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Abstract
Background Defining the tumor immune microenvironment (TIME) of patients using transcriptome analysis is gaining more 
popularity. Here, we examined and discussed the pros and cons of using RNA sequencing for fresh frozen samples and tar-
geted gene expression immune profiles (NanoString) for formalin-fixed, paraffin-embedded (FFPE) samples to characterize 
the TIME of ependymoma samples.
Results Our results showed a stable expression of the 40 housekeeping genes throughout all samples. The Pearson correla-
tion of the endogenous genes was high. To define the TIME, we first checked the expression of the PTPRC gene, known 
as CD45, and found it was above the detection limit in all samples by both techniques. T cells were identified consistently 
using the two types of data. In addition, both techniques showed that the immune landscape was heterogeneous in the 6 
ependymoma samples used for this study.
Conclusions The low-abundant genes were detected in higher quantities using the NanoString technique, even when FFPE 
samples were used. RNA sequencing is better suited for biomarker discovery, fusion gene detection, and getting a broader 
overview of the TIME. The technique that was used to measure the samples had a considerable effect on the type of immune 
cells that were identified. The limited number of tumor-infiltrating immune cells compared to the high density of tumor 
cells in ependymoma can limit the sensitivity of RNA expression techniques regarding the identification of the infiltrating 
immune cells.

Keywords Tumor immune microenvironment · Targeted gene expression immune profiles · RNA sequencing · NanoString · 
Transcriptome analysis · Ependymoma

Background

In the past years, the interest in molecular targeted therapy 
is rising. However, it has primarily focused on genomics. 
Transcriptome analysis is a high-accuracy strategy to define 
the tumor immune microenvironment (TIME) of patients 

based on RNA [1]. The TIME is known to be related to 
cancer progression and therapeutic outcomes [1]. Transcrip-
tome analysis is a useful technique to study different cellular 
processes, such as immune responses and cell types that are 
present in the TIME [1].
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Over the last decades, RNA sequencing is the most used 
transcriptomic analysis to understand genomic functions 
[2, 3]. Fresh frozen (FF) samples are used to sequence the 
whole transcriptome via amplification. RNA sequencing can 
be used to find biomarkers since it does not require specific 
probes [4]. Profiling tumors with RNA sequencing can pro-
vide insights regarding classification and progression. The 
four main steps are [1] mRNA transcript fragmentation, 
followed by random primer binding, [2] cDNA synthesis 
via reverse transcription of the mRNA, [3] tagging the ends 
with a phosphate group and poly(A) tail and [4] ligation of 
adapters which enables PCR amplification and sequencing. 
Although this method is the most used, it has several disad-
vantages. High-quality RNA is needed for the amplification 
step of RNA sequencing, and due to the low signal/noise 
ratio, some transcripts are difficult to detect [4]. Further-
more, analyzing these RNA sequence data could be expen-
sive, and it needs technical and bioinformatical skills [5, 6].

In contrast to RNA sequencing, NanoString gene expres-
sion analysis is targeted and measures a selected set of 
genes. In addition, NanoString targeted gene expression 
analysis does not require amplification, which reduces 
workflow errors and increases reproducibility [7, 8]. For-
malin-fixed paraffin-embedded (FFPE) samples are used to 
perform targeted gene expression analysis [7]. This method 
is used in diagnostics, and it can measure up to 800 genes 
and even low counts [6, 7]. NanoString’s nCounter is a 
hybridization-based method, instead of amplification-based 
RNA sequencing, to detect RNA transcripts [9]. Different 
gene panels can be ordered via NanoString, for instance, 
the PanCancer Immune Profiling Panel [10]. NanoString 
targeted gene expression analysis is known to be a robust 
method with minimal background. This method can iden-
tify genes regardless of low-quality RNA or less-than-ideal 
FFPE preparation before gene expression analysis [5, 6]. In 
addition, only a little amount of RNA (approximately 25 ng) 
is needed for this method [5]. The workflow is more user-
friendly than the workflow of RNA sequencing since it does 
not include library preparation [4]. Furthermore, NanoString 
provides software to analyze your RNA data, which is called 
nSolver™. This nSolver™ software can identify cellular 
processes and cell types based on RNA expression levels 
[11].

Ependymomas account for 8–10% of pediatric brain 
tumors, and the standard therapy consists of surgery (as 
radical as possible) and radiation therapy [12–14]. How-
ever, this treatment remains unchanged for the past two 
decades [12–14]. Although 50–70% of the tumors are 
successfully treated with surgery and radiation therapy, 
no standard care therapy is available for recurrent or 
persistent ependymomas resulting in a dismal prognosis 
for these patients [15]. In addition, recurrence occurs in 
almost 50% of ependymoma patients [12]. Therefore, there 

is a need for alternative treatments for patients with epend-
ymoma. Nine different subgroups of ependymomas can 
be defined based on the location of the tumor, genetics, 
and epigenetic DNA methylation [12, 16]. The focus of 
this study is on posterior fossa group A (PF-A) epend-
ymomas, which occur in children (aged 0–18 years). PF-A 
ependymomas are located in the cerebellum and arise from 
regional radial glial-like cells [17]. PF-A ependymomas 
are known to be aggressive due to low mutation burden 
and high activation of several pathways, such as prolifera-
tion and angiogenesis, leading to a poor prognosis [15]. 
Another aggressive ependymoma subgroup is located in 
supertentorium (ST). In this study, both subgroups were 
included for analysis.

Knowledge of the immune system has great impor-
tance for treating cancer patients with immune therapies. 
In recent years, the Food and Drugs Administration (FDA) 
has approved immune checkpoint inhibitors for solid tumors 
in adults and chimeric antigen receptor (CAR) T-cell therapy 
for children with leukemia [13]. However, immune therapies 
are challenging in brain tumors since the brain is protected 
by the blood–brain barrier (BBB), which is known to limit 
the infiltration of therapies [18]. To date, little is known 
about the TIME of ependymomas [19, 20]. The TIME of 
pediatric CNS tumors tends to be immune suppressive [21, 
22], and there are indications that the TIME of ependymo-
mas might also be immune suppressive or ‘cold’ TIME, indi-
cating a lack of tumor-infiltrating T-cells [23].

