
Vol.:(0123456789)1 3

European Journal of Clinical Microbiology & Infectious Diseases (2023) 42:701–713 
https://doi.org/10.1007/s10096-023-04590-0

ORIGINAL ARTICLE

A comparison of five Illumina, Ion Torrent, and nanopore sequencing 
technology‑based approaches for whole genome sequencing 
of SARS‑CoV‑2

Ellen C. Carbo1 · Kees Mourik1 · Stefan A. Boers1 · Bas Oude Munnink2 · David Nieuwenhuijse2 · Marcel Jonges3 · 
Matthijs R. A. Welkers3 · Sebastien Matamoros3 · Joost van Harinxma thoe Slooten1 · Margriet E. M. Kraakman1 · 
Evita Karelioti4 · David van der Meer4 · Karin Ellen Veldkamp1 · Aloys C. M. Kroes1 · Igor Sidorov1 · 
Jutte J. C. de Vries1 

Received: 14 December 2022 / Accepted: 14 March 2023 / Published online: 5 April 2023 
© The Author(s) 2023

Abstract
Rapid identification of the rise and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of 
concern remains critical for monitoring of the efficacy of diagnostics, therapeutics, vaccines, and control strategies. A wide 
range of SARS-CoV-2 next-generation sequencing (NGS) methods have been developed over the last years, but cross-
sequence technology benchmarking studies have been scarce. In the current study, 26 clinical samples were sequenced using 
five protocols: AmpliSeq SARS-CoV-2 (Illumina), EasySeq RC-PCR SARS-CoV-2 (Illumina/NimaGen), Ion AmpliSeq 
SARS-CoV-2 (Thermo Fisher), custom primer sets (Oxford Nanopore Technologies (ONT)), and capture probe-based viral 
metagenomics (Roche/Illumina). Studied parameters included genome coverage, depth of coverage, amplicon distribution, 
and variant calling. The median SARS-CoV-2 genome coverage of samples with cycle threshold (Ct) values of 30 and lower 
ranged from 81.6 to 99.8% for, respectively, the ONT protocol and Illumina AmpliSeq protocol. Correlation of coverage with 
PCR Ct values varied per protocol. Amplicon distribution signatures differed across the methods, with peak differences of 
up to 4 log10 at disbalanced positions in samples with high viral loads (Ct values ≤ 23). Phylogenetic analyses of consensus 
sequences showed clustering independent of the workflow used. The proportion of SARS-CoV-2 reads in relation to back-
ground sequences, as a (cost-)efficiency metric, was the highest for the EasySeq protocol. The hands-on time was the lowest 
when using EasySeq and ONT protocols, with the latter additionally having the shortest sequence runtime. In conclusion, the 
studied protocols differed on a variety of the studied metrics. This study provides data that assist laboratories when selecting 
protocols for their specific setting.
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Introduction

Genomic surveillance of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) has proven critical for early 
detection of the rise and spread of SARS-CoV-2 variants 
of concern, for monitoring and developing effective diag-
nostic, therapeutic, and preventive strategies [1]–[3]. In 
addition, genomic surveillance assists in contact tracing, 
transmission tracking at population level, and public-health 

decision-making [4]. The widespread application of genom-
ics for pandemic surveillance is exemplified by more than 
15 million SARS-CoV-2 sequences deposited in the GISAID 
repository as of February 2023 [5].

A wide range of SARS-CoV-2 next-generation sequenc-
ing (NGS) technologies and protocols have been developed 
and adapted since the first genome sequence was gener-
ated using a metagenomic approach [6]–[8]. SARS-CoV-2 
whole genome sequencing (WGS) protocols have been 
improved to increase the technical performance, includ-
ing sensitivity and genome coverage, and logistical aspects 
have also been addressed, such as scalability and hands-
on time [9]–[12]. Studies have been published on SARS-
CoV-2 WGS with innovative protocol adaptations in order 
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to decrease the error rate and the turnaround time by com-
bining PCR and tagging steps [12] [13]. However, these 
studies have been typically focused on the technology 
developed by the authors, whereas comparison of a novel 
protocol with other methods is limited. Benchmark stud-
ies of SARS-CoV-2 genome sequencing technologies are 
limited and generally restricted to comparison of protocols 
for the single type of sequencing technology available at 
the study site of the authors [14]–[18] or cross-platform 
studies limited to only amplicon sequencing protocols 
[19]–[21]. In contrast, cross-platform studies including 
short and long read sequencing platforms and metagen-
omics remain relatively scarce and limited to a maximum 
of two different sequence platforms [22]. A recent external 

quality assessment (EQA) report assessed the outcome of 
complete workflows from nucleic acid extraction to the 
reported consensus sequence by testing SARS-CoV-2 cul-
tured isolates; however, no detailed distinction between 
the different workflow components could be made [20].

