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Abstract
Epigenetic mechanisms, such as DNA methylation (DNAm), have gained increasing attention as potential biomarkers and mechanisms
underlying risk for neurodevelopmental, psychiatric and other brain-based disorders. Yet, surprisingly little is known about the extent
to which DNAm is linked to individual differences in the brain itself, and how these associations may unfold across development – a
time of life when many of these disorders emerge. Here, we systematically review evidence from the nascent field of Neuroimaging
Epigenetics, combining structural or functional neuroimaging measures with DNAm, and the extent to which the developmental period
(birth to adolescence) is represented in these studies. We identified 111 articles published between 2011–2021, out of which only a
minority (21%) included samples under 18 years of age. Most studies were cross-sectional (85%), employed a candidate-gene approach
(67%), and examined DNAm-brain associations in the context of health and behavioral outcomes (75%). Nearly half incorporated
genetic data, and a fourth investigated environmental influences. Overall, studies support a link between peripheral DNAm and brain
imaging measures, but there is little consistency in specific findings and it remains unclear whether DNAm markers present a cause,
correlate or consequence of brain alterations. Overall, there is large heterogeneity in sample characteristics, peripheral tissue and brain
outcome examined as well as the methods used. Sample sizes were generally low to moderate (median n  = 98, n  = 80), and
attempts at replication or meta-analysis were rare. Based on the strengths and weaknesses of existing studies, we propose three
recommendations on how advance the field of Neuroimaging Epigenetics. We advocate for: (1) a greater focus on developmentally
oriented research (i.e. pre-birth to adolescence); (2) the analysis of large, prospective, pediatric cohorts with repeated measures of
DNAm and imaging to assess directionality; and (3) collaborative, interdisciplinary science to identify robust signals, triangulate
findings and enhance translational potential.

Introduction
Large-scale consortium efforts as well as advances in technology and methods have made it increasingly feasible to map the relationship
between brain measures and a wide range of mental health outcomes in unprecedented detail. These neural correlates are shaped by both
genetic and environmental influences: twin-based heritability estimates range between 60–80% for brain volume with slightly lower values
for measures of white matter integrity (14–64%), resting-state functional connectivity (15–42%) and task-based functional MRI (40–65%)
[1 , 2 ]. Although both genetic and environmental factors (e.g., stress, substance use, especially when experienced in early life) clearly
influence the developing brain, we do not yet understand how these factors jointly shape brain structure and function, and downstream risk
for neurodevelopmental, psychiatric and other brain-based disorders. As many of these disorders have early origins (e.g. with roughly one
third of people developing mental illnesses before the age of 14 and one half before the age of 18 [3 ]), it is particularly important to
understand these processes from a developmental perspective. AQ1 AQ2 AQ3 AQ4

Epigenetic mechanisms that regulate gene expression, such as DNA methylation (DNAm, Box 1 ), have gained increasing attention in the
neuroimaging field as a potential mechanism mediating—or a biomarker of—genetic and environmental influences on the developing
brain. DNAm is a key process involved in development through its role for example in embryogenesis [4 , 5 ], cell specification [6 ],
genomic imprinting and X-chromosome inactivation [7 , 8 ], and ageing [9 ].

Growing excitement regarding DNAm within mental health research stems from evidence that: (i) DNAm is influenced by genetic and
environmental factors (e.g. psychosocial AQ5  exposures, diet), as early as pregnancy [10 ]; (ii) DNAm plays an essential role in normative
development, including brain maturation and function [11 ]; and importantly that (iii) disruptions in DNAm patterns associate with
numerous brain-based disorders [12 ], including neurodevelopmental (e.g. autism spectrum disorder), psychiatric (e.g. depression,
schizophrenia) and neurodegenerative (e.g. Alzheimer’s disease) disorders.

Notably, DNAm shows huge promise as a biological marker AQ6  for disease prediction, early detection and risk stratification, especially
for use in peripheral tissues that are more readily accessible in humans even if not causal for the phenotype of interest. For example, it is
already possible to estimate a range of exposures, traits and health outcomes based on peripheral DNAm patterns alone (e.g., age, smoking,
BMI) [13 ], and to detect certain diseases sooner and more accurately when complementing conventional diagnostic methods [14 –16 ],
including brain-based disorders [17 ], leading to improved clinical care [18 , 19 ].