Previous studies have demonstrated the high correlation 
between RNA sequencing and the NanoString gene expres-
sion analysis [6, 24, 25]. However, none of these studies 
focus on specific cancer tissue, nor did the studies investigate 
the TIME. This study aims to highlight the (dis)concordance 
in the identification of the TIME in a cold tumor, like epend-
ymomas, using gene expression data generated by measuring 
bulk RNA with the two most common techniques: targeted 
gene expression and RNA sequencing.

Material and methods

Sample collection and processing

Six formalin-fixed paraffin-embedded (FFPE) and fresh fro-
zen (FF) ependymoma tumor samples (n = 2 ST, n = 4 PF-A 
ependymomas) from the same tumor were collected at the 
Princess Maxima Center (Utrecht, the Netherlands). Each 
sample is a primary tumor before either radiation therapy 
or chemotherapy and was collected between 2019 and 2020. 
The BioBank committee of the Princess Maxima Center 
approved the application. In addition, this study is in line 
with the declaration of Helsinki.
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NanoString immune profiling

Six FFPE ependymoma tumor samples were collected. 
Before RNA isolation the samples were sectioned with 
HM 340E Electronic Rotary Microtome. The whole sam-
ple was used to include the TIME. First, samples were 
put at − 15 °C. Sections of 10 µm were cut to finally have 
100–200 µm of each sample. These sections were put in 
a 42 °C water batch and afterward added to a slide. The 
slides were dried overnight before deparaffinization was per-
formed. The  nCounter® PanCancer Immune Profiling Panel 
was used for NanoString targeted gene expression analysis 
of six FFPE ependymoma tumor samples. This panel con-
sists of 730 genes and 40 housekeeping genes targeting both 
innate and adaptive immune cells, and different pathways 
such as checkpoint signaling and antigen processing, which 
are considered an important part of the TIME (10). The total 
RNA was isolated from tumor tissue using the  RNeasy® 
FFPE isolation kit (Qiagen, Leiden, the Netherlands). The 
RNA quantity and quality were measured using the Agilent 
2100 BioAnalyzer (Santa Clara, CA, USA). RNA concentra-
tion was corrected to include fragments ≥ 300 bp. For each 
sample, 300 ng of RNA was hybridized with the PanCancer 
Immune Profiling probes for 17 h at 67 °C, following the 
manufacturing procedure (NanoString Technologies Inc., 
Seattle, WA, USA). The  nCounter® FLEX platform was 
used to wash the extra probes, and genes were counted by 
scanning 490 fields of view (FOV).

Data analysis of NanoString immune profiling

The raw data of gene counts were uploaded to the nSolver™ 
Data Analysis software (version 4.0, NanoString, Seattle, 
WA, USA). Genes that had an expression level below the 
average count of the negative controls plus two standard 
deviations are considered undetected. The gene counts were 
normalized using the most stable housekeeping genes using 
the Advanced Analysis module (version 2.0) of nSolver™.

RNA sequencing

Six fresh frozen (FF) ependymoma tumor samples were col-
lected. For all samples, 300 ng input material was collected 
and processed using RNA sequencing transcriptome analy-
sis at the Princess Maxima Center. The RNA sequencing 
library was prepared with the Roche KAPA hyperprep kit, 
including the amplification step. The library was sequenced 
with Illumina Novaseq 6000 using 2 × 150 bp sequencing. 
The paired-end sequencing reads were aligned to the human 
reference genome (GRCh38.p12, hg38) using STAR [26] 
and annotated with transcript annotation (Gencode Release 

31). Transcript quantification was performed using Subread 
featureCounts [27]. The counts were gene length trimmed 
mean of M-values (geTMM) normalized afterward [28].

Housekeeping genes

The PanCancer Immune Profiling Panel includes 40 house-
keeping genes. These housekeeping genes were tested in the 
RNA sequencing and NanoString results for their stability 
using the geNorm algorithm [29]. The algorithm identified 
a minimum number of genes required to calculate a normali-
zation factor as a geometric mean, which was used in the 
NanoString normalization. The most stable housekeeping 
genes from both techniques were compared by looking at the 
variation in the gene expression between samples.

Cell identification

To characterize the immune cell infiltration, gene markers 
were identified [30]. The gene markers were selected by 
calculating the pairwise similarity between all pairs of can-
didate marker genes that were above the detection limit in 
at least 50% of the samples. The gene pairs with a pairwise 
similarity above 0.6 were selected to describe the immune 
cells. Each immune cell type needed at least two unique 
genes. The abundance of the immune cell types is the aver-
age expression value of their corresponding marker genes.

The identification of tumor-infiltrating leukocytes (TILs) 
with the RNA sequencing data was performed using the 
CIBERSORT method [31] and the MCP-counter [32]. CIB-
ERSORT combines support vector regression with prior 
knowledge from expression profiles from purified leukocyte 
subsets to estimate the immune composition. The validated 
leukocyte gene signature matrix (LM22) including 547 
marker genes was used to quantify 22 human hematopoietic 
subsets. The absolute mode was run together with 1000 per-
mutations without quantile normalization as recommended 
by the developer [31]. MCP-counter is a method that allows 
absolute abundance calculations of eight immune and two 
stromal cell populations with the use of transcriptomics 
markers [32].

Immunohistochemistry was performed at the UMC Utre-
cht Pathology department on 5-μm FFPE tumor tissue sec-
tions using a Ventana Immunostainer.

Statistical analysis

The official gene symbols approved by the HGNC were 
used to identify matches between the NanoString and RNA 
sequence datasets. The Pearson correlations of the samples 
between the two platforms were computed with R software, 
version 4.1.1 [33]. To detect the genes that differ the most 
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from the expected correlation, a linear model for each sam-
ple was created and the residuals were reported.

