
Parsing UserQueries using Context Free Grammars
Kees van Noortwijk
vannoortwijk@law.eur.nl
Erasmus School of Law

Rotterdam, The Netherlands
Rechtsorde BV

Den Haag, The Netherlands

Christian F. Hirche
hirche@me.com
Rechtsorde BV

Den Haag, The Netherlands

ABSTRACT
In legal information retrieval, query cooking can significantly im-
prove recall and precision. Context free grammars can be used
to effectively parse user queries, even if the number of items to
recognize is high and recognition patterns are complicated.

CCS CONCEPTS
• Information systems → Query intent; Link and co-citation
analysis; • Applied computing→ Law.

KEYWORDS
legal information retrieval, query cooking, text parsing, context
free grammars

ACM Reference Format:
Kees van Noortwijk and Christian F. Hirche. 2023. Parsing User Queries
using Context Free Grammars. In Proceedings of The first international work-
shop on Legal Information Retrieval, to be held at ECIR 2023 (LegalIR ’23).
ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
The use of digital information sources these days is a vital part of
the work of almost every lawyer, now that traditional information
sources such as books and journals to a large extent have been re-
placed by their digital counterparts.[1] The retrieval systems used
to search these digital collections and retrieve relevant legal docu-
ments usually have access to millions of documents. Because of that,
even basic queries consisting of just one or two keywords usually
deliver a few relevant documents, be it as part of a much larger set
of not-so-very-relevant ones. However, that is often not enough for
professional users, who not only want information that is as com-
plete as possible, but who also do not want to wade through large
amounts of irrelevant stuff to eventually find what they are looking
for. In other words, a legal information retrieval system should
be finetuned to deliver optimal recall and precision, with results
carefully ranked according to their relevancy. In [5] it is argued that
specifically recall – the ratio between the number of relevant docu-
ments retrieved and the number of such documents being present
in the database – is important from the legal perspective, but is
often also difficult to measure.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LegalIR ’23, April 2, 2023, Dublin, Republic of Ireland
© 2023 Copyright held by the owner/author(s).

To optimize recall, it is important that the initial query places all
documents that could possibly be relevant in the initial list of search
results. This list can subsequently be filtered, using ‘facets’ like the
type of document, the area of law, etcetera, to increase precision.
But documents absent from that initial list will not be part of the
final set, nomatter how exact the filtering options will be set. That is
why it is important to optimize the results of the initial query: what
is missed there, cannot be regained in subsequent (filtering) steps.
One way to improve the quality of the initial query is to not take
the terms in that query for granted, but to use algorithms to find out
what these terms might mean and what the intention of the user
might be to use them in the query. For instance, if the user would
have entered a number followed by the full name or abbreviation
for a certain piece of legislation and the words ‘case law’, it will
probably not be useful to just return documents containing this
combination of words/items. Instead, the system should look for
case law documents containing decisions relating to the article of
law that can be derived from the number and the law name. The
latter information could be present in the ‘body text’ of a (case law)
document, but also in metadata that are part of it.

This is only one example of a possible improvement of query
effectiveness, achieved through analysis – followed by automatic
adjustment – of a user query before that query is executed. An-
other example might be the automatic addition of synonyms to a
search query, or the recognition of well-known legal terms to add
corresponding articles of law or even certain case law identifiers
to the query. This process of analysing and adjusting a query is
called query cooking. It is probably used in the majority of document
retrieval systems these days, but arguably is particularly useful in
collections of documents all relating to a particular field or subject
area, because in that case algorithms and rules can be applied that
relate to that particular subject area. For instance, in the field of
law, rules can be defined that are capable of recognising articles
of law, case law identifiers or ‘nicknames’ that might be in use
to refer to these, as well as references to legal textbooks and law
guides. This paper assesses methods to implement such rules in a
retrieval system for various types of legal content, paying attention
to functionality as well as to maintainability.

2 QUERY COOKING
A query cooking function in a document retrieval system can per-
form several functions, such as:

• pattern matching, to find terms or groups of terms that con-
form to a certain specification; for instance: a number in a
particular format, such as the Celex numbers that are used to
identify EU documents[2], or a number preceded or followed

https://orcid.org/0000-0001-8110-7042
https://orcid.org/0000-0001-5384-1645

LegalIR ’23, April 2, 2023, Dublin, Republic of Ireland Van Noortwijk & Hirche

by a non-numeric string, which combination could designate
a particular law article;

• word group identification, to automatically search sets of
terms that constitute one concept as a ‘phrase’ (as if it would
have been enclosed in double quotes);

• identification of known (legal) concepts, nicknames and
other keywords, which can be searched by adding to the
query corresponding (case law) identifiers, articles of law or
other references.