Here, we describe a cross-platform benchmark study 
that includes Illumina, Ion Torrent, and nanopore-based 
SARS-CoV-2 sequencing technologies in one study. Five 
protocols (Fig. 1) employing a diversity of sequencers 
with a wide range of throughput, accuracy, and runtime 
were compared using clinical samples. The performance 
was studied by comparing genome coverage, read depth, 
amplicon distribution, variant calling, and the proportion 
of on-target reads.

Fig. 1   Schematic overview 
of the design, workflow, and 
technologies adopted in this 
study with their hands-on and 
sequencing turnaround time. 
Twenty-six respiratory samples, 
mainly nasopharyngeal swabs 
and tracheal aspirates, were 
tested by five SARS-CoV-2 
WGS protocols. PCR Ct values 
ranged from 13.9 to 33.6. To 
exclude potential variability 
resulting from different nucleic 
acid extraction methodologies, 
the extraction method used was 
identical for all five protocols. 
Four protocols were tiled ampli-
con based, one protocol was 
capture probe based, targeting 
all viruses known to infect ver-
tebrates designed in 2015 [29] 
but shown to cover > 99% of the 
SARS-CoV-2 genome [30] due 
to similarity with bat coronavi-
ruses and the variability incor-
porated in the probe design. 
In order to minimize potential 
differences resulting from vari-
ation in bioinformatic analyses 
tools and settings, a uniform 
pipeline for sequence data from 
Illumina and Ion platforms, for 
ONT data, platform-specific 
tools handling higher error 
rates were used to gain optimal 
results from this type of dataset 
(Suppl. Figure 1). Created using 
Biorender.com
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Methods

Sample selection

In total, 26 SARS-CoV-2 PCR-positive samples of 24 
patients were selected: nine tracheal aspirates, 16 naso-
pharyngeal/throat swabs, and one lung lymph node biopsy. 
Fifteen of these samples were obtained for cluster identifi-
cation. Samples were retrospectively included to be tested 
with five WGS protocols. Samples were previously sent 
to the Clinical Microbiological Laboratory of the Leiden 
University Medical Center (LUMC, The Netherlands) for 
nucleotide extraction and SARS-CoV-2 E-gene PCR testing 
[23] in the period March–October 2020 (Wuhan-like viruses 
circulating). After nucleotide extraction and PCR, samples 
were stored at −80 ° C until further distribution between 
different centers for WGS analysis. In total, 26 samples with 
a wide range of Ct values (13.9–33.6, confirmed by retest-
ing) were included to assess the performance of each of the 
five WGS protocols. The range and distribution of PCR Ct 
values were chosen based on relevance for routine clinical 
practice. Since clinical uncultivated samples were used; the 
available volume restricted the comparison to five different 
methodologies, without repeated measurements.

Ethical approval

Approval was obtained from the ethical committee of the 
LUMC (B20.002, Biobank Infectious Diseases 2020–03) 
and the Institutional Review Board of the LUMC for obser-
vational COVID-19 studies (CoCo 2021–006).

Extraction of nucleic acids

To exclude potential variability resulting from differ-
ent nucleic acid extraction methodologies, the extraction 
method used was identical for all five protocols. Nucleic 
acids were extracted from 200 μl input material using the 
MagNApure96 DNA and Viral NA small volume extrac-
tion kit on the MagNA Pure 96 System (Roche Diagnostics, 
Almere, The Netherlands) with 100 μl output eluate.

SARS‑CoV‑2 sequencing protocols (see also Fig. 1)

AmpliSeq SARS‑CoV‑2 sequencing (Illumina)

Libraries were prepared using the AmpliSeq™ SARS-CoV-2 
Research Panel for Illumina®, which is a targeted RNA/
cDNA amplicon assay for epidemiological research of the 
SARS-CoV-2 virus. This panel contains a two-pool design 
of 247 amplicons/primer pairs (pool 1: 125 amplicons, pool 

2: 122 amplicons). In total, 237 amplicons were SARS-
CoV-2 targets while the remaining amplicons mapped to 
five different regions of the human genome and were used as 
control. The amplicons’ lengths ranged from 125 to 275 bp.