A key outstanding question is to what extent peripheral DNAm can inform about individual differences in the living brain—the most
relevant organ for the study of neurodevelopmental, psychiatric and other brain-based disorders— and how associations may vary by
developmental stage. The nascent field of neuroimaging epigenetics (Box 1 ) aims to fill these gaps by uniting scientists from different
disciplines, such as psychiatry, neuroimaging and developmental biology to characterize epigenetic correlates of the brain in vivo. So far, a
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rapidly growing number of studies have reported associations between DNAm patterns and various aspects of brain structure and function.
However, findings across studies have been largely inconsistent [20 ]. A number of reasons have been proposed for this, including
heterogeneity with regard to study design (prospective versus cross-sectional), sample characteristics (e.g., population-based vs clinical),
analytic approaches used (e.g., candidate versus genome-wide) and health outcomes examined.

Crucially and less commonly acknowledged, different studies have investigated widely different ages and developmental stages, spanning
birth to old age. Both epigenetic patterns and the brain are highly dynamic from birth to adulthood [21 , 22 ], and both change at different,
often non-linear rates across development (i.e., following a log-linear pattern with faster rates in early development [23 , 24 ]). This
variation might result in time-specific associations. For example, DNAm patterns at birth, but not in childhood, have been found to be a
stronger predictor of ADHD symptoms in childhood [25 ]. In another study, glucocorticoid exposure was found to exert a stronger and more
lasting effect on DNAm patterns in hippocampal neuronal progenitor cells, if this exposure occurred earlier in neurogenesis (i.e.,
proliferation stage as opposed to post-differentiation [26 ]). Evidence from both studies illustrate how DNAm at specific developmental
periods may be more sensitive to exposures or more predictive of future brain-based outcomes. Hence, the choice of when to assess DNAm
may influence whether associations are identified or not. Several mechanisms could explain these time-specific findings. For instance,
DNAm variation increases in variability [27 –29 ] and decreases in heritability [30 , 31 ] as people age, pointing towards stronger
environmental (or stochastic) influences later in life. In addition, timing effects may in part reflect tissue and cell-type differences between
commonly examined biospecimens at different ages (e.g., cord blood at birth containing multipotent cells that are scarcely found in
peripheral blood later in life), which may also influence the degree of peripheral-brain concordance over time. Finally, important
confounders may play a larger role at specific developmental time points (e.g., stronger gender effects in adolescence). Any of these factors
(e.g., rate of change, genetic and environmental influences, tissue, confounders) may impact variations across development and contribute
to heterogeneity between studies. However, currently such a perspective is largely lacking in the field of neuroimaging epigenetics.

To address this gap, we systematically reviewed emerging research across the lifespan, combining structural or functional neuroimaging
measures with DNAm, and evaluated to what extent the developmental period (birth to adolescence) is represented in these studies. Our
aim was three-fold: (i) to provide an overview of the current state-of-the-art in this new research field; (ii) to discuss current challenges;
and (iii) to provide concrete recommendations on how to address these in the future. We argue that it is important to set standards now
while the field of neuroimaging epigenetics is still in its infancy.

Box	1	Glossary	of	common	terms	used	in	neuroimaging	epigenetics
Glossary: Common terms in the field of Neuroimaging Epigenetics

Neuroimaging epigenetics: a field of research that aims to uncover the relationship between epigenetic patterns and the brain, and to
establish the extent to which epigenetic marks in diverse tissues may enhance our ability to predict, trace or explain genetic and
environmental influences on brain and behavior.

Epigenetics

DNA methylation (DNAm): one of the most commonly studied epigenetic mechanisms, affecting transcriptional activity via the addition
of a methyl group to the cytosine base in the DNA (often in the context of a cytosine-guanine (CpG) sequence). It is modulated by both
genetic and environmental factors, can be reversible and change dynamically with age [92 , 93 ]. Importantly, DNAm is a driving
mechanism in development with key functions for example in embryogenesis [4 , 5 ], cell specification [6 ], genomic imprinting and X-
chromosome inactivation [7 , 8 ], and ageing [9 ]. Furthermore, disruptions in methylation have been linked to a range of poor health
outcomes (including all-cause mortality [94 ]) and psychiatric disorders [95 ]. DNAm is highly tissue-specific, which poses a key
challenge in the field of neuroimaging epigenetics [47 , 48 , 50 ].