A common characteristic of these functions is that known terms
(from previously compiled lists) and patterns need to be identi-
fied within the query. Specifically for identifying patterns, regular
expressions [4] are often used. A simple regular expression to recog-
nise a Celex-number could for instance be:

[0-9cCeE]\d{4}\D{1,2}\d{3,4}.*

Law articles are already more complex to cover, as they consist of
at least two elements (the law abbreviation, to be matched against
a list, and the article number). However, as Van Opijnen et al. ([6],
par. 3.4) already stated, regular expressions can have drawbacks in
large-scale environments, as multiple types of items to recognize
and many possible matches can lead to very complicated setups
that can be difficult to debug and maintain. Instead, they proposed
an alternative for the specific task of recognising legal references
in document texts, in the form of grammars, in particular so-called
Parsing Expression Grammars (PEGs). A grammar is a set of rules
used to recognize language elements. In the case of PEGs, this
recognition is performed without ambiguity, in other words, each
string that is parsed can have only one valid ‘parsing tree’ at the
most. Any possible choices that might result from the grammar
are considered in an ordered form, choosing the first valid option
while ignoring subsequent ones. Theoretically, this can be expected
to work well for parsing strings containing strictly-defined legal
references, as such references can be resolved to one and only one
publication.

In practice, however, precluding ambiguity when parsing legal
references does not always work well. In some cases, two or more
publications can share the same title, abbreviation, or other iden-
tifying designation. Then, a legal reference containing such an
ambiguous designation can become ambiguous itself. Aggravating
the problem, in case of parsing of user queries, legal references are
often short and miss context, which makes them more prone to
ambiguity.

In addition, even when a legal reference can be parsed unam-
biguously, its surrounding context, which usually is just natural
language content, cannot be parsed unambiguously (see for exam-
ple [3]). Therefore, when attempting to use PEGs to parse legal
references inside a longer text, a two-step approach is necessary.
In the first step, unambiguous legal references must be identified
and separated from surrounding text. In the second step, the actual
parsing will occur.

3 CONTEXT FREE GRAMMARS
As an alternative approach, which does not suffer from these issues,
so-called Context Free Grammars (CFGs) can be used. These gram-
mars allow for ambiguity, which means that, in principle, parsing a
text could result in several alternative parse trees. Choosing one

parse tree over the other is done using priorities assigned to parse
rules. First, this makes parsing ambiguous legal references possible.
Second, CFGs can also be used to parse the text surrounding a legal
reference, which cannot be parsed by a PEG, eliminating the need
to use a two-step approach.

In the case of a user search query, ambiguous ways of parsing
will lead to alternative interpretations of the query. These alterna-
tive interpretations can either be discarded or can be used to create
a (processed) query containing elements that are to be searched
alternatively (Boolean: OR). Usually, that is exactly what is needed
here: queries are seldomly completely exact and can contain combi-
nations of terms of which only a subset is present in the document
the user intends to find. Query cooking can help to make the most
of what was input, at the same time providing information that can
subsequently be used for the optimal ranking of search results –
for instance by adding ‘boosting’ to documents that exactly match
recognised elements.

Query parsing using custom-made CFGs is now used in the
Dutch legal information retrieval system Rechtsorde. It uses an
implementation of an Earley parser. A slightly simplified excerpt of
the grammar to identify a reference to the law “Burgerlijk Wetboek”
(the Dutch Civil Code) is shown below:

Listing 1: Excerpt of example grammar to recognise legal
references
text: (legal_reference delimiter |

any_other_text delimiter | delimiter)*
legal_reference: regular_law | bw |

publication //...
any_other_text .-100: ANY_CHARACTER //low

priority to default to a legal reference

bw: [bw_law_prefix SEP] bw_references |
identifier_bw

bw_references: identifier_bw [SEP]
bw_book_reference [SEP
bw_article_reference [SEP
part_and_sub_ref]]

| bw_book_reference SEP identifier_bw [SEP
bw_article_reference [SEP
part_and_sub_ref]]

| bw_book_reference SEP bw_article_reference
SEP identifier_bw [SEP part_and_sub_ref

]
| bw_book_reference SEP bw_article_reference

SEP part_and_sub_ref SEP identifier_bw
//...

bw_book_reference: [KEYWORD_BOOK SEP]
NUM_BOOK

bw_article_reference: [KEYWORD_ARTICLE SEP]
num_article_bw

KEYWORD_BOOK: "boek"
NUM_BOOK: "1".."8" | "10" | "7a"
//...