From each sample, 15 μl of eluate was concentrated using 
the SpeedVac vacuum concentrator (Eppendorf, Hamburg, 
Germany). Samples were then dissolved in 10 μl AmpliSeq 
cDNA synthesis master mix. Next, the AmpliSeq cDNA 
Synthesis for Illumina Kit (Illumina) was used to reverse 
transcribe RNA to cDNA. Amplicon primer pools of the 
AmpliSeq™ SARS-CoV-2 Research Panel for Illumina® 
were subsequently added to each sample. cDNA target 
amplification reaction was performed according to manu-
facturer’s instructions, followed by partial digestion of 
primer dimers. AmpliSeq CD indexes were then ligated, 
and further library PCR amplification was performed. The 
libraries were purified with the Agencourt™ AMPure™ XP 
Reagent (Beckman Coulter). The final quality and quantity 
of each barcoded cDNA library were determined using the 
Fragment Analyzer (Agilent). From all amplified libraries, 
2 μl was pooled and loaded for a short sequencing run to 
indicate the size of the intact libraries. Based on the indica-
tive read counts, equimolar amounts of each sample were 
pooled (1.1 nM) and submitted for DNA sequencing using 
the NovaSeq 6000 system (Illumina, San Diego, CA, USA) 
according to manufacturer’s protocols. Approximately 10 
million 150 bp paired-end reads were obtained per sample. 
Data processing was performed in real time by the NovaSeq 
Control Software v1.7.

EasySeq RC‑PCR SARS‑CoV‑2 sequencing (NimaGen/
Illumina)

Libraries were prepared using the EasySeq RC-PCR SARS-
CoV-2 kit version 4.02 (NimaGen) for Illumina as described 
by Coolen et al. [12]. cDNA synthesis was performed using 
the iScript™ Advanced cDNA Synthesis Kit (Bio-Rad) 
according to manufacturer’s instructions using 10 μl of elu-
ate. This version of the EasySeq RC-PCR SARS-CoV-2 
kit uses 154 designed primer pairs (pools A and B) with 
a tiling strategy, resulting in approximately 435 bp size 
amplicons. The EasySeq protocol enables a one-step pro-
cedure for adding SARS-CoV-2 target specific PCR prim-
ers, sequence adapters, and unique dual indices (UDIs) by 
hybridization of the SARS-CoV-2 primers with universal 
primers that include adapters and UDIs. After the PCR with 
5 μl cDNA as input, samples were pooled based on Ct value 
into pools A and B, which were individually cleaned using 
AmpliClean™ Magnetic Bead PCR Clean-up Kit (Nima-
Gen, Nijmegen, The Netherlands). Subsequently, quantifi-
cation was performed using the Qubit double-strand DNA 
(dsDNA) high-sensitivity assay kit on a Qubit 4.0 instru-
ment (Life Technologies) and pools A and B were combined. 
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Sequencing was performed on Illumina MiniSeq® using a 
Mid Output Kit (2 × 149 or 2 × 151 cycles) (Illumina, San 
Diego, CA, USA) by loading 0.8 pM on the flow cell, obtain-
ing approximately 50,000 paired-end reads per sample. The 
sequence runs were conducted using a balanced library pool-
ing strategy based on estimated cDNA input according to the 
manufacturer’s protocol.

Ion AmpliSeq SARS‑CoV‑2 sequencing (Thermo Fisher)

The Ion AmpliSeq SARS-CoV-2 research panel supplied 
by Thermo Fisher Scientific contained 247 primer pairs 
designed to cover the SARS-CoV-2 genome with 125 
to 275 bp overlapping amplicons. For cDNA synthesis, 
the SuperScript VILO cDNA Synthesis Kit (11,754,050, 
Thermo Fisher Scientific, The Netherlands) was used 
according to manufacturer’s instructions using 7 μl of diluted 
nucleic acid solution to an estimated input of 100 copies/
reaction using nuclease free water (AM9939, Ambion, 
Thermo Fisher Scientific, The Netherlands). SARS-CoV-2 
whole genome amplification, adapter ligation, and purifica-
tion were performed using the Ion AmpliSeq SARS-CoV-2 
Insight Research Assay (A51305, Thermo Fisher Scientific, 
The Netherlands) according to manufacturer’s instruction. 
Libraries were quantified using the Ion Library TaqMan 
Quantitation Kit (4,468,802, Thermo Fisher Scientific, The 
Netherlands) according to manufacturer’s instructions. Sam-
ples were then sequenced on an Ion GeneStudio S5 sys-
tem (Thermo Fisher Scientific, The Netherlands) using an 
Ion 540 chip (Thermo Fisher Scientific, The Netherlands), 
obtaining approximately up to 1 million paired-end reads 
per sample.

