F’ρ ∆ρ 

Where XA and ρ are XA+ ∆XA and ρ+ ∆ρ respectively. At infinitesimally small ∆ρ and 
∆XA ,  F (XA, ρ) = F (XA, ρ) so that the above equation can be rewritten as

∆XA /∆ρ = - F’ρ/ F’XA or
δXA/δρ =  - F’ρ/ F’XA

For systems with more than one association site, analogous equations can be written:

DXU =  - JX
-1 Jp

D2XU = - {JX
-1 Jp ’  + [JX

-1 ]’ p Jp}

D3XU = -{2 [JX
-1 ]’ p Jp’ + JX

-1 Jp ’’ + [JX
-1 ]’’ p Jp }

JX JX [JX
-1 ]’ p  = -[JX]’ p

JX JX JX [JX
-1 ]’’ p = 2 [JX ]’ p[JX ]’ p - [JX ]’’ p JX

Where   JX , JX’ and  JX’’ =  matrix of first, second and third partial derivatives of G (XA, 
ρ) with respect to XA respectively,
             Jp , Jp’ and Jp ’’ = vector of first, second and third partial derivatives of  G (XA, ρ) 
with respect to ρ respectively
             DXU, D2XU and D3XU = matrix of first, second and third partial derivatives of 
XA with respect to molar density ρ

Note that to obtain the matrix of the partial derivatives of the elements in an inverse 
matrix (the quantities in bold above), the last two equations were solved using Gaussian 
elimination.

Parameters Used for the Surfactant

µ /k = 100 K
v00  = 15 mL 
m = 9
Values of ∆AB were chosen to be between 1.E-16 and 1.E-20.
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