Parsing User Queries using Context Free Grammars LegalIR ’23, April 2, 2023, Dublin, Republic of Ireland

The grammar in Listing 1 shows the hierarchical construction
of a grammar. This means that a starting rule is defined by one or
more other rules or terminals, which are defined by one or more
other rules or terminals, and so on. The hierarchy ends when a
rule is exclusively defined by terminals, which are a character,
string, or regular expression. In the example, the starting rule
is called text. This rule’s definition allows for zero or more in-
stances of either (1) a legal reference (rule: legal_reference) fol-
lowed by a delimiter (rule: delimiter) or (2) something else (rule:
any_other_text) followed by a delimiter. One level below, the
rule legal_reference is defined as the combination of the rules
regular_law, bw, publication, and others not shown in the ex-
cerpt. The rule any_other_text, on the other hand, refers to the
terminal ANY_CHARACTER, which might be any character or string.
The text "-100" behind the rule name indicates that this rule has a
low priority and whenever a rule with a higher priority can match,
it will have preference over this rule.

Using this grammar to parse a short example text reference to
BW Boek 7 results in a parse tree shown on in Figure 1 on page 4.
The parser matches reference as rule any_other_text, the space
character after that as delimiter, to as rule any_other_text, and
the space after that again as delimiter. Subsequently, BW fits the
definition of the rule identifier_bw (not shown in the excerpt),
the space fits the terminal definition for SEP and Boek 7 fits the def-
inition of bw_book_reference. Taken together, identifier_bw,
SEP, and bw_book_reference fit the definition of bw_references,
which, in turn, fits the definition of rule bw. Several other parse
trees are also possible for that text, but have been discarded based

on the low priority of the any_other_text-rule. Based on this tree,
the query cooking process can create a directed query for a legal
reference, which is optimised for the field and the format in which
these references appear in document metadata.

Implementing this grammar-based form of query cooking has
not only improved the overall reliability and speed of the recogni-
tion of query elements, but has also made it possible to, in principle,
recognise an unlimited number of elements in any single query
and process the results of that accordingly. At the same time, main-
tainability has greatly improved. This result would not have been
possible using regular expressions or similar programming tech-
niques.

REFERENCES
[1] David W. Dunlap. 2022. So Little Paper to Chase in a Law Firm’s New Library.

New York Times (October 2022).
[2] EU Publication Office 2000. Celex Numbers. Retrieved January 20, 2023 from

https://eur-lex.europa.eu/content/help/eurlex-content/celex-number.html
[3] Bryan Ford. 2004. Parsing expression grammars: a recognition-based syntac-

tic foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. 111–122.

[4] Walter L. Johnson, James H. Porter, Stephanie I. Ackley, and Douglas T. Ross. 1968.
Automatic generation of efficient lexical processors using finite state techniques.
Commun. ACM 11, 12 (December 1968), 805–813.

[5] Kees van Noortwijk. 2017. Integrated Legal Information Retrieval; new develop-
ments and educational challenges. European Journal of Law and Technology 8, 1
(2017), 1–18.

[6] Marc van Opijnen, Nico Verwer, and Jan Meijer. 2015. Beyond the Experiment: The
Extendable Legal Link Extractor. In Workshop on Automated Detection, Extraction
and Analysis of Semantic Information in Legal Texts, held in conjunction with the
2015 International Conference on Artificial Intelligence and Law (ICAIL), June 08 -
12, 2015, San Diego, CA, USA.

Received 20 January 2023; accepted 3 March 2023

https://eur-lex.europa.eu/content/help/eurlex-content/celex-number.html

LegalIR ’23, April 2, 2023, Dublin, Republic of Ireland Van Noortwijk & Hirche

Figure 1: Parse tree for query string "reference to bw boek 7"

	Abstract
	1 Introduction
	2 Query Cooking
	3 Context Free Grammars
	References