Custom primers with MinION sequencing (ONT)

A SARS-CoV-2 specific multiplexed PCR for nanopore 
sequencing was performed using custom-made primers as 
previously described [4], for maximum flexibility and rapid 
adaptation of primers for novel variants. In short, primers 
for 89 overlapping amplicons spanning the whole SARS-
CoV-2 genome were designed using primal [24]. The ampli-
con length was approximately 500 bp with a 75 bp overlap 
between the different amplicons. cDNA was transcribed 
using SuperScript III Reverse Transcriptase (Invitrogen, 
Darmstadt, Germany) [25]. Libraries were generated using 
the native barcode kits from Oxford Nanopore Technologies 
(EXP-NBD104, EXP-NBD114, EXP-NBD196, and SQK-
LSK109) using 5 μl cDNA as input and sequenced on a 
R9.4 flow cell multiplexing 96 samples per sequence run 
[4]. On average, 68 k reads with an average size of 423 bp 
were obtained per sample.

Capture probe (Roche) with viral metagenomic NGS 
(Illumina)

The viral metagenomic NGS protocol has previously been 
described [26]–[28]. After nucleic acid extraction, 50 μl of 
eluate was concentrated with the SpeedVac vacuum concen-
trator (Eppendorf, Hamburg, Germany) and dissolved in 10 μl 
fragmentation master mix (NEBNext). The NEBNext Ultra 
II Directional RNA Library prep kit (New England Biolabs, 
Ipswich, MA, USA) for Illumina was used for RNA library 
preparation, incorporating several alterations to the manu-
facturer’s protocol to be able to detect both DNA and RNA 
in the sample. Specifically, poly-A mRNA capture isolation, 
rRNA depletion, and DNase treatment steps were omitted and 
dual indexed adaptors were used. The SeqCap EZ HyperCap 
probes (Roche, Basel, Switzerland) were designed in 2015 
to cover 207 taxa genomes of viruses known to infect ver-
tebrates including humans [29]. Recently, it has been shown 
that the probes cover > 99% of the SARS-CoV-2 genome [30] 
due to similarity with bat coronaviruses and the variability 
incorporated in the probe design. Viral DNA enrichment was 
performed using the SeqCap EZ HyperCap Workflow User’s 
Guide in pools of four amplified DNA libraries with overnight 
probe incubation. Washing and recovering captured DNA 
were performed using the HyperCap Target Enrichment kit 
and HyperCap Bead kit. Lastly, postcapture PCR amplification 
was performed with KAPA HiFi HotStart ReadyMix (2X) and 
Illumina NGS primers following manufacturers’ instructions, 
followed by AMPure bead purification. The quality and quan-
tity of the postcapture multiplexed libraries were assessed by 
Fragment Analyzer (Agilent) or Bioanalyzer (Agilent, Santa 
Clara, CA, USA). Sequencing was performed on the NovaSeq 
6000 system (Illumina, San Diego, CA, USA) obtaining 
approximately 10 million 150 bp paired-end reads per samples.

Data analyses

In order to minimize potential differences resulting from 
variation in analysis tools and settings, a uniform pipeline 
consisting of steps for QC, trimming, mapping, and variant 
calling was used for sequence data from Illumina and Ion 
platforms (Supplementary Fig. 1). Illumina and Ion plat-
form samples were processed in two different centers, every 
center using a marginally different mapping protocols. For 
ONT data, platform-specific mapping and variant calling 
tools handling higher error rates were used to gain optimal 
results from this type of dataset.

Illumina data from AmpliSeq, EasySeq, and viral 
metagenomic protocols

Demultiplexing was performed according to Illumina manu-
facturer protocol using bcl2fastq v2.20 (Illumina). Removal 



705European Journal of Clinical Microbiology & Infectious Diseases (2023) 42:701–713	

1 3

of duplicate reads was not performed since unique molecu-
lar identifiers (UMIs) in principle were not compatible with 
the nonrandom, tiled amplicon-based WGS protocols in the 
current study and were thus not incorporated in any of the 
wet lab procedures described here. Quality control and trim-
mings per read were performed utilizing Trimmomatic v0.36 
(“LEADING:3 HEADCROP:31 TRAILING:3 SLIDING-
WINDOW:4:15 MINLEN:40”) [31]. To remove and count 
the number of sequence read mapping to the human genome, 
reads were mapped to GRCh38 using Bowtie2 v2.1.0 
(“–local–qc-filter–quiet”)[32]. Unmapped reads were subse-
quently mapped to the SARS-CoV-2 genome NC_045512.2 
[33]. Mapped reads were indexed in a genome sorted bam 
file by SAMtools v1.7 [34] [35]. Variant calling was done 
using BCFtools v.1.7 (“bcftools call–ploidy 1-v-m”) [36].