Results

Patients’ characteristics

A total of six patients were included that were diagnosed 
with ependymoma. The FFPE samples and fresh frozen sam-
ples of the 6 patients were collected, and RNA was success-
fully isolated. The patients were between 0 and 13 years old. 
(Mean age is 4 years.) All clinicopathological characteristics 
are summarized in Table 1.

Characterization of ependymoma using NanoString

Of the 770 genes included in the  nCounter® PanCancer 
Immune Profiling Panel of NanoString Technology, 752 
genes were detected in at least one sample. The total num-
ber of genes detected per sample was comparable between 
the six samples. However, the number of the detected genes 
was lower in three samples, namely EPN-04, EPN-05, and 
EPN-06 (Supplementary Fig. 1A).

Characterization of ependymoma using RNA 
sequencing

In total 49,136 unique RNA molecules were detected in at 
least one sample by RNA sequencing out of the 58,804 fea-
tures described in the transcript annotation. This included 
19,051 protein-coding sequences (Table 2). The protein-cod-
ing sequences are the only features that can be compared to 
the 770 genes included in the NanoString panel.

The total number of features detected per sample was 
comparable between the six samples. However, the number 
of detected features was the least in sample EPN-05 (Sup-
plementary Fig. 1B).

The expression stability of the housekeeping genes

The 40 assigned housekeeping genes in NanoString 
measurements were checked in the NanoString data. The 
twenty-four most stable housekeeping genes based on the 
expression ratio of the genes between all samples were 
selected by the geNorm algorithm [29] in the advanced 
analysis module of NanoString data (Fig. 1A). Applying 
the same algorithm to select the most stable housekeeping 
genes in the RNA sequence data resulted in a selection 
of 26 genes (Fig. 1B). Twenty housekeeping genes over-
lapped in the two selections.

The detection level of the  nCounter® PanCancer 
Immune Profiling Panel

The 730 genes included in the  nCounter® PanCancer 
Immune Profiling Panel were examined in both datasets. 
From the 730 genes, 722 were identified in the RNA 
sequencing data. Interestingly, 7 of the 8 genes that were 
not identified in the RNA sequence data were above the 
detection limit in NanoString data. However, one gene 
(KIR3DS1) was not detected in NanoString nor identified 
in RNA sequencing (Table 3).

Table 1  Clinicopathological characteristics at the time of diagnosis from the six patients included

*Sample clusters as RELA but a ZFTA or RELA fusion was not detected

Sample Age Sex Diagnosis Tumor loca-
tion

Resection location Molecular subgroup Fusion status

EPN-01 13 F WHO III ST Supratentorial right frontal RELA fusion*
EPN-02 2 F WHO III ST Supratentorial left frontal RELA fusion
EPN-03 1 M WHO III PF Fossa cranii posterior Group 1 PF-A
EPN-04 2 M WHO III PF Fossa cranii posterior Group 2 PF-A
EPN-05 2 M WHO III PF Fossa cranii posterior Group 2 PF-A
EPN-06 3 M WHO III PF 4th ventricle Group 2 PF-A

Table 2  Number of unique RNA molecules detected in at least one 
sample per RNA molecule category by RNA sequencing

Category Frequency

Protein coding 19,051
Long noncoding RNA 14,696
Processed pseudogenes 10,219
Others 2860
Small nuclear RNA 1238
Micro RNA 1072
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Fig. 1  A Trend line of the 
forty housekeeping genes in 
NanoString samples. B Trend 
line of the forty housekeeping 
genes in RNA sequence sam-
ples. Legend: Green labels on 
the x-axis highlight the genes 
that were selected in both tech-
niques, yellow is unique for the 
technique, and red means it was 
not selected for both techniques

Table 3  NanoString gene expression values of the genes that were not identified with RNA sequencing

Gene symbol Gene symbol NanoString Alternative gene symbol Average Min Max Detected 
in # 
samples

BAGE BAGE CT2.1, BAGE1 52.7 Undetected 101.3 3
HLA-DRB3 HLA-DRB3 HLA-DR3B 11,030.93 1020.6 28,529.6 6
HLA-DRB4 HLA-DRB4 DR4, DR-4, DRB4, HLA-DR4B 779.0 Undetected 1399.1 3
KIR3DS1 KIR_Activating_Subgroup_1 nkat10 Undetected Undetected Undetected 0
KIR2DS1 KIR_Activating_Subgroup_2 CD158H, EB6ActI, EB6ActII 51.3 Undetected 51.3 1
LTBR LTBR D12S370, TNFCR, TNFR-RP, TNFR2-RP, 

TNFR-III, TNFRSF3
317.2 106.7 564.8 6

MCAM MCAM MUC18, CD146, MelCAM, METCAM, HEM-
CAM

431.1 103.2 941.8 6

TARP TARP CD3G, TCRG, TCRGC1, TCRGC2 110.7 47.1 301.3 5
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Comparability of NanoString and RNA sequence 
expression

To determine the comparability between the two techniques, 
the Pearson correlation between genes that were above the 
detection limit was performed, and the correlation coeffi-
cient (R2) was calculated. EPN-01 is shown as an example 
in Fig. 2.

Interestingly, some genes like Clusterin (CLU), ATM 
Serine/Threonine Kinase (ATM), and Interleukin 3 Recep-
tor Subunit Alpha (IL3RA) were detected at a higher level 
with the RNA sequence technique in all samples. On the 
other hand, Macrophage Migration Inhibitory Factor (MIF), 
Cluster of Differentiation 81 (CD81), Cluster of Differentia-
tion 68 (CD68), and Cluster of Differentiation 81 (CD81) 
were detected at a higher level with the NanoString tech-
nique in all samples. The same results were confirmed by 
calculating the residuals, i.e., genes that fail to correlate, 
of the linear models per sample (Supplementary Fig. 2, 
Supplementary Table 1). The average Pearson correlation 
of the genes detected by NanoString and RNA sequencing 
was 0.82 (min. 0.78, max. 0.85), with an average R2 of 0.67 
(Supplementary Figs. 3–7).

