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Background: Machine learning is increasingly advocated to develop prediction models for postoperative
complications. It is, however, unclear if machine learning is superior to logistic regression when using
structured clinical data. Postoperative pancreatic fistula and delayed gastric emptying are the two most
common complications with the biggest impact on patient condition and length of hospital stay after
pancreatoduodenectomy. This study aimed to compare the performance of machine learning and logistic
regression in predicting pancreatic fistula and delayed gastric emptying after pancreatoduodenectomy.
Methods: This retrospective observational study used nationwide data from 16 centers in the Dutch
Pancreatic Cancer Audit between January 2014 and January 2021. The area under the curve of a machine
learning and logistic regression model for clinically relevant postoperative pancreatic fistula and delayed
gastric emptying were compared.
Results: Overall, 799 (16.3%) patients developed a postoperative pancreatic fistula, and 943 developed
(19.2%) delayed gastric emptying. For postoperative pancreatic fistula, the area under the curve of the
machine learning model was 0.74, and the area under the curve of the logistic regression model was 0.73.
For delayed gastric emptying, the area under the curve of the machine learning model and logistic
regression was 0.59.
Conclusion: Machine learning did not outperform logistic regression modeling in predicting post-
operative complications after pancreatoduodenectomy.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Pancreatoduodenectomy is a complex surgical procedure with
considerablemorbidity and a negative influence on short-term quality
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of life.1 It is a substantial burden for the health care resource use and
health expenditure, especially in those with a complicated post-
operative recovery.2,3 Postoperative pancreatic fistula (POPF) and
delayed gastric emptying (DGE) are the two most common, high-
impact complications after pancreatoduodenectomy, with sizable ef-
fects on resource use and prolonged length of stay.4,5

Both patients and clinicians would benefit from an accurate pre-
diction of POPF and DGE, and if available, a proper risk assessment
would be adopted widely.6 In the preoperative setting, individual risk
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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assessment could aid clinical decision-making. Perioperatively, this
could lead toanearlyawarenessof complications, allowing for selective
preventive and timely therapeutic measures. Most of thesemodels are
basedon traditional logistic regressionmodels, inwhich theprobability
of anoutcome is relatedtoacertainnumberofpredictors. Thesemodels
are relativelyeasy touse and interpret but have somedrawbacks.7 First,
the usual assumption for logistic regression is that there is a linear
relation between the independent and dependent variables. Second,
predictors are usually chosen using backward selection. This technique
has someproblems (eg, it cannotbe re-enteredonceavariablehasbeen
eliminated).8

Machine learning algorithms are increasingly advocated as they
are less prone to the above-mentioned problems.7,9 Machine
learning algorithms can detect non-linear relationships between
independent and dependent variables and incorporate many vari-
ables.10,11 These models are, however, more susceptible to over-
fitting and have the so-called black-box phenomenon, meaning
that the models are not interpretable for humans. This can under-
mine the use of these models in daily clinical practice.12

Although both techniques have been used to develop risk
models for postoperative complications, it is unclear if machine
learning is superior to logistic regression when using structured
data.13e16 This study used structured clinical data from a nation-
wide audit to compare machine learning to logistic regression in
predicting POPF and DGE after pancreatoduodenectomy.

Methods

Study design and population

This retrospective cohort study used data from the nationwide
Dutch Pancreatic Cancer Audit (DPCA), including data from 16
centers. In the Netherlands, all patients undergoing a pancreatic
resection are prospectively registered in the DPCA. This type of
study does not require approval from an ethics committee. The
scientific committee of the Dutch Pancreatic Cancer Group
approved the study protocol.17 The DPCA data has been verified
regarding its completeness and accuracy of postoperative compli-
cation registration, showing that the data represents the Dutch
pancreatic cancer population.18

All patients undergoing elective, open, and minimally invasive
pancreatoduodenectomy were included. Patients with no infor-
mation about the outcome and those below 18 years old were
excluded. The STROBE guidelines were followed to ensure correct
reporting of the study methods and results.19

Outcome and definition

The primary outcomes were POPF and DGE, defined by the In-
ternational Study Group of Pancreatic Surgery.20,21 Only grade B/C
POPF and DGE were included. The area under the curveereceiver
operating characteristic (AUROC) was calculated to evaluate the
discriminative power of the logistic regression and machine
learning model for the prediction of POPF and DGE. Four machine
learning models were examined: a random forest, a neural
network, a support vector machine, and gradient boosting. An
AUROC between 0.50 and 0.60 was defined as bad, 0.60 and 0.70 as
poor, 0.70 and 0.80 as moderate, and 0.80 and 0.90 as good.22e24