Epigenetic age: a measure of biological ageing, derived from DNAm. Several of such ageing biomarkers, also referred to as ‘epigenetic
clocks’, have been developed. For example, the ‘Horvath clock’ is based on 353 CpGs and can be applied to most tissues types [93 ],
while the ‘Hannum clock’ is specific to blood tissue [96 ]. Epigenetic age acceleration is most commonly defined as the difference
between an individual’s chronological and biological age (i.e. a difference > 0 suggesting an acceleration of biological ageing compared
to one’s chronological age).

Brain imaging

Magnetic resonance imaging (MRI): a method that uses a strong magnetic field and radio waves to produce an image of the brain.

Structural MRI: a measure of brain morphology such as cortical thickness, surface area or volume of either the whole brain or individual
regions of interest (ROIs).

Structural connectivity: based on diffusion MRI or derived measures such as fractional anisotropy, structural connectivity measures
water diffusion in brain tissue, giving insights into the structural properties of white matter tracts and aspects of tissue microstructure.

Functional MRI: a measure of blood oxygen-level dependent signal in the brain to provide estimates of brain activity during a task or
during rest (resting-state functional connectivity).

Position emission tomography (PET): a measure of regional metabolic activity, perfusion, or molecular composition in the brain, using
radioactive tracers.

Reviewing	the	current	state	of	neuroimaging	epigenetics
from	a	development	perspective
Developmental	periods	are	underrepresented



18/04/2023, 10:15 eProofing

https://eproofing.springer.com/ePj/printpage_jnls/cTjEa3xG8ZxNzPqzY8ySWqNbLoDOirkDSOpAjmLH-7ByzTX0TQ0U6gTLbT1epz_dCmlxsUNWE4aOsyOeM1fe17iUAli0ZYg54HmqkM4c8TcGeQlQwrSTV748Gm_X… 4/14

Overall, we identified 111 articles, published between 2011–2021 (Fig. 1A ; for methods, see supplemental materials). Out of the total
number of studies, only a minority (21%) focused on developmental periods, such as neonatal (n = 6), childhood (n = 6) and adolescence
(n = 16; Table 1 ). Overall, most of the studies were based on adult samples (n = 85) and very few on old age (n = 8 in vivo and 2
postmortem studies).

Fig. 1

Research studies in the field of neuroimaging epigenetics.

A Number of published studies between 2011 and 2021. B Sample sizes across studies. C Possible directional links between methylomic
patterns in peripheral and brain tissue. Of note, not shown but equally possible is the absence of a relationship between peripheral and brain-
tissue methylation (i.e., with both, neither or only one of these DNAm measures influencing neuroimaging traits). In addition and like DNAm
in peripheral tissues, brain tissue methylation is highly heterogenous both spatially (i.e., between brain regions and cell types) and
temporally. Hence, any one of the proposed relationships might be true for some but not other brain regions or life stages.

Table 1

Summary of results.

General characteristics
N_all
(%)

N_dev
(%)

DNAm and brain
characteristics

N_all
(%)

N_dev
(%) Additional variables examined

N_all
(%)

N_dev
(%)

Design DNAm approach Genetic influences

    Cross-sectional 94
(85%)

13
(57%) Candidate 74

(67%)
12
(52%) No 63

(57%) 9 (39%)

    Prospective/longitudinal 17
(15%)

10
(43%) Genome-wide 26

(23%) 7 (30%) Yes 48
(43%)

14
(61%)

   Epigenetic score 15
(14%) 4 (17%)    

Sample type DNAm tissue Environmental influences

    Clinical 50
(45%) 4 (17%) Peripheral blood 83

(75%) 9 (39%) No 83
(75%)

10
(43%)

    Population/Cohort study 29
(26%) 8 (35%) Saliva 23

(21%) 11 (48%) Yes 28
(25%)

13
(57%)

    High-risk 20
(18%) 9 (39%) Cord blood/tissue 5 (5%) 5 (22%)       Of which:   

Some categories may add up to more than 100% due to certain studies meeting multiple criteria at once (e.g. studies investigating multiple tissues or
multiple biological markers). N_all = N for all developmental periods;

N_dev = N for the developmental period (<18 years).
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General characteristics
N_all
(%)

N_dev
(%)

DNAm and brain
characteristics

N_all
(%)

N_dev
(%) Additional variables examined

N_all
(%)

N_dev
(%)

    Genetically-informed (e.g. twin,
pedigree) 4 (4%) 2 (9%) Buccal 5 (5%) 1 (4%)              Psychological 23