Ion AmpliSeq data

Primer-removed fastq files were exported for further analysis 
using the Torrent Suite Software (Thermo Fisher Scientific, 
The Netherlands). Per read quality control was performed 
using Trimmomatic v0.36 (“LEADING:3 HEADCROP:31 
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:40”) 
[31]. The resulting quality checked reads were first mapped 
to the human reference genome HG19 using BWA v0.7.17 
[37] with default settings (“bwa bwasw”) to remove all 
reads of potential human origin. Unmapped reads were sub-
sequently mapped to the SARS-CoV-2 reference genome 
Wuhan-Hu-1 [38]. The resulting sequence alignment map 
(SAM) files were converted to BAM, sorted, and indexed 
using SAMtools v1.14 [34][34]. Variant calling was per-
formed using BCFtools v.1.7 (“bcftools call–ploidy 1-v-m”) 
[36].

ONT custom primer data

Demultiplexing was performed using Porechop v0.2.4 [34]. 
Primers were trimmed using Cutadapt v3.0 [39]. Reference-
based alignment was carried out using Minimap2 v2.17-r941 
[40] against both the human genome GRCH38 and SARS-
CoV-2 genome NC_045512.2 [33]. Variant calling was 
performed by filtering of variants using the Python module 
Pysam v 0.16.0.1 [41].

Performance and statistical analyses

Mapping coverage was analyzed using a threshold of 
10 × depth per base for all platform data except for ONT 
data, where a 20 × depth per base was considered as 
threshold to ensure reliable variant calling as was pre-
viously described in literature [42]. Coverages per base 
were calculated using SAMtools v1.7 [34] [35] with the 

corresponding depth option. Correlation between genome 
coverage percentage and Ct values was calculated using 
Spearman’s rho [43]. Read mapping quality and base qual-
ity (phred) were computed using SAMtools v.11 [34] [35] 
with the coverage option. High mapping quality represents 
a more unique alignment, and low mapping quality rep-
resents a marginal difference between the alignment and 
the best secondary alignment option within the reference. 
High phred scores represent accurate base calling.

Phylogenetic trees

Maximum likelihood trees of the consensus genomes from 
all methods were generated using the SAMtools consen-
sus option (setting “mpileup-d 10” and for ONT “mpi-
leup-d 20”) [29], Clustal Omega v1.2.4 (“clustal omega-t 
DNA”) [44], and FastTree v2.1.11 (“FastTreeMP-nt-gtr”) 
[45] [46]. Consensus genomes with ≥ 98% genome cov-
erage were included, genome coverages based on mini-
mal 10 × read depth for all methods, and 20 × read depth 
for ONT sequencing. Variant frequencies of > 50% were 
implemented in the consensus genome, though error pro-
files, like those of ONT, and short insertions/deletions 
(indels) not consistently called by SAMtools can lead to 
an inaccuracy of the consensus.

Results

In total, 26 clinical samples from 24 patients were sequenced 
using the five SARS-CoV-2 sequencing protocols included 
in the current comparison (Fig. 1). Hands-on time, sequenc-
ing run time, and material costs per method are shown. Addi-
tional protocol characteristics are listed in Suppl. Table 1. 
The breadth of genome coverage, depth of genome coverage, 
proportion of SARS-CoV-2 reads, and performance of vari-
ant calling were compared.

Quality performance

To assess the mapping quality scores, representing the prob-
ability that a read was misaligned, median mapping quality 
scores were analyzed (Suppl. Table 2). The mapping quality 
for all protocols was higher than 40, which equals a mapping 
accuracy of 99.99%. The median base quality (phred) scores 
reflecting the estimates of errors emitted by the sequenc-
ing platforms ranged from Q23.8 (ONT, Perror 0.004%) and 
Q26.6 (Ion, Perror 0.002%) to Q36 for Illumina protocols 
(Perror 0.0003%).
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Genome coverage

Median genome coverages (%) and median read depth of 
all protocols are listed in Table 1, with median values of 
samples with Ct values below 30 specified. SARS-CoV-2 
genome coverages per protocol per sample are shown in 
Fig. 2, and more detailed information, including mean base 
and mean mapping quality scores, is presented in Suppl. 
Table 2. As anticipated, amplicon-based protocols generally 

resulted in higher genome coverage rates compared to the 
probe hybridization-based metagenomic protocol, though 
median genome coverages using the custom primer ONT 
protocol were within the same range for samples with Ct 
values of ≤ 30 (81.2% for ONT and 86.7% for mNGS, Suppl. 
Table 2). The median genome coverage across the other 
three amplicon-based protocols was comparable for samples 
with Ct values of ≤ 30, respectively, 99.7% and 99.8% when 
using the Ion AmpliSeq and the Illumina AmpliSeq protocol, 

Table 1   Overview of median 
SARS-CoV-2 genome 
coverages (%) and read depth 
per protocol