Variables

The following preoperative patient characteristics and preop-
erative data were collected: age, sex, body mass index (BMI),
weight loss per week, Eastern Cooperative Oncology Group per-
formance score, and the latest measurement of preoperative:
serum bilirubin, hemoglobin, albumin, IgG4, carcinoembryonic
antigen (CEA), and cancer-antigen 19.9 (CA19.9). American Society
of Anesthesiologists classification, American Joint Committee of
Cancer stage, age-adjusted Charlson Comorbidity Index,25 tumor
location (ie, pancreatic body, head, periampullary, duodenum),
tumor size, vessel involvement, tumor involvement in other organs,
lymph nodes >10 millimeter, remote metastases, the sum of
worrisome features,26 histological diagnoses, application of neo-
adjuvant therapy, biliary drainage, type of stent, complications and/
or re-intervention after biliary drainage, and the Response Evalu-
ation Criteria in Solid Tumors criteria.

The following intraoperative datawere collected: type of surgical
procedure (ie, pylorus-preserving pancreaticoduodenectomy or
pylorus resecting pancreaticoduodenectomy), pancreatic duct
diameter, perioperative evidence of residual macroscopic tumor,
arterial vessel resection, venous vessel resection, additional re-
sections (including spleen, transversal mesocolon, colon segment
resection, hemicolectomy, gastric resection or other resections), the
texture of the pancreas, single row anastomosis or non-single row
anastomosis, other perioperative measures (ie, drains, stents,
probes, somatostatins), length of surgical procedure, and blood loss.

Statistical analysis

The analysis was performed using SAS VIYA version 2021.2.3
(SAS Institute, Inc, Cary, NC). Baseline pre and intraoperative
characteristics were described. Normally distributed continuous
variables were presented as mean with SD and continuous vari-
ables with skew distribution as median with an IQR. Dichotomous
variables were noted as numbers and percentages. Differences
between patients with or without a POPF and DGE were compared
using Pearson c2 statistic in dichotomous variables and a Student’s
t test (normally distributed) or Mann-Whitney U test (skew dis-
tribution) in continuous variables.

Logistic regression model

Variables were excluded if >80% of the data were missing. Data
were imputed via predictive mean matching with 10 iterations.27

The pooled outcome of the 10 iterations was used. The logistic
regression model was developed using backward selection,
including all variables with at least a P value < .1 in at least six of the
ten imputed datasets. The associations between the predictors and
outcome were displayed as odds ratios (ORs), 95% CIs, and P values.
The models were validated using bootstrapping, with 250 boot-
strapping samples. To evaluate and compare the discriminative
power of the models, the median AUROC with an IQR and the Brier
score of the 250 bootstrap samples was calculated. The Brier score
is a method to verify the accuracy of a probability forecast. A Brier
score of 0 means perfect accuracy, and a score of 1 means perfect
inaccuracy.28

Machine learning model

Variables were excluded if >80% of the data were missing.
Continuous variables were imputed after median imputation, and
the categorical variables were imputed after count imputation. The
hyperparameters of the best machine learning model were deter-
mined and chosen using the autotuning tool: this tool seeks the
best hyperparameters while keeping the risk of overfitting low. This
hyperparameter optimization tool is integrated into SAS VIYA (SAS
Institute, Inc). Themodels were validated using bootstrapping, with
250 bootstrapping samples. Supplementary Appendices S1 and S2
show how many times variables were included in the 250
different bootstrapped of the best-performing machine learning



Table I
Pre and intraoperative characteristics

Preoperative characteristics Total (N ¼ 4,912) POPF B/C (n¼ 799) DGE B/C (n ¼ 943) Missing (%)