(82%) 11 (85%)

    Other (e.g. convenience,
community)

11
(10%) 0 (0%) Brain (postmortem) 3 (3%) –              Physiological 5 (18%) 2 (15%)

Developmental period Most investigated candidate genes (>4
studies; n = 51) Biological markers

    Adulthood 85
(77%) – SLC6A4 17

(15%) 5 (22%) No 94
(85%)

20
(87%)

    Adolescence 16
(14%)

16
(70%) OXT/R 12

(11%) 3 (13%) Yes 17
(15%) 3 (13%)

    Neonatal 6 (5%) 6 (26%) FKBP5 11
(10%) 1 (4%)       Of which:   

    Old age 8 (7%) – NR3C1 6 (5%) –           mRNA/gene expression
levels

12
(71%) 2 (67%)

    Childhood 6 (5%) 6 (26%) BDNF 6 (5%) 1 (4%)           Protein levels and
metabolomics 7 (41%) 1 (33%)

    Postmortem 2 (2%) –       

Repeated measures Neuroimaging modality Psychiatric and behavioral outcomes

    No 103
(93%)

20
(87%) structural MRI 53

(48%)
13
(57%) No 28

(25%)
10
(43%)

    Yes 8 (7%) 3 (13%) task-based fMRI 39
(35%) 5 (22%) Yes 83

(75%)
13
(57%)

       Of which:   diffusion MRI 21
(19%) 6 (26%)         Of which:   

             Repeated DNAm 3 (38%) 2 (66%) resting-state fMRI 8 (7%) 2 (9%)            Depression and anxiety 25
(30%) 6 (26%)

             Repeated neuroimaging 6 (75%) 2 (66%) PET 6 (5%) –            Psychotic disorders 20
(24%) 2 (9%)

                 Neurodegenerative and
ageing-related 7 (8%) –

                 Post-traumatic stress
disorder 8 (10%) –

Replication Neuroimaging approach            Attention deficit
hyperactivity disorder 3 (4%) 1 (4%)

    No 100
(99%)

18
(78%) Region of Interest (ROI) 74

(67%)
16
(70%)

           Cognitive and social
processes

11
(13%) 2 (9%)

    Yes 11
(10%) 5 (22%) Voxel-/ vertex-wise 44

(40%) 8 (35%)            Substance use and
addiction 7 (8%) 1 (4%)

   Global 14
(13%) 2 (9%)            Other 4 (5%) 1 (4%)

Some categories may add up to more than 100% due to certain studies meeting multiple criteria at once (e.g. studies investigating multiple tissues or
multiple biological markers). N_all = N for all developmental periods;

N_dev = N for the developmental period (<18 years).

Most studies (75%) investigated DNAm-brain associations in the context of health and behavioral outcomes, such as depression and
anxiety (n = 25), psychotic disorders (n = 20), post-traumatic stress disorder (n = 8), or neurodegenerative and ageing-related traits (n = 7;
Table 1 , right panel), but several publications were based on the same datasets. In contrast, only 25% of studies considered how
environmental influences such as childhood trauma or other forms of stress might affect DNAm-brain associations. For developmental
studies in particular, the pattern was somewhat different: fewer studies assessed health or behavioral outcomes (57%) and a greater
number (57%) examined environmental effects. Almost half of all studies (n = 48) included genetic data in their analysis, suggesting a
large interest in the unique versus joint effects of genetic and epigenetic variation on brain-based phenotypes. For details, see SM Tables 
1  and 2 .

Table 2

Prospective, pediatric cohorts with repeated measures of methylation and/or imaging.

Cohort Age at
baseline

Years of
follow-up

DNAm
(number of
time points)

MRI (number
of time points)

Sample
size

Reference

Generation R Birth 18 y Y (n = 5) Y (n = 4) Up to n = 
9778 Kooijman et al. [83 ]

ALSPAC Birth 24 y Y (n = 7) Y (n = 1) Up to
15,458 Boyd et al. [84 ]

FinnBrain Birth 5 y Y (n = 1) Y (n = 2) Up to
3808 Karlsson et al. [85 ]

Sample sizes refer to whole cohort, not limited to the subsample with DNAm or MRI.

a

a
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Cohort Age at
baseline

Years of
follow-up

DNAm
(number of
time points)

MRI (number
of time points)