Dividing the 722 endogenous genes into bins based 
on their median expression from low to high showed an 
increased gene-specific inter-sample correlation for the 
highly expressed genes in both techniques. The average 
Spearman correlation was 0.3 across all 722 genes. In 
the NanoString data, 268 genes showed low expression 
(0–50 counts), 120 genes showed intermediate expression 
(50–200 counts) and 334 genes showed high expression 
(> 200). The Spearman correlation for the low expressed 
genes (average R = 0.13) is significantly lower compared to 
the intermediate (average R = 0.34, p-value < 0.0001) and 

high expressed genes (average R = 0.40, p-value < 0.0001). 
In the RNA sequence data, 261 genes showed low expres-
sion (0–1 count), 120 genes showed intermediate expression 
(1–3 counts) and 334 genes showed high expression (> 3 
counts). The Spearman correlation for the low expressed 
genes (average R = 0.19, p-value < 0.0001) and intermedi-
ate expressed genes (average R = 0.27, p-value < 0.001) are 
significantly lower compared to the high expressed genes 
(average R = 0.39), Supplementary Fig. 8.

The detection limit of nCounter in comparison 
to RNA sequencing

From the 722 identified genes (out of 730 genes) in both 
platforms, 464 genes were expressed above the detection 
limit and therefore measured by both methods in all sam-
ples. The gene TLR9 was detected in four samples, but the 
expression levels were below the detection limit in the other 
two samples for both methods. The other 257 genes were in 
at least one sample detected by one method, but below the 
detection limit in the other of which four genes were only 
detected in all samples with RNA sequencing. There was 
not any gene only detected in all samples by NanoString 
(Supplementary Fig. 9).

Comparison of the sensitivity of NanoString 
versus RNA sequencing

To examine the sensitivity of both techniques, genes that 
were above the detection limit for only one technique were 
investigated. Sixty genes were detected by NanoString tech-
nology, but were under the detection limit by RNA sequenc-
ing in at least one sample. Remarkably, Macrophage Migra-
tion Inhibitory Factor (MIF) was detected with an expression 

Fig. 2  Pearson correlation of 
the genes that are above the 
detection limit and overlap-
ping between both techniques 
in sample EPN-01. The three 
genes that are most divergent 
negatively (MIF, CD68, and 
CD81) and positively (CLU, 
ATM, and IL3RA) are high-
lighted next to the three genes 
that are the least divergent 
(IGF2R, NOD1, IFNAR1)
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value higher than 4000 counts in EPN-06 by the NanoString 
technique (Fig. 3A). On the contrary, 223 genes were only 
detected by RNA sequencing in at least one sample. The 
expression values from these genes vary from zero up to 
28 (Fig. 3B). The expression of BLK, CCL28, CMA1, and 
FUT7 was not detected in any sample with NanoString, but 
detected in all samples by RNA sequencing with expression 
values ranging from zero up to six (Fig. 3C).

The identification of immune cells

Protein Tyrosine Phosphatase Receptor Type C (PTPRC) 
gene, also known as CD45, was above the detection limit 
in all samples by NanoString and RNA sequencing, which 
reflects leukocytes infiltrated into the ependymoma tumor 
(Supplementary Table 2). To define the type of immune 
cells that infiltrated the ependymoma samples measured 

Fig. 4  A Marker gene-based immune cell type abundances per sam-
ple with NanoString data. B Marker gene-based immune cell type 
abundances per sample with RNA sequence data. C CIBERSORT 
mixture-based immune cell abundances per sample in the RNA 
sequence data. D MCP-counter mixture-based immune cell abun-

dances per sample in the RNA sequence data. E Immunohistochemis-
try staining of CD3 + (EPN-01, EPN-05, and EPN-06), CD8 + (EPN-
01, EPN-05, and EPN-06), and CD20 + (EPN-02, EPN-05, and 
EPN-06) cells within the samples
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with NanoString, the pairwise similarities for the 55 can-
didate marker genes were calculated. Genes that showed 
acceptable pairwise similarities (> 0.6) were selected as 
marker genes (Supplementary Document 1). In total, 25 
genes were selected to identify 11 different immune cell 
types in ependymoma. These marker genes were then used 
to calculate the relative abundance per sample (Fig. 4A). 
The same method was used to identify immune cells in 
the RNA sequencing data. The marker gene-based method 
was investigated to identify immune cell types using RNA 
sequencing data. However, the pairwise similarities of most 
cells were below 0.6. (Supplementary Document 2). There-
fore, the marker gene-based method was only applicable to 
a small set of immune cell types in the RNA sequencing 
data (Fig. 4B). The expression level of the selected marker 
genes was between 0 and 2.1 B cells, plasma B cells, cyto-
toxic cells, and T cells were identified using the two types of 
data. Nevertheless, both techniques show a different pattern 
of immune infiltration. The second method, CIBERSORT, 
was only applicable to RNA sequence data, as it expects an 
expression panel of 547 genes to be measured. This mixture-
based method resulted in significant estimations for EPN-03 
and EPN-06 (Fig. 4C). It showed infiltration of naïve b-cells, 
M1 macrophages, and neutrophils in EPN-03, whereas infil-
tration of M2 macrophages, monocytes, and resting NK cells 
was shown in EPN-06. A third method, MCP-counter, was 
used to determine the abundance of the immune cells based 
on the RNA sequence data. Similarly, MCP-counter expects 
a large set of 111 genes to be measured. Therefore, it was 
only applicable to RNA sequence data (Fig. 4D). MCP-coun-
ter showed the highest immune infiltration in EPN-06, but 
similarly to the gene maker method, a high infiltration of T 
cells was found in EPN-01. Immunohistochemistry showed 
infiltration of CD3 + cells in EPN-01, but CD3 + cells were 
not found in EPN-05 and EPN-06.