Age, y (mean) 66.7 ± 10.5 67.1 ± 10.3 67.6 ± 10.2 8 (0.2%)
Sex (male) 2,720 (55.4%) 486 (60.8%) 551 (58.4%) 2 (<0.1%)
BMI, kg/m2 (mean) 25.3 ± 4.3 26.6 ± 4.3 25.3 ± 4.3 166 (3.4%)
ASA classification �3 1,335 (27.6%) 224 (28.6%) 268 (29.0%) 71 (1.4%)
ECOG score �2 370 (8.8%) 43 (6.3%) 72 (8.7%) 688 (14.0%)
Hemoglobin, mmol/l (mean) 7.8 ± 1.1 7.9 ± 1.1 7.8 ± 1.1 2,095 (42.7%)
Albumin, mmol/l (mean) 36.5 ± 10.2 36.8 ± 7.7 36.2 ± 7.8 2,812 (57.2%)
Weight loss per week, kg (median) 0.4 (0-1) 0.1 (0e0.88) 0.2 (0e1.0) 1,567 (31.9%)
Bilirubin, mmol/l (median) 17 (7e66) 11.5 (7.0e29.8) 10.0 (6.0e38.5) 2,972 (60.5%)
CA19.9, U/mL (median) 23 (0e160) 24.5 (9.0e99.4) 27.0 (16.5e327) 347 (7.1%)
CEA, mg/l (median) 3.1 (1.9e5.0) 2.7 (1.7e4.7) 3.0 (2.0e5.5) 2,383 (48.5%)
IgG4, g/l (median) 0 (0e0.29) 0 (0e0.4) 0.1 (0e0.42) 674 (13.7%)
Diameter of tumor on CT-scan, mm (mean) 27.7 ± 22.2 28.2 ± 27.0 28.5 ± 28.1 1,924 (39.2%)
Vessel involvement 1,213 (25.9%) 116 (15.3%) 200 (22.3%) 233 (4.7%)
Involvement of structures 457 (9.8%) 67 (8.8%) 107 (12.0%) 234 (4.8%)
Lymph node involvement 583 (12.4%) 101 (13.2%) 115 (12.8%) 229 (4.7%)
Biliary drainage 2,526 (53.7%) 362 (45.3%) 442 (48.4%) 207 (4.2%)
Application of neoadjuvant therapy 426 (14.8%) 20 (4.0%) 74 (13.5%) 2 028 (41.3%)
CCIa �4 2,940 (59.9%) 497 (62.2%) 589 (62.5%) 0
Surgical procedure
PRPD 2,396 (48.8%) 435 (54.4%) 502 (53.2%)
PPPD 2,516 (51.2%) 364 (45.6%) 441 (46.8%)

Approach 87 (1.8%)
Open 4,001 (82.9%) 591 (74.0%) 741 (80.5%)
Laparoscopic 298 (6.2%) 69 (8.8%) 60 (6.5%)
Robotic 526 (10.9%) 126 (16.0%) 119 (12.9%)

Location of tumor 1 671 (34.0%)
Duodenum 264 (8.1%) 76 (14.6%) 72 (11.8%)
Head of pancreas 2,414 (74.5%) 287 (55.3%) 406 (66.8%)
Periampullary 563 (17.4%) 156 (30.1%) 130 (21.4%)

Arterial resection 74 (1.5%) 15 (1.9%) 21 (2.2%) 46 (0.9%)
Venous resection 710 (14.6%) 57 (7.2%) 116 (12.4%) 45 (0.9%)
Additional resection 464 (9.8%) 94 (12.2%) 135 (14.3%) 172 (3.5%)
Length of surgical procedure, min 340 ± 115 342 ± 113 341.6 ± 110.7 3,664 (74.6%)
Blood loss, ml (median) 450 (200e845) 450 (200e800) 500 (200e800) 3,545 (72.2%)
Soft pancreas 2 755 (61.7%) 606 (83.6%) 577 (67.2%) 450 (9.1%)
Diameter pancreatic duct 4.8 ± 4.6 3.5 ± 5.2 4.2 ± 4.5 1,442 (29.4%)
Single row pancreatic anastomosis 1,208 (24.6%) 145 (18.1%) 225 (23.9%) 494 (10.1%)
Intra-abdominal drains 4,725 (96.2%) 772 (97.1%) 901 (96.9%) 18 (0.4%)
Administration of somatostatin analog 2,990 (61.1%) 528 (66.4%) 589 (62.7%) 18 (0.4%)
Stent in pancreas anastomosis 1,619 (33.1%) 355 (44.7%) 349 (37.0%) 18 (0.4%)
Nasojejunal feeding tube 987 (20.2%) 106 (13.3%) 168 (17.9%) 18 (0.4%)