Sample
size

Reference

GUSTO Birth 3 y Y (n = 10) Y (n = 3) Up to
1176 Soh et al. [86 ]

DCHS Birth 6 y Y (n = 4) Y (n = 3) Up to
1143 Donald et al. [87 ]

NEURON Birth 2 y Y (n = 2) Y (n = 2) Up to 80 Moog et al. [88 ]

Fragile families Birth 15 y Y (n = 2) Y (n = 1) Up to
2020 Reichmann et al. [89 ]

Lifespan Baby
Connectome Project
(planned)

Birth 5 y Y (n = 1) Y (n = 6) Up to 500 https://www.humanconnectome.org/study/lifespan-baby-
connectome-project/overview

IMAGEN 14 y 8 y Y (n = 2) Y (n = 3) Up to
2463 Schumann et al. [90 ]

Brazilian High-Risk
Cohort 6–14 y 6 y Y (n = 3) Y (n = 3) Up to

2512 Salum et al. [91 ]

Sample sizes refer to whole cohort, not limited to the subsample with DNAm or MRI.

Although both DNAm and neuroimaging are high-dimensional data types, sample sizes across studies were on average modest, with a
median sample size of 98 (range 14–715; Fig. 1B ). Sample size tended to increase continuously with the year of publication (ρ = 0.14).
For developmental studies, the median sample size was 80 (range 33–715), which was slightly smaller than for studies overall. The largest
of the identified studies found no association between brain aging and epigenetic aging [32 ].

Overall, studies focused primarily on clinical samples (45%), followed by population-based cohorts (26%), high-risk groups (18%),
convenience or community samples such as college students (10%), and twin and family samples (4%). However, most developmental
studies were based on high-risk (39%) and population-based cohorts (35%) rather than clinical samples (17%). This could indicate that
either (1) childhood and adolescence are developmental periods underrepresented in clinical research or that (2) clinical phenotypes
examined in adults (e.g., schizophrenia, bipolar disorder) have not yet fully manifested at a younger age.

A	prospective	study	design,	including	repeated	measures	of	DNAm	or	MRI	is	a	key
strength	of	developmental	studies
Overall, most studies—although sometimes longitudinal in their overall design—featured a cross-sectional set-up, with DNAm and
neuroimaging measures obtained at the same time point (85%). Of those that measured these variables at different time points, most
obtained DNAm first and then data on brain structure or function. Diverging from the overall pattern, developmental studies were more
likely to follow a prospective (57%) than cross-sectional design (43%). Follow-up periods ranged from weeks (most often in studies with
neonatal samples [33 , 34 ]) to decades [35 ].

Overall, eight studies (7%) measured either DNAm or MRI (or both) repeatedly, but none more than twice (e.g., 20 –23 ). Only one study
investigated the effect of repeated AQ7  measures of DNAm on MRI at the genome-wide level [35 –38 ].

The	large	degree	of	methodological	and	statistical	heterogeneity	impacts
reproducibility
Overall, the majority of studies (67%) focused on candidate epigenetic markers, including candidate genes and selected DNAm sites
(ranging from n = 1 to several hundred sites; sometimes followed up based on an initial epigenome-wide association study; EWAS).
Seventy-one studies focused on n = 34 different genes, with SLC6A4, OXTR and FKBP5 among the most prominent ones. However, even
in studies that focused on the same gene, the exact genomic region investigated was often different.

Of those studies following a genome-wide approach (23%), most conducted a probe-level EWAS. However, in some of these studies, the
number of DNAm sites were reduced by up to 90% before analysis, for example, based on a selection of highly variable probes [33 , 39 ].
Only a minority of studies (11%) examined measures of epigenetic age acceleration (Box 1 ), which was investigated predominantly in
studies of stress or age-related cognitive decline [40 –45 ]. In developmental studies, the proportion of candidate and genome-wide studies
was slightly more balanced (52% and 30%, respectively).

Only 11 studies (five of which were based on children and adolescents) included a replication step in an independent cohort—nearly all
(n = 9) using a candidate gene or epigenetic score approach—and none performed a meta-analysis of multiple cohorts (SM Table 1 ). The
most common covariates were age (n = 77) and sex (n = 72). Among the possible neuroimaging covariates, only a few studies reported
accounting for site effects (n = 11), motion covariates (n = 13), or intracranial volume (n = 16). With regard to DNAm-relevant covariates,
only ten studies reported controlling for array effects, with a slightly larger number correcting for batch effects (n = 16) and cell-type
proportions (n = 21). Covariates were variable across studies and often selected based on statistical results (e.g., if they were significantly
different across groups) rather than on a priori, theoretically informed approaches.