Discussion

The characterization of the ependymoma’s TIME can be 
done with different techniques, each having its advantages 
and disadvantages. In that regard, the nCounter (PanCancer 
Immune Profiling Panel) of NanoString is compared to RNA 
sequencing to get a better understanding of these advantages 
and disadvantages. NanoString uses probes to measure up 
to 800 genes, whereas RNA sequencing is used to profile 
transcriptome-wide, including approximately 26,000 genes. 
RNA sequencing can be used to identify novel and rare 
transcripts like noncoding RNA and fusion RNA (Table 2). 
This makes RNA sequencing a suited tool for biomarker 
detection and measuring a broad scope of samples. The 40 
housekeeping genes studied from both techniques showed 
a stable expression throughout all samples. The geNorm 

algorithm selected a similar number of housekeeping genes 
that were stable (Fig. 1). This shows that both methods are 
comparable regarding these housekeeping genes, which 
is to be expected. Eight out of the 730 endogenous genes 
of the PanCancer Immune Profiling Panel were not avail-
able in the RNA sequencing data (Table 3). This is most 
likely due to the complexity of the downstream analysis 
with RNA sequencing. The measurement of mRNA with 
RNA sequencing has FASTQ files as output, after which 
the downstream analysis is started including quality con-
trol, mapping, and normalization. Each of these steps can 
introduce errors and therefore experienced bioinformatics 
knowledge is needed. The complexity of the downstream 
analysis of RNA sequencing can cause important informa-
tion to be lost. In particular, the quality control and mapping 
steps are tedious work. NanoString uses pre-defined panels 
with identifiers for each barcode detected; therefore, the pro-
cessing of the measurements is less error-prone.

The significant Pearson correlations of the genes detected 
by both techniques (avg. Pearson correlation of 0.71) show, 
like the housekeeping genes, that comparable results can be 
found for most of the genes (Fig. 2). Nevertheless, there are 
discrepancies found between the two techniques. These dis-
crepancies could be caused by the different types of samples 
used for each technique since FFPE samples were used for 
nCounter NanoString, whereas FF samples were used for 
RNA sequencing. Due to the frozen state of the FF samples, 
the RNA molecules are better preserved than in FFPE sam-
ples. The FF samples are recommended for RNA sequencing 
as high-quality RNA in a higher abundance is needed. On 
the other hand, PCR amplification can cause bias by ampli-
fying specific genes. It is shown that the higher expressed 
genes have a more concordant expression between the two 
methods. The differences in the low-abundant genes can be 
due to the high sensitivity of the nCounter from NanoString 
by using barcodes of 100 bp, which makes it possible to 
measure low-abundant and lower-quality RNA more accu-
rately even though FFPE samples were used [34]. In addi-
tion, RNA can only be measured with RNA sequencing after 
the RNA molecules undergo cDNA synthesis via reverse 
transcription of the mRNA and PCR amplification. In case 
the cDNA synthesis does not work properly the genes are 
less likely to be detected by RNA sequencing. The gene ATM 
(146,036 bases) was higher detected with RNA sequenc-
ing, whereas CD68 (2621 bases) was higher detected with 
NanoString. This could be explained by the amplification 
bias in RNA sequencing. During PCR amplification, it is 
more likely to amplify a gene that has more reads present 
[35]. Nevertheless, this does not explain the different detec-
tion levels for CLU (17,784 bases) and CD81 (21,221 bases). 
The 464 genes that were above the detection level in all sam-
ples confirm the comparability between the two techniques. 
The 257 genes that were detected by one method, but below 
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the detection limit in the other in at least one sample, show 
the discrepancies that are caused by the technique or sample 
type. However, the RNA is expected to be more degraded in 
the FFPE samples sixty genes were detected by NanoString 
technology, but were under the detection limit by RNA 
sequencing in at least one sample with expression values 
higher than 4000 counts (Fig. 3A). That these genes are not 
detected with RNA sequencing could be due to the instabil-
ity of the RNA molecule, as RNA sequencing needs stable 
reads over the whole exon region to detect the gene. The 
223 genes that were only detected by RNA sequencing in at 
least one sample had an expression value ranging from zero 
up to 28 (Fig. 3B). BLK, CCL28, CMA1, and FUT7 were 
not detected in any sample with NanoString, but detected 
in all samples by RNA sequencing with expression values 
ranging from zero up to six (Fig. 3C). These genes are most 
likely not detected by NanoString due to the degradation of 
the RNA molecule in FFPE.

The detection of CD45 indicates that leukocytes infil-
trated into the ependymoma tumor. Even though microglia 
are the most dominant immune cells in the brain (80%), other 
immune cell types have been identified in the brain including 
B cells, dendritic cells, macrophages, monocytes, myeloid 
cells, natural killer (NK) cells, and T cells [12, 36–38]. Nev-
ertheless, the limited number of tumor-infiltrating immune 
cells compared to the high density of tumor cells can limit 
the sensitivity of bulk techniques [39]. The estimation of 
immune cell types in the samples by NanoString and RNA 
sequencing shows mostly incomparable results (Fig. 4). The 
marker gene method shows that the highest immune infil-
tration is in EPN-01 (Figure A), whereas the same method 
shows a higher immune infiltration in EPN-06 based on the 
RNA sequencing data. The low expression values in the 
RNA sequence data lead to low pairwise similarities and 
are therefore expected not to be accurate and are not suit-
able for most cell types using this method. The marker genes 
method cannot detect the absolute abundance of immune 
cells, but can only be used to describe the relative abundance 
between samples. The panel-based method CIBERSORT 
is only applicable to RNA sequencing results as it uses a 
large panel of genes that are not included in the standard 
panels of NanoString. CIBERSORT results in the absolute 
cell abundance which can be used to examine the relative 
abundance between samples. The RNA sequencing results 
include more cell types than estimated with the NanoString 
panel. Therefore, a fair comparison regarding the immune 
cell types cannot be made. MCP-counter is more comparable 
to the gene marker method used for NanoString. In the RNA 
sequencing data, both the marker gene method and MCP-
counter describe the highest immune infiltration in EPN-06. 
On the other hand, based on the NanoString data analyzed 
with the marker gene method and the RNA sequencing data 
analyzed with the MCP-counter method show the highest 

infiltration of T cells in EPN-01. This has been confirmed 
with immunohistochemistry (Fig. 4E).