ASA, American Society of Anesthesiologists; BMI; body mass index; CA19.9, cancer-antigen 19.9; CCIa, adjusted comprehensive
complication index; CEA, carcinoembryonic antigen; CT, computer tomography; DGE, delayed gastric emptying; ECOG, Eastern Coop-
erative Oncology Group; IgG4, immunoglobulin G4; POPF, postoperative pancreatic fistula; PPPD, pylorus preserving pan-
creaticoduodenectomy; PRPD, pylorus resecting pancreaticoduodenectomy.
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model. The tables also show the mean importance of the variable
and the total importance, which is the mean importance multiplied
by the number included in the model. The mean importance of the
variables was determined using the Gini Importance, which cal-
culates each feature's importance as the sum over the number of
splits that include the features proportionally to the number of
samples it splits.29 To evaluate and compare the discriminative
power of the models, the median AUROC of the 250 bootstrap
samples with an IQR was calculated.

Results

Between January 2014 and December 2020, 4,972 patients after
pancreatoduodenectomy were registered in the DPCA. In total, 60
patients were excluded because of missing information on one of
the outcomes. None of the included variables exceeded 80% of
missing data. Among the 4,912 patients included, 799 (16.3%) pa-
tients developed a POPF, 943 (19.2%) patients DGE. Patients had a
mean age of 66.7 (SD:10.5); the majority were male (55.4%) and
underwent a procedure via laparotomy (82.9%). All pre- and
intraoperative characteristics per postoperative outcomes are dis-
played in Table I.
Postoperative pancreatic fistula

The AUROC of the logistic regression for POPF after boot-
strapping was .73 with a pooled Brier score of .12. Predictors in the
logistic regression model were: soft pancreatic texture (OR: 2.70,
P < .001), non-single row pancreatic anastomosis (OR: 1.41, P <
.002), male sex (OR: 1.38, P < .001), a plastic stent for biliary
drainage (OR: 1.12, P ¼ .043), BMI (OR per kg/m2 increase: 1.08, P <
.001), bilirubin (per mmol/L increase: 0.99, P¼ .053), pancreatic duct
size (OR per mm increase: 0.91, P < .001), weight loss (OR per kg
weight loss: 0.89, P ¼ .012), venous resection (OR: 0.74, P ¼ .003), a
nasojejunal feeding tube (OR: 0.61, P < .001), localization of the
tumor, and surgical approach (Table II). The mean AUROC of the
best-performing machine learning model (gradient boosting) for
POPF after bootstrapping was .74 (IQR .73e.74), with a pooled Brier
score of .13. The 10 variables with the highest sum of the relative
importancewere the following: BMI, the diameter of the pancreatic
duct, pancreatic texture, CA19.9, hemoglobin, age, localization of
the tumor, CEA, the diameter of tumor, and non-single row
pancreatic anastomosis (Table III). Supplementary Appendix S1
shows the relative importance of all pre and intraoperative
variables.



Table II
Predictors in the multivariate logistic regression model for POPF grade B/C

Variables OR (95% CI) P value

Soft pancreas 2.70 (2.19e3.33) < .001
Non-single row anastomosis* 1.41 (1.40e1.76) .002
Male sex 1.38 (1.17e1.62) < .001
Plastic stent for biliary drainage 1.12 (1.00e1.26) .043
BMI per kg/m2 increase 1.08 (1.06e1.10) < .001
Bilirubin per mmol/L increase .99 (.99e1.00) .053
Pancreatic duct size, per mm increase .91 (.88e.95) < .001
Weight loss per kg loss .89 (.81e.97) .012
Venous resection .74 (.61e.91) .003
Nasojejunal feeding tube .61 (.48e.78) < .001
Localization of tumor e e

Head of pancreas Reference e

Body of pancreas 1.15 (.65e2.02) .640
Periampullary 1.74 (1.38e2.20) < .001
Duodenum 1.61 (1.18e2.20) .003
Approach e e

Open surgery Reference e

Laparoscopic 1.84 (1.37e2.49) < .001
Robotic 1.28 (1.01e1.62) .045

BMI, body mass index; OR, odds ratio; POPF, postoperative pancreatic fistula.
* This included the following techniques for PJ: Blumgart, duct-to-mucosa, and

dunking/intussusception.47
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Delayed gastric emptying