While overall, peripheral blood was by far the most studied tissue (n = 83; 75%), followed by saliva (n = 23; 21%), buccal (n = 5; 5%) and
postmortem brain tissue (i.e., in relation to postmortem MRI; n = 3; 3%, including replication datasets), developmental studies
investigated saliva (n = 11; 48%) more frequently than blood (n = 9; 39%). This could be due to saliva sampling being a less invasive
method, which may be chosen as a more appropriate option in younger participants. Very few studies measured DNAm in more than one
tissue type. With regard to imaging methods, we observed a relative balance between studies using structural MRI (48%) and task-based
fMRI (35%), followed by diffusion MRI (19%), resting-state fMRI (7%), and PET (5%). Akin to the predominant adoption of a candidate

a

a
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gene approach observed for DNAm, most MRI studies (67%) followed a region-of-interest (ROI) approach, primarily focusing on the
hippocampus or the amygdala. This pattern did not seem to differ in developmental studies.

Synthesizing	current	challenges
Developmental periods were underrepresented in neuroimaging epigenetics research, with only a fifth of studies focusing on these periods.
Fewer developmental studies explored health and behavioral outcomes and a greater number examined environmental effects. We observed
that developmental studies were more likely to be prospective, featuring repeated measures of DNAm or MRI, which is a key strength
when assessing the role of DNAm and MRI in the development of psychopathology. We also observed a large degree of methodological
and statistical heterogeneity across studies, which could impact reproducibility. Given the findings of the present review, in the following,
we expand on three key challenges: the lack of developmentally oriented research, directionality of associations, and comparability across
studies. We highlight concrete recommendations to move the field of neuroimaging epigenetics forward, building upon previous
recommendations in the field of epigenetics [46 –50 ].

Lack	of	developmentally	oriented	research
Research involving children and adolescents is largely underrepresented in neuroimaging epigenetics research. While this may be less
problematic for research interested in conditions linked to old age (e.g. neurodegenerative disorders), it is a key limitation in the context
of psychiatric and behavioral disorders, which typically have neurodevelopmental origins and tend to emerge early in life [3 ]. In this
respect, the early developmental period may be especially relevant for understanding how genetic and environmental factors influence
brain structure and function, and, crucially, subsequent psychiatric risk. Furthermore, growing evidence suggests that DNAm changes
dynamically over development, and that DNAm patterns contributing to psychiatric risk may also differ across time [51 , 52 ]. Indeed,
studies show that DNAm at birth tends to be more predictive of certain psychiatric outcomes than DNAm in childhood or late adolescence
[25 , 53 , 54 ]. This implies that associations between DNAm and the brain, or the pattern of associations, may be time-dependent, and
suggests that findings in adult samples may not be readily generalizable to other developmental stages.

Establishing	directionality	of	associations
The studies reviewed here broadly support an association between peripheral DNAm and brain structure or function. Yet, based on these
findings, it is unclear whether DNAm markers present a cause or consequence of brain alterations or are due to other confounding
variables. Disentangling the direction of effect is extremely difficult, as most imaging epigenetics research is based on cross-sectional,
case-control samples. Different scenarios are possible. First, in line with a model proposed by Aberg et al. [55 ], peripheral epigenetic
patterns might mirror those in brain tissue, possibly due to a common cause. Here, an exposure (such as smoking) might impact both
peripheral DNAm as well as brain traits, resulting in a non-causal association between the two (“Mirror” model in Fig. 1C ). Second,
brain pathology may have downstream effects on peripheral processes affecting DNAm. For instance, changes in hypothalamic structure
or function may impair metabolic or hormonal processes, which then leave a signature in peripheral DNAm (“Signature” model in Fig. 
1C ). In this case, the DNAm signature would not be causal for brain-based phenotypes or related psychiatric traits, but a downstream
consequence of them. Last, the reverse could also be envisaged whereby peripheral processes, such as increased inflammation or vascular
events, could alter brain traits via changes in DNAm (“Mechanism” model in Fig. 1C ). In all these scenarios, DNAm markers could be
used as a biomarker of disease (or risk thereof), but only in the “Mechanism” model could we use peripheral DNAm as an interventional
target, so long as the brain is the causal tissue for the disease. These scenarios do not need to be mutually exclusive and animal studies so
far provide independent evidence for all three scenarios [56 –58 ]. Causal inference methods such as Mendelian Randomization (MR)
provide an opportunity to assess causality in human data [59 , 60 ], but to our knowledge only one study to date has used MR to
investigate causal links between DNAm and MRI phenotypes [61 ].