Illumina 
AmpliSeq

Illumina 
EasySeq

Ion AmpliSeq Custom prim-
ers ONT

Illumina probe 
viral mNGS

Median 99.80% 1.313 98.00% 316 99.65% 2.080 81.20% 860 75.70% 2.813
Median Ct ≤ 30 99.80% 3.339 98.05% 410 99.70% 2.205 81.60% 789 86.70% 6.277
Mean Ct ≤ 30 98.77% 4.521 77.71% 554 99.13% 3.257 77.05% 748 71.46% 17.553
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Fig. 2   Proportion of SARS-CoV-2 genome coverage of sequencing 
reads using the five protocols compared. The scatter plots (a) indi-
cate the SARS-CoV-2 genome (NC_045512.2) coverage per PCR Ct 
values, each dot represents a single sample. A threshold of 10 × depth 
per base was considered for all platform data except for ONT data, 

where a 20 × depth per base was considered as threshold ensuring 
reliable variant calling. R values represent Spearman’s correlation 
coefficient (rho). The violin plots (b) indicate the distribution of the 
proportion covered per protocol, horizontal markers indicate the 
median, and the interquartile range
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followed by the EasySeq protocol for Illumina (98.05%, 
Table 1). An increase in Ct values resulted in only limited 
reduction of genome coverage when using the Ion AmpliSeq 
( R = −0.327 ) and Illumina AmpliSeq ( R = −0.523 ) pro-
tocols. When considering all samples, including high Ct 
values, the genome coverage differed greatly between the 
amplicon-based protocols.

The median read depth of coverage per position ranged 
from 316 when using the Illumina EasySeq protocol to 860 
when using ONT and > 2000 for the Ion AmpliSeq and the 
probe hybridization-based metagenomic protocol. This 
depended on the throughput of the platform and kit, the 
total number of reads requested, and the number of samples 
multiplexed.

SARS‑CoV‑2 amplicon balance

The SARS-CoV-2 amplicon balance was assessed by evalu-
ating the distribution of sequence reads across the SARS-
CoV-2 genome. The average read depth per genome position 
was computed for a selection of nine samples with the high-
est viral loads (Ct values ranging from 13 to 23) (Fig. 3). 
When comparing the genome coverage profiles across the 
five protocols, distinct signatures were observed for each 
method. The read depth was most even when using the Illu-
mina AmpliSeq protocol, in contrast to the uneven depth 
obtained using the probe hybridization-based protocol. The 
difference in depth between depth of coverage peaks and 
dips varied generally 2 log10-fold when using the Illumina 
AmpliSeq protocol, up to 4 log10-fold for the probe-based 
viral metagenomic protocol. When examining the differ-
ences in read depths in more detail, certain positions had 
protocol dependent, structural lower read depth for multiple 

samples. An example of a protocol with a structural drop 
of depth (to 0–11X read depth per sample) was observed at 
genome position 4117–4149 (ORF1a) when using the Illu-
mina AmpliSeq and Ion AmpliSeq protocols. These find-
ings were indicative of a primer failure caused by a specific 
SNV. The custom ONT protocol resulted in several sam-
ples with a low read depth in the amplicons spanning the 
regions 2690–2715 and 6260–6490 (ORF1a). Hybridiza-
tion probe viral mNGS resulted in the largest regions with 
low coverage, especially regions 1000–10,000 (ORF1a) and 
22,250–23,000 (Spike), with the last one at risk for missing 
mutations in the spike protein.

Variant calling and phylogenetic analysis

To assess the performance of variant calling across the 
protocols, consensus sequences were aligned to the SARS-
CoV-2 reference NC_045512.2; SNVs detected per protocol 
are depicted in Suppl. Table 3. Consensus sequences were 
used to build a phylogenetic tree for samples in which ≥ 4 
protocols had a genome coverage of 98% and higher 
( n = 14 samples). In the phylogenetic tree where gaps in the 
sequence (uncovered positions and indels) were considered 
a match with the reference sequence (Fig. 4a), consensus 
genomes of specific samples clustered independent of the 
used protocol and analysis pipeline. However, when gaps 
were simply masked in the pairwise comparison (affect-
ing solely the denominator, the total number of positions 
counted), for highly identical sequences (lower part of the 
tree), some per protocol clustering was also observed across 
Illumina, Ion, ONT, and probe-based technologies, up to 
0.005 substitutions/site distances between methods (Fig. 4b). 
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Fig. 3   Distribution of sequence read depth over the SARS-CoV-2 
genome using the five protocols compared. The number of sequence 
reads (logarithmic scale) per SARS-CoV-2 genome (NC_045512.2) 

position, using the five protocols compared. A selection of nine sam-
ples with higher viral loads (Ct values ranging from 13 to 23) is visu-
alized. Each color represents an individual sample
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These findings indicate the effect of gaps in sequences in 
relation to the type of cluster analyses in case of highly iden-
tical sequences.