The AUROC of the logistic regression for DGE after bootstrapping
was .59 with a pooled Brier score of .15. Predictors in the logistic
regression model were: soft pancreatic texture (OR: 1.32, P < .001),
a pylorus resecting pancreaticoduodenectomy (OR: 1.33, P < .001),
the application of a somatostatin analog (OR: 1.18, P ¼ .002), a
plastic stent (OR: 1.15, P ¼ .010), age (OR per year increase: 1.01, P ¼
.005), bilirubin (OR per mmol/L increase: 0.99, P ¼ .007), a nasoje-
junal feeding tube (OR 0.84, P ¼ 0..070), and localization of tumor
(Table IV). The mean AUROC of the best-performing machine
learningmodel (gradient boosting) for DGE after bootstrappingwas
0.59 (IQR 0.58e0.60), with a pooled Brier score of 0.14. The 10
variables with the highest relative importance sum were BMI, age,
CA19.9, pancreatic duct diameter, CEA, hemoglobin level, tumor
diameter, albumin, weight loss, and non-single row anastomosis
(Table V). Supplementary Appendix S2 shows the relative impor-
tance of the pre- and intraoperative variables.

Discussion

This first multicenter audit-based study to compare machine
learning and logistic regression for prediction models found no
Table III
The ten variables in the gradient boosting model with t
predicting POPF grade B/C

Variables Included in prediction

BMI 250
Diameter pancreatic duct 250
Soft pancreas 250
CA19.9 250
Hemoglobin 250
Age 250
Tumor location 250
CEA 250
Diameter of tumor 250
Non-single row anastomosis 250

Table IV shows the 10 most important variables in the gra
model with all included variables and their importance is
This included the following techniques for PJ: Blumgart, d
BMI; body mass index; CA19.9, cancer-antigen 19.9; C
pancreatic fistula.
superiority of the machine learning model for predicting POPF and
DGE after pancreatoduodenectomy using structured pre- and
intraoperative variables. For the machine learning and logistic
regression prediction model, the predictive performance of the
POPF model was moderate and was bad for DGE.

An accurate prediction of a POPF would be extremely helpful as
it would support clinicians in identifying patients at risk, thereby
improving perioperative decision-making.30,31 Given the perfor-
mance scores, the models developed in this study are not useful for
daily clinical practice, especially considering several prediction
models are availablewith higher AUROCs and fewer input variables.
For example, the Fistula Risk Score, developed by Callery et al. This
logistic regression model was based on four common POPF-related
risk factors (small duct, soft pancreas, high-risk pathology, and
excessive blood loss). After analysis and internal validation on 233
patients, the Fistula Risk Score performed moderately with an
AUROC of 0.72.32 Six years later, Mungroop et al developed an
alternative Fistula Risk Score based on only 3 risk factors (small
duct, soft pancreas, and high BMI). The group designed the model
based on 1,924 patients, and the alternative score was externally
validated and comparedwith the original fistula risk score based on
926 patients. The models achieved an AUROC of 0.78 for the
alternative and 0.75 for the original fistula risk score in the external
validation.33 The models are easy to understand and convenient
because they use only 3 or 4 predictors.

There are several reasons why machine learning did not
outperform logistic regression, as was hypothesized in this study.
As mentioned earlier, machine learning models can consider the
nonlinear interaction between predictors and outcomes.34 Most of
the variables in this study were discrete values, although the po-
tency of machine learning models lies in continuous data. These
variables lie in a higher-dimensional space, and the predictors'
relationship with the outcomes is more complex. The number of
variables in this database may have been too small for machine
learning to show its benefit. Moreover, only structured data was
used. Machine learning showed its superiority over logistic
regressionwhen unstructured datawas added.35 Radiomic features
derived from computed tomography or magnetic resonance im-
ages, for instance, might be able to provide a lot of unstructured
data. The results from studies using radiomics to predict a POPF are
promising, with an AUROC varying from 0.80 to 0.90 in several
monocenter retrospective studies.36e39 Future studies should
further investigate its use and externally validate it, preferably
using radiomics features and structured clinical data. It should also
be acknowledged that not everything is predictable, and a perfect
predictive performance is a utopia.40 Although the etiology and the
accompanying risk factors of POPF and DGE are partly understood,
he highest sum of the mean relative importance in

model Mean relative importance Sum

5.66 1,414.39
5.19 1,297.37
4.40 1,099.60
2.85 711.56
2.67 668.17
2.44 609.17
2.27 566.33
1.97 491.36
1.70 425.00
1.62 404.51

dient boosting model for predicting POPF. The entire
shown in Supplementary Appendix S1.
uct-to-mucosa, and dunking/intussusception.47