The number of samples is limited in this study. Neverthe-
less, the aim of this study was to highlight the (dis)concord-
ance in the identification of the TIME in a cold tumor, like 
ependymomas, using gene expression data generated by the 
two most common techniques. Therefore, the variation in the 
included cohort of samples can be considered positive rather 
than negative because it covers a wider range of immune-
cold tissue samples. The identification of immune cells is 
sample based. Therefore, the number of samples included 
to compare the two techniques has a limited effect on the 
presented results.

Conclusion

In conclusion, both methods have their advantages and dis-
advantages. RNA sequencing is better suited for biomarker 
discovery, getting a broad overview of the samples regarding 
the TIME, detecting fusion genes, and mutation detection, 
although the low abundance genes might be missed out. 
The NanoString technique is easier to understand due to the 
simplified preprocessing steps both in the laboratory and 
dry lab. Furthermore, NanoString allows you to detect low-
abundant genes in the panel of interest. The technique that 
was used to measure the samples had a considerable effect 
on the type of immune cells that were identified.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00262- 023- 03450-2.

Acknowledgements The authors would like to give special thanks to 
Prof. Dr. Max Kros for his contribution and permission to use the data. 
Furthermore, we would like to thank Dr. M.E.G. Kranendronk and 
Jasper Dumas for handling the samples.

Author contributions WdK was involved in literature search, figures, 
study design, data analysis, data interpretation, and writing. FF col-
lected the data and wrote the manuscript. FC and JvdL initiated the 
project and designed the study. LK analyzed and interpreted the data. 
DM designed the study, and analyzed and interpreted the data. All 
authors contributed to the editing of the final report. All authors agreed 
to all the content of the submitted manuscript.

Funding This project was made possible with the support of Support 
Casper (www. suppo rtcas per. org).

Data availability The NanoString data presented in the study are 
deposited in the Gene Expression Omnibus (GEO) repository, acces-
sion number GSE216478. The RNA sequencing data presented in the 
study are deposited in the European Genome-phenome Archive (EGA) 
repository, accession number EGAS00001006535.

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

https://doi.org/10.1007/s00262-023-03450-2
http://www.supportcasper.org


Cancer Immunology, Immunotherapy 

1 3

Consent for publication Not applicable.

Ethical approval and consent to participate The BioBank com-
mittee of the Princess Maxima Center approved our application 
(PMCLAB2020.164). Informed written consent was obtained from 
each subject. In addition, this study is in line with the declaration of 
Helsinki.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bagaev A, Kotlov N, Nomie K et al (2021) Conserved pan-cancer 
microenvironment subtypes predict response to immunotherapy. 
Cancer Cell 39:845-865.e7. https:// doi. org/ 10. 1016/j. ccell. 2021. 
04. 014

 2. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teen-
age years. Nat Rev Genet 20:631–656. https:// doi. org/ 10. 1038/ 
s41576- 019- 0150-2

 3. Wang B, Kumar V, Olson A, Ware D (2019) Reviving the tran-
scriptome studies: an insight into the emergence of single-mole-
cule transcriptome sequencing. Front Genet 10:384. https:// doi. 
org/ 10. 3389/ fgene. 2019. 00384

 4. Bourré L (2020) Genome-wide RNAseq and array-based 
NanoString transcriptomic technologies: which to use and when? 
https:// blog. crown bio. com/ genome- wide- rnaseq- and- array- based- 
nanos tring- trans cript omic- techn ologi es. Accessed 21 Jul 2021

 5. Speranza E, Altamura LA, Kulcsar K et al (2017) Comparison of 
transcriptomic platforms for analysis of whole blood from Ebola-
infected cynomolgus macaques. Sci Rep 7:14756. https:// doi. org/ 
10. 1038/ s41598- 017- 15145-7

 6. Speranza E, Altamura LA, Kulcsar K et al (2017) Comparison of 
transcriptomic platforms for analysis of whole blood from Ebola-
infected cynomolgus macaques. Sci Rep 7:1–15. https:// doi. org/ 
10. 1038/ s41598- 017- 15145-7

 7. M’Boutchou M-N, van Kempen LC (2016) Analysis of the tumor 
microenvironment transcriptome via NanoString mRNA and 
miRNA expression profiling. Methods Mol Biol 1458:291–310. 
https:// doi. org/ 10. 1007/ 978-1- 4939- 3801-8_ 21

 8. Omolo B, Yang M, Lo FY et al (2016) Adaptation of a RAS 
pathway activation signature from FF to FFPE tissues in colorec-
tal cancer. BMC Med Genomics 9:1–10. https:// doi. org/ 10. 1186/ 
s12920- 016- 0225-2

 9. Omolo B, Yang M, Lo FY et al (2016) Adaptation of a RAS 
pathway activation signature from FF to FFPE tissues in colorec-
tal cancer. BMC Med Genomics 9:65. https:// doi. org/ 10. 1186/ 
s12920- 016- 0225-2

 10. NanoString (2021)  nCounter® PanCancer immune profiling panel. 
https:// www. nanos tring. com/ produ cts/ ncoun ter- assays- panels/ 
oncol ogy/ panca ncer- immune- profi ling/. Accessed 21 Jul 2021

 11. NanoString (2021)  SolverTM data analysis support. https:// www. 
nanos tring. com/ produ cts/ analy sis- solut ions/ ncoun ter- analy sis- 
solut ions/ nsolv er- data- analy sis- suppo rt/. Accessed 21 Jul 2021

 12. Hoffman LM, Donson AM, Nakachi I et al (2014) Molecular sub-
group-specific immunophenotypic changes are associated with 
outcome in recurrent posterior fossa ependymoma. Acta Neuro-
pathol 127:731–745. https:// doi. org/ 10. 1007/ s00401- 013- 1212-8

 13. Witt DA, Donson AM, Amani V et al (2018) Specific expression 
of PD-L1 in RELA-fusion supratentorial ependymoma: implica-
tions for PD-1-targeted therapy. Pediatr Blood Cancer 65:1–9. 
https:// doi. org/ 10. 1002/ pbc. 26960