Comparability	across	studies
Studies were highly heterogeneous with respect to the design (e.g., longitudinal versus cross-sectional), sample characteristics (e.g.,
clinical, population-based), tissue (e.g., blood, saliva) and methodological and statistical approaches used (e.g., candidate gene versus
genome-wide; diverging sets of confounders; variable preprocessing pipelines). Relatively few studies shared practices and common
standards, which might be seen in other, more mature fields (e.g., neuroimaging, psychiatric genetics) [62 –67 ]. Sample sizes were on the
whole moderate (median n  = 98, median n  = 80) and only 10% of studies included a replication step in an independent
cohort. This type of variability across studies poses a challenge when attempting to synthesize research findings.

Cross-tissue heterogeneity in particular is a major concern in epigenetic research related to brain disorders [49 ]. Studies of cross-tissue
correlation based on biopsy or postmortem samples in general do not find large overall comparability between tissues, and only a small
proportion of DNAm sites show cross-tissue correspondence [68 , 69 ]. Equally important are concerns regarding cross-tissue
heterogeneity across different peripheral tissues [50 ] that highlight the need to investigate which peripheral tissue might be most
informative about the status of the brain. The choice of tissue might also address difficulties related to reduced compliance and heightened
attrition when blood samples are required (compared to buccal swabs), especially in clinical populations or longitudinal samples.

Ways	forward
Recommendation	1:	A	greater	focus	on	development
To truly understand associations between DNAm and the brain in the context of early environmental exposures and downstream outcomes
such as psychiatric disorders, we call for a greater focus on developmental research. Studies are needed to map DNAm-brain associations
at different, and ideally sensitive, developmental periods (e.g., birth, puberty). This could help to uncover time-specific links with
exposures or outcomes, characterize directional changes in associations over time, and thereby have important implications for

all developmental
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understanding, predicting and treating brain disorders that might only emerge later in development. For example, cord blood infusion is
currently being trialed as a promising therapy for reversing brain damage in a number of child and adult disorders (e.g. cerebral palsy,
brain injury, Parkinson’s disease [70 , 71 ]). This is based on evidence that multipotent cord blood cells exert powerful neuroprotective
and anti-inflammatory effects, raising the possibility that these cells may be more informative for the study, prediction and treatment of
brain-based phenotypes than cells present at later developmental stages. Yet, how these multipotent cells relate to DNAm patterns at birth,
and whether they could partially explain the inconsistent associations with brain structure and function across development, still needs to
be investigated.

Recommendation	2:	The	use	of	prospective,	pediatric	cohorts	with	repeated
measures	of	methylation	and	imaging
To disentangle the directionality of effects, we need studies that collect repeated measures of DNAm and MRI data over time. In addition,
relating DNAm to MRI patterns early in life could shed light on the role of epigenetic and brain variation in the onset and persistence of
mental disorders. This ideally requires (i) prospective data in young individuals beginning before the onset of symptoms; (ii) the
availability of repeated measures of both DNAm and brain imaging at different developmental periods; and (iii) longitudinal follow-ups
into adulthood. There are few cohorts worldwide with a study design that can address these questions (see Table 2  for a non-exhaustive
list of cohorts). Using this set-up within the ALSPAC cohort, we were able to show, for example, that DNAm at birth is more predictive of
later ADHD symptoms (measured repeatedly between ages 7 and 15) than DNAm measured at age 7 [72 ]. In relation to the brain, we
could also show that the majority of DNAm sites at birth and age 7, are not stably predictive of amygdala:hippocampal volume, measured
at age 18 [35 ].