EA, carcinoembryonic antigen; POPF, postoperative



Table IV
Predictors in the multivariate model for DGE grade B/C

Variables OR (95% CI) P value

Soft pancreas 1.32 (1.13e1.55) < .001
Type surgical procedureePRPD 1.33 (1.14e1.56) < .001
Somatostatin analog 1.18 (1.07e1.31) .002
Plastic stent 1.15 (1.03e1.27) .010
Age per year increase 1.01 (1.00e1.02) .005
Bilirubin per mmol/L increase .99 (.99e1.00) .007
Nasojejunal feeding tube .84 (.70e1.01) .070
Localization of tumor e e

Head of pancreas Reference e

Body of pancreas .88 (.48e1.59) .623
Periampullary 1.27 (1.03e1.57) .029
Duodenum 1.34 (1.03e1.77) .038

DGE, delayed gastric emptying; OR, odds ratio; PRPD; pylorus resecting
pancreatoduodenectomy.

Table V
The ten variables in the gradient boosting model with the highest sum of the mean
relative importance in predicting DGE

Variables Included in prediction
model

Mean relative
importance

Sum

BMI 250 3.62 904.32
Age 250 3.02 755.54
CA19.9 250 2.69 672.80
Diameter pancreatic

duct
250 2.34 584.68

CEA 250 2.12 530.58
Hemoglobin 250 2.11 527.92
Diameter of tumor 250 2.01 503.36
Albumin 250 1.69 422.43
Weight loss 250 1.62 404.62
Non-single row

anastomosis
250 1.58 394.09

Table V shows the 10 most important variables in the gradient boosting model for
predicting DGE. The entire model with all included variables and their importance is
shown in Supplementary Appendix S2.
This included the following techniques for PJ: Blumgart, duct-to-mucosa, and
dunking/intussusception.47

BMI; body mass index; CA19.9, cancer-antigen 19.9; CEA, carcinoembryonic antigen;
DGE, delayed gastric emptying.
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there might still be unknown and unrecognized factors (both in the
pre and perioperative phase) playing roles of importance that are
lacking in our current audit.

Despite the findings of this study, the use of machine learning
models compared to logistic regression may have some advan-
tages.41,42 First, they are data-driven and can continuously improve
because both algorithms can see patterns or features themselves
without human intervention.42 Second, each factor is individually
reassessed where the complex interrelationships per patient be-
tween the different factors and outcomes are also considered. This
is important in an individualized prediction because these in-
terrelationships differ for each person, making some factors more
relevant than others. Third, in the future, machine learning can
easily be added to electronic health records, making it possible to
easily and automatically predict complications based on the pre-
and intraoperative information and unstructured information
available.42 All in all, accurate prediction of individual outcomes
can reshape the future of postoperative management and offer the
opportunity to develop a more individualized approach allowing
for data-driven individualized medicine.43e45

Study Limitations

The results of this study should be interpreted considering
several limitations. First, the proportion of missing data was large
for some variables (�75%), potentially causing bias and reduced
efficiency. Because complete case analysis would drastically reduce
the sample size, multiple imputations were performed. Madley-
Dowd et al showed that imputation reduced bias even when the
proportion of missingness was large (�90%), and missing data was
at random (as was the case in this study).46 Variables were there-
fore only excluded if missingness exceeded 80%. Second, this study
defined both POPF grades B and C as outcomes. Although grade B
POPF is a complication that can significantly impact quality of life, it
is not likely that the complicationwill determine whether a patient
will undergo a pancreatoduodenectomy. A future prediction model
should only predict a grade C POPF to accurately determine which
patients are at high risk for this life-threatening complication.
Third, pre- and intraoperative data were used to improve the out-
comes' predictability. However, clinically it may be more helpful if
the model uses only preoperative predictors. Finally, this study
used multicenter data from a prospectively maintained audit.
However, external and prospective validation is necessary to in-
crease the generalizability of the findings. Strengths of this study
include the large study population and its multicenter nationwide
study design. Moreover, this study compared machine learning
with logistic regression within the same database.

In conclusion, this study showed no difference in the predictive
performance of machine learning compared with logistic regres-
sion in predicting POPF and DGE. Performances of both models are
suboptimal and not useful for daily clinical practice. Future research
should focus on adding radiomics to these models to objectively
determine risks preoperatively.
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