 14. Mack SC, Pajtler KW, Chavez L et al (2018) Therapeutic targeting 
of ependymoma as informed by oncogenic enhancer profiling. 
Nature 553:101–105. https:// doi. org/ 10. 1038/ natur e25169

 15. Reni M, Gatta G, Mazza E, Vecht C (2007) Ependymoma. Crit 
Rev Oncol Hematol 63:81–89. https:// doi. org/ 10. 1016/j. critr 
evonc. 2007. 03. 004

 16. Pajtler KW, Witt H, Sill M et al (2015) Molecular classification of 
ependymal tumors across all CNS compartments, histopathologi-
cal grades, and age groups. Cancer Cell 27:728–743. https:// doi. 
org/ 10. 1016/j. ccell. 2015. 04. 002

 17. Vladoiu MC, El-Hamamy I, Donovan LK et al (2019) Child-
hood cerebellar tumours mirror conserved fetal transcrip-
tional programs. Nature 572:67–73. https:// doi. org/ 10. 1038/ 
s41586- 019- 1158-7

 18. Sayour EJ, Mitchell DA (2017) Immunotherapy for pediatric brain 
tumors. Brain Sci 7:137. https:// doi. org/ 10. 3390/ brain sci71 00137

 19. Griesinger AM, Birks DK, Donson AM et al (2013) Characteriza-
tion of distinct immunophenotypes across pediatric brain tumor 
types. J Immunol 191:4880–4888. https:// doi. org/ 10. 4049/ jimmu 
nol. 13019 66

 20. Nam SJ, Kim Y-H, Park JE et al (2019) Tumor-infiltrating immune 
cell subpopulations and programmed death ligand 1 (PD-L1) 
expression associated with clinicopathological and prognos-
tic parameters in ependymoma. Cancer Immunol Immunother 
68:305–318. https:// doi. org/ 10. 1007/ s00262- 018- 2278-x

 21. Wang SS, Bandopadhayay P, Jenkins MR (2019) Towards immu-
notherapy for pediatric brain tumors. Trends Immunol 40:748–
761. https:// doi. org/ 10. 1016/j. it. 2019. 05. 009

 22. Vermeulen JF, Van Hecke W, Adriaansen EJM et al (2018) Prog-
nostic relevance of tumor-infiltrating lymphocytes and immune 
checkpoints in pediatric medulloblastoma. Oncoimmunology. 
https:// doi. org/ 10. 1080/ 21624 02X. 2017. 13988 77

 23. Duan Q, Zhang H, Zheng J, Zhang L (2020) Turning cold into hot: 
firing up the tumor microenvironment. Trends Cancer 6:605–618. 
https:// doi. org/ 10. 1016/j. trecan. 2020. 02. 022

 24. Zhang W, Petegrosso R, Chang JW et al (2020) A large-scale com-
parative study of isoform expressions measured on four platforms. 
BMC Genomics 21:1–14. https:// doi. org/ 10. 1186/ S12864- 020- 
6643-8/ FIGUR ES/ 10

 25. Bondar G, Xu W, Elashoff D et al (2020) Comparing NGS and 
NanoString platforms in peripheral blood mononuclear cell tran-
scriptome profiling for advanced heart failure biomarker develop-
ment. J Biol Methods 7:e123. https:// doi. org/ 10. 14440/ JBM. 2020. 
300

 26. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast 
universal RNA-seq aligner. Bioinformatics 29:15–21. https:// doi. 
org/ 10. 1093/ BIOIN FORMA TICS/ BTS635

 27. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient gen-
eral purpose program for assigning sequence reads to genomic 
features. Bioinformatics 30:923–930. https:// doi. org/ 10. 1093/ 
BIOIN FORMA TICS/ BTT656

 28. Smid M, Coebergh van den Braak RRJ, van de Werken HJG 
et al (2018) Gene length corrected trimmed mean of M-values 
(GeTMM) processing of RNA-seq data performs similarly in 
intersample analyses while improving intrasample comparisons. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ccell.2021.04.014
https://doi.org/10.1016/j.ccell.2021.04.014
https://doi.org/10.1038/s41576-019-0150-2
https://doi.org/10.1038/s41576-019-0150-2
https://doi.org/10.3389/fgene.2019.00384
https://doi.org/10.3389/fgene.2019.00384
https://blog.crownbio.com/genome-wide-rnaseq-and-array-based-nanostring-transcriptomic-technologies
https://blog.crownbio.com/genome-wide-rnaseq-and-array-based-nanostring-transcriptomic-technologies
https://doi.org/10.1038/s41598-017-15145-7
https://doi.org/10.1038/s41598-017-15145-7
https://doi.org/10.1038/s41598-017-15145-7
https://doi.org/10.1038/s41598-017-15145-7
https://doi.org/10.1007/978-1-4939-3801-8_21
https://doi.org/10.1186/s12920-016-0225-2
https://doi.org/10.1186/s12920-016-0225-2
https://doi.org/10.1186/s12920-016-0225-2
https://doi.org/10.1186/s12920-016-0225-2
https://www.nanostring.com/products/ncounter-assays-panels/oncology/pancancer-immune-profiling/
https://www.nanostring.com/products/ncounter-assays-panels/oncology/pancancer-immune-profiling/
https://www.nanostring.com/products/analysis-solutions/ncounter-analysis-solutions/nsolver-data-analysis-support/
https://www.nanostring.com/products/analysis-solutions/ncounter-analysis-solutions/nsolver-data-analysis-support/
https://www.nanostring.com/products/analysis-solutions/ncounter-analysis-solutions/nsolver-data-analysis-support/
https://doi.org/10.1007/s00401-013-1212-8
https://doi.org/10.1002/pbc.26960
https://doi.org/10.1038/nature25169
https://doi.org/10.1016/j.critrevonc.2007.03.004
https://doi.org/10.1016/j.critrevonc.2007.03.004
https://doi.org/10.1016/j.ccell.2015.04.002
https://doi.org/10.1016/j.ccell.2015.04.002
https://doi.org/10.1038/s41586-019-1158-7
https://doi.org/10.1038/s41586-019-1158-7
https://doi.org/10.3390/brainsci7100137
https://doi.org/10.4049/jimmunol.1301966
https://doi.org/10.4049/jimmunol.1301966
https://doi.org/10.1007/s00262-018-2278-x
https://doi.org/10.1016/j.it.2019.05.009
https://doi.org/10.1080/2162402X.2017.1398877
https://doi.org/10.1016/j.trecan.2020.02.022
https://doi.org/10.1186/S12864-020-6643-8/FIGURES/10
https://doi.org/10.1186/S12864-020-6643-8/FIGURES/10
https://doi.org/10.14440/JBM.2020.300
https://doi.org/10.14440/JBM.2020.300
https://doi.org/10.1093/BIOINFORMATICS/BTS635
https://doi.org/10.1093/BIOINFORMATICS/BTS635
https://doi.org/10.1093/BIOINFORMATICS/BTT656
https://doi.org/10.1093/BIOINFORMATICS/BTT656