SARS‑CoV‑2 sequencing efficiency: proportion 
of SARS‑CoV‑2 reads

To assess the efficiency of the protocols for sequencing 
SARS-CoV-2 genome in relation to background sequences, 
the proportion of SARS-CoV-2 read counts per sample, as 
opposed to human and other (bacterial) read counts, was 
computed (Fig. 5). As anticipated, the proportion of SARS-
CoV-2 sequences was higher for amplicon-based protocols 
in comparison to the hybrid capture-based protocol, but dif-
fered considerably among the last. The proportion of SARS-
CoV-2 specific reads varied from 73.72% on average when 
using the Illumina EasySeq protocol down to 8.19% on aver-
age when using the Illumina probe viral mNGS protocol. 
Mapping percentages of human reads ranged from 0.03% to 
99.87% for Illumina and Ion Torrent amplicon-based pro-
tocols up to 69.98% on average for the Illumina probe viral 
mNGS protocol, with the long read ONT workflow result-
ing in the lowest number of human reads. Samples with an 
inefficient amplification, resulting in a low percentage of 
SARS-CoV-2 reads, showed a reverse pattern in the percent-
age of human reads (Fig. 5). Samples with a lower viral load 
demonstrated a greater number of human host reads while 
using an amplicon-based method. As can be deduced from 
these findings combined with Fig. 2, some protocols with 
lower SARS-CoV-2 sequence efficiency compensated for 
these results by deeper sequencing.

Discussion

In this cross-platform benchmarking using clinical sam-
ples, the protocols differed with regard to the varying met-
rics studied. Each protocol had their own characteristics, 
advantages, and disadvantages. When considering genome 

coverage, the Illumina and Ion Torrent amplicon-based pro-
tocols were in favor and differences were detected even with 
the relatively small sample size. However, amplicon balance 
was not always even and showed protocol-specific drops. 
Protocols with uneven distribution of sequencing depth 
among amplicons may benefit from primer redesign or rebal-
ancing of the primer pool to obtain a more even coverage 
threshold in difficult regions of the genome [42], and with 
emerging variants, primer designs need to be continuously 
monitored and updated to not have failing amplicons.

Phylogenetic analysis of SARS-CoV-2 was complicated 
as there were low numbers of differentiating mutations lead-
ing to a weak signal in inferring phylogeny [47]. Phyloge-
netic analysis indicated the effect of gaps in sequences in 
relation to the type of cluster analyses in case of highly iden-
tical sequences, possibly resulting from platform-associated 
effects such as deletion artefacts. This was in contrast to the 
setting of cluster analyses using sequences obtained using a 
single platform, since the likelihood of technology-associ-
ated characteristics in the sequences may be approximately 
evenly distributed over the samples. The SARS-CoV-2 
sequence efficiency in relation to background sequences 
was the highest for the Illumina EasySeq protocol, compa-
rable with the Ion AmpliSeq protocol, while the ONT pro-
tocol proportionally had the lowest number of human reads. 
Illumina EasySeq and the ONT protocol had the shortest 
hands-on time, with the latter additionally having the short-
est sequence runtime and real-time data analysis.

As the pandemic continues worldwide and novel variants 
of interest and variants of concern continue to emerge [48] 
[49], genomic surveillance remains a critical component 
of the sustained management approach adhered to by the 
WHO [50]. Accordingly, the need for rapid SARS-CoV-2 
genome sequencing protocols that can be easily adopted and 
automated and that are flexible and scalable remains cru-
cial. Innovative protocol adaptations aiming at high-quality 
sequencing of low viral load samples (Ct values > 30) [11], 
inherent part of the diagnostic practice, have recently been 
reported, and such contributions may benefit the worldwide 
sequence community dedicated to surveillance. Implementa-
tion and compatibility of sequence regimes are influenced 
by characteristics of the local laboratory settings such as the 
availability of local resources and sequencing platforms with 
high or low-throughput nature. Reduction of the hands-on 
time needed for library preparation and overall turnaround 
time, scalability, and increased cost-efficiency of protocols 
would be beneficial in broader settings. Here, we aimed to 
provide data that can assist laboratories when selecting pro-
tocols for their local setting by comparing five platforms.