To further strengthen causal inference or in cases where no such data is available, two-sample MR [73 ] can be applied, ideally using
developmentally and tissue-specific genetic instruments (e.g., single nucleotide polymorphisms that are associated with early brain
development). For example, Korologou-Linden [74 ] found that Alzheimer disease risk has an age-dependent effect on a range of cortical
and subcortical brain measures that starts in mid-life but not earlier in development. Using data for methylation quantitative trait loci
derived from prefrontal cortex tissue, Hatcher et al. [75 ] applied MR and found that DNAm may putatively mediate effects of genetic
variants on traits, such as schizophrenia. Moreover, it is important to keep an open mind regarding the specific epigenetic mechanism
involved. DNA methylation changes may well not be causal in themselves but mark other regulatory processes like changes in
transcription factor binding or in histone modifications.

Recommendation	3:	Push	towards	collaborative	science
To improve comparability across studies, we recommend, where possible, to harmonize DNAm and MRI preprocessing pipelines [76 ],
incorporate meta-analytic approaches [77 ] or to replicate the original study findings, especially in the context of candidate gene studies
[67 ]. We encourage the adoption and further development of already established standards in the field of neuroimaging, such as Brain
Imaging Data Structure (BIDS [62 ]) or COBIDAS [63 ], as well as recommended best practices in genetics (or related ‘omics’ areas; e.g.
[64 –67 ]). This will help to increase sample size, maximize statistical power to detect small effects and weed out false positives. For
instance, researchers interested in combining DNAm and neuroimaging may draw on the information provided in this review to identify
potential replication samples (see SM Table 1 ). A recent successful example of collaborative science comes from the ENIGMA-
Epigenetics consortium which combined 3,337 samples from 11 cohorts [77 ]. The authors examined epigenome-wide associations with
three subcortical volumes and identified two CpGs linked to the hippocampus, each explaining 0.9% of the phenotypic variance. These
results point to small effect sizes in the relationship between individual peripheral DNAm markers and subcortical volumes, which might
indicate limited value of single CpGs as biomarkers for brain structure. However, small effects might still be of mechanistic relevance,
providing evidence for causality (see recommendation 2).

In line with lessons learned in the field of psychiatric genetics, a candidate gene approach should be well justified, for example, as a
follow-up of EWAS results or functional studies (e.g., genetic knock-out, in vitro results). While systematic reviews might also provide
such evidence, we recommend triangulation of evidence derived from multiple and complementary approaches (e.g., assessing publicly
deposited (epi-)genome-wide data or summary results in databases such as Gene Expression Omnibus or the EBI GWAS catalog; for a
more comprehensive list, see [78 ]) to overcome limitations such as publication bias.

At the same time, we should further develop the use of epigenetic scores and global measures such as brain ageing. We also need to
expand multivariate data-dimension reduction techniques such as parallel ICA to uncover DNAm-brain relationships that might remain
hidden when applying univariate approaches [79 , 80 ].

Furthermore and of particular relevance for candidate gene studies, an increased focus on interdisciplinary collaborations will be needed
to characterize DNAm-brain associations more robustly and comprehensively, and to triangulate findings generated using different
approaches. For example, collaborating with experimental researchers could facilitate the use of tools for targeted gene- or region-specific
epigenetic editing in animal models, which would help to evaluate functional consequences of localized DNAm changes on brain
development and downstream outcomes such as psychiatric disorders [81 ]. At the same time, employing in vitro models may help to
characterize the role of gene- or region-specific DNAm markers associated with brain-based traits at a cellular level [82 ].

The	MIND	consortium
To address these challenges, we established a platform for advancing the field of neuroimaging epigenetics—the Methylation, Imaging
and NeuroDevelopment (MIND; https://www.erasmusmc.nl/en/research/groups/methylation-imaging-and-neurodevelopment-mind-
consortium) consortium. The MIND consortium combines research on epigenetics and neuroimaging to better understand the potential
role of DNAm in brain development and mental health, and aims to shed light on the relationship between DNAm patterns and brain
structure and function across development. It targets each of the key challenges in this new research field by (i) incorporating a
developmental perspective; (ii) elucidating the directionality of associations between methylation and the brain via the use of prospective,
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longitudinal studies across development; and (iii) promoting collaborative science via multi-cohort analyses. We encourage the formation
of such collaborative efforts to further understand associations between DNAm and brain structure and function across the life course.

Conclusion
Neuroimaging epigenetics is a promising, growing field of research building on a recent drive towards more dimensional, multi-system
approaches to mental health. To contribute substantially to advancements in mental health research, we advocate for: (1) a greater focus on
development; (2) the use of large, prospective, pediatric cohorts with repeated measures of methylation and imaging to assess
directionality; and (3) collaborative science to increase comparability across studies.
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