 Cancer Immunology, Immunotherapy

1 3

BMC Bioinform 19:1–13. https:// doi. org/ 10. 1186/ S12859- 018- 
2246-7/ TABLES/2

 29. Vandesompele J, de Preter K, Pattyn F et al (2002) Accurate 
normalization of real-time quantitative RT-PCR data by geomet-
ric averaging of multiple internal control genes. Genome Biol 
3:RESEARCH0034. https:// doi. org/ 10. 1186/ gb- 2002-3- 7- resea 
rch00 34

 30. de Koning W, Latifi D, Li Y et al (2021) Identification, validation, 
and utilization of immune cells in pancreatic ductal adenocarci-
noma based on marker genes. Front Immunol. https:// doi. org/ 10. 
3389/ fimmu. 2021. 649061

 31. Newman AM, Liu CL, Green MR et al (2015) Robust enumera-
tion of cell subsets from tissue expression profiles. Nat Methods 
12:453–457. https:// doi. org/ 10. 1038/ nmeth. 3337

 32. Becht E, Giraldo NA, Lacroix L et al (2016) Estimating the popu-
lation abundance of tissue-infiltrating immune and stromal cell 
populations using gene expression. Genome Biol 17:218. https:// 
doi. org/ 10. 1186/ s13059- 016- 1070-5

 33. R Core Team (2020) R: a language and environment for statistical 
computing

 34. Veldman-Jones MH, Brant R, Rooney C et al (2015) Evaluating 
robustness and sensitivity of the NanoString technologies nCoun-
ter platform to enable multiplexed gene expression analysis of 
clinical samples. Cancer Res 75:2587–2593. https:// doi. org/ 10. 
1158/ 0008- 5472. CAN- 15- 0262

 35. Gao L, Fang Z, Zhang K et al (2011) Length bias correction for 
RNA-seq data in gene set analyses. Bioinformatics 27:662. https:// 
doi. org/ 10. 1093/ BIOIN FORMA TICS/ BTR005

 36. Korin B, Ben-Shaanan TL, Schiller M et al (2017) High-dimen-
sional, single-cell characterization of the brain’s immune com-
partment. Nat Neurosci 20:1300–1309. https:// doi. org/ 10. 1038/ 
nn. 4610

 37. Donson AM, Birks DK, Barton VN et al (2009) Immune gene 
and cell enrichment is associated with a good prognosis in epend-
ymoma. J Immunol 183:7428–7440. https:// doi. org/ 10. 4049/ 
JIMMU NOL. 09028 11

 38. Gillen AE, Riemondy KA, Amani V et al (2020) Single-cell RNA 
sequencing of childhood ependymoma reveals neoplastic cell sub-
populations that impact molecular classification and etiology. Cell 
Rep 32:108023. https:// doi. org/ 10. 1016/J. CELREP. 2020. 108023

 39. Rozowsky JS, Meesters-Ensing JI, Lammers JAS et al (2022) A 
toolkit for profiling the immune landscape of pediatric central 
nervous system malignancies. Front Immunol. https:// doi. org/ 10. 
3389/ fimmu. 2022. 864423

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/S12859-018-2246-7/TABLES/2
https://doi.org/10.1186/S12859-018-2246-7/TABLES/2
https://doi.org/10.1186/gb-2002-3-7-research0034
https://doi.org/10.1186/gb-2002-3-7-research0034
https://doi.org/10.3389/fimmu.2021.649061
https://doi.org/10.3389/fimmu.2021.649061
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1158/0008-5472.CAN-15-0262
https://doi.org/10.1158/0008-5472.CAN-15-0262
https://doi.org/10.1093/BIOINFORMATICS/BTR005
https://doi.org/10.1093/BIOINFORMATICS/BTR005
https://doi.org/10.1038/nn.4610
https://doi.org/10.1038/nn.4610
https://doi.org/10.4049/JIMMUNOL.0902811
https://doi.org/10.4049/JIMMUNOL.0902811
https://doi.org/10.1016/J.CELREP.2020.108023
https://doi.org/10.3389/fimmu.2022.864423
https://doi.org/10.3389/fimmu.2022.864423

	Characterizing the tumor immune microenvironment of ependymomas using targeted gene expression profiles and RNA sequencing
	Abstract
	Background 
	Results 
	Conclusions 

	Background
	Material and methods
	Sample collection and processing
	NanoString immune profiling
	Data analysis of NanoString immune profiling
	RNA sequencing
	Housekeeping genes
	Cell identification
	Statistical analysis

	Results
	Patients’ characteristics
	Characterization of ependymoma using NanoString
	Characterization of ependymoma using RNA sequencing
	The expression stability of the housekeeping genes
	The detection level of the nCounter® PanCancer Immune Profiling Panel
	Comparability of NanoString and RNA sequence expression
	The detection limit of nCounter in comparison to RNA sequencing
	Comparison of the sensitivity of NanoString versus RNA sequencing
	The identification of immune cells

	Discussion
	Conclusion
	Anchor 27
	Acknowledgements 
	References