Drops in read depth of certain amplicons were detected in 
this study using different protocols. Regions with low read 
depth can result from (i) low amplicon coverage by design. 
High coverage regions have been correlated by coverage of 

Fig. 4   Tree of likelihood ratios based on consensus sequences of 
samples with genome coverages of ≥ 98% for each of the proto-
cols. Phylogenetic trees were build based on consensus sequences 
resulting from each of the protocols (FastTree [45] [46] and IQtree 
[59]). For readability, a magnification is shown that includes sam-
ples with ≥ 98% genome coverage for four or more of the protocols 
(14 samples). A threshold of 10 × depth per base was considered for 
all platform data except for ONT data, where a 20 × depth per base 
was considered. Each color represents an individual sample. Cluster-
ing was independent of the protocol a IQTree, gtr [59]; b however, 
when gaps in the sequences (deletions and uncovered positions) were 
masked instead of considered as matches, in cases of closely related 
sequences (lower part of the tree), clustering per protocol was also 
detected

◂
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multiple amplicons, whereas genome regions with coverage 
by only one amplicon resulted in low coverage [14]. Low 
read depth can also result from (ii) a SARS-CoV-2 variant 
resulting in primer mismatch in that particular amplicon, 
(iii) low efficiency of matching primers in multiplex reac-
tions, or (iiii) an imbalance of the primer concentrations 
present in the multiplex. In our study, the length in bp of 
the drop in read depth assisted the distinction between sin-
gle nucleotide variants resulting in a primer mismatch and 
low coverage by design as underlying cause. This illustrates 
the ongoing need of regularly updating primer kits due to 
arising mutants, as was done prior to testing for each of the 
WGS methods. Besides low coverage, another factor that 
can compromise SNV detection are primer-originated “con-
taminated” sequences that are PCR-amplified [14]. Wet lab 
methods and similarly bioinformatic tools can influence the 
performance of variant detection. Inaccurate trimming of 
primer sequences can mask or introduce SNVs located in 
the primer binding site; however, our study was not designed 
to detect such a phenomenon. Also, for example, Minimap2 
[40], designed for analyses of sequences from relatively high 
error-rate platforms, allows considerable mismatches in the 
alignment with the reference sequence, whereas more strin-
gent mapping tools can result in an absence of coverage in 
the mutated region. Differentiation of these type of effects 
resulting from analyses would require a design with cross-
comparison of bioinformatic tools, which was not part of 
the current study though potential differences resulting from 
variation in analysis tools and settings were minimized using 
a uniform pipeline for sequence data from Illumina and Ion 
platforms. For ONT data, platform-specific mapping and 

variant calling tools handling higher error rates were used 
to gain optimal results from this type of dataset. In this com-
parison, no Pacific Biosciences protocol was tested, though 
this would have been a good addition, as the HiFi sequenc-
ing protocol generates accurate long reads that enables dif-
ferentiation between viral sublineages [51].

Comparing the cDNA synthesis efficacy was not a subject 
of this study, as superscript III was used in the majority of 
the methods included. Reports comparing RTase efficiency 
indicate the most prominent differences in case of rare, chal-
lenging, and markedly human transcripts [52]. Given the low 
GC content of the SARS-CoV-2 genome (32–43%) and its 
unique low CG abundance [53] [54], it was anticipated that 
potential RTase efficiency differences would have only minor 
effects on our results, relative to the differences from other 
protocol steps. Finally, the current study was restricted by 
our sample collection time frame (2020), not containing later 
emerged mutants, and amount of available clinical material 
limiting testing more methods and retesting.

Viral (DNA/RNA) metagenomic sequencing has increas-
ingly been adopted for pathogen diagnostics, microbiome 
analyses, and transcriptome analyses. Metagenomic methods 
work well for high-throughput sequencing of samples with 
high viral loads but here did not perform the most stable and 
accurate for low load SARS-CoV-2 samples. Importantly, 
SARS-CoV-2 sequencing was the original clinical request 
in 2020, at a time where commercial kits had not been devel-
oped yet. This exemplifies the benefit of the approach in 
earlier stages of pandemics. In later stages of the pandemic, 
it appeared beneficial to have protocols available which also 
work for lower viral load samples.
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Importantly, with the above described pursuing emer-
gence of variants, there is a vital need for sequencing-based 
approaches that tolerate mutations [55]. Probe capture-based 
approaches can tolerate large target sequence differences 
of ~ 10% or more from probe sequences [56] [57] in com-
parison with primer-based approaches. These characteris-
tics have resulted in FDA emergency-use-authorization for 
hybridization-based SARS-CoV-2 genome sequencing in 
September 2021, in order to improve genomic surveillance 
of SARS-CoV-2 variants, for tracking viral evolution and 
guiding vaccine updates [58].

In summary, in this study, five cross-platform protocols 
for SARS-CoV-2 genome sequencing were benchmarked 
and evaluated on both technical performance and practical-
ity. The results of our study build upon previous reports by 
providing additional comparison data testing Illumina, Ion 
Torrent, and ONT sequencing in parallel, incorporating tech-
nically innovative protocol steps including several analysis 
workflows. These data will be specifically of assistance for 
the sequence laboratories dedicated to ongoing surveillance 
efforts.
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