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Abstract

BACKGROUND: Sex differences in incidence and/or presentatf@tloizophrenia (SCZ2),
major depressive disorder (MDD), and bipolar digor@IP) are pervasive. Previous evidence
for shared genetic risk and sex differences imbafinormalities across disorders suggest
possible shared sex-dependent genetic risk.

METHODS:. We conducted the largest to date genome-wide gpeseby—sex (GxS) interaction
of risk for these disorders, using 85,735 caseg(8SCZ, 19,924 BIP, 32,408 MDD) and
109,946 controls from the Psychiatric Genomics @anan (PGC) and iPSYCH.

RESULTS: Across disorders, genome-wide significant SNP-é¥4ateraction was detected for
a locus encompassitKAIN2 (rs117780815p=3.2x10°%), that interacts with
sodium/potassium-transporting ATPase enzymes iajiig neuronal excitability. Three
additional loci showed evidencp<(1x10°) for cross-disorder GxS interaction (rs7302529,
p=1.6x10"; rs73033497p=8.8x10"; rs7914279p=6.4x10") implicating various functions.
Gene-based analyses identified GxS interactiorsaaisordersp=8.97x10") with
transcriptional inhibitoSLTM. Most significant in SCZ wasMOCOS gene locus (rs11665282;
p=1.5x10"), implicating vascular endothelial cells. Secorydamalysis of the PGC-SCZ dataset
detected an interaction (rs1326550p91.1x107) in a locus containintPO2, a kynurenine
pathway enzyme with immunoregulatory functions iicgtied in SCZ, BIP, and MDD. Pathway
enrichment analysis detected significant GxS okgeegulating vascular endothelial growth
factor (VEGF) receptor signaling in MDIPHpr<0.05).

CONCLUSIONS: In the largest genome-wide GxS analysis of moabpmychotic disorders to
date, there was substantial genetic overlap bettfeegsexes. However, significant sex-
dependent effects were enriched for genes relataduronal development, immune and
vascular functions across and within SCZ, BIP, siikD at the variant, gene, and pathway

enrichment levels.
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Introduction

Sex differences are pervasive in psychiatric disdincluding major depressive
disorder (MDD), schizophrenia (SCZ), and bipolaodder (BIP). There is a significantly higher
risk for MDD in women (1) and SCZ in men (2). BIRepalence is approximately similar, but
age at onset, course, and prognosis vary consigdrgalsex (3, 4), as they do in SCZ and MDD
(5-7). Additionally, certain brain regions sharmustural and functional abnormalities and
dysregulated physiology across disorders thatexalspendent (8, 9).

The majority of twin studies have not detecteddiéierences in heritability of these
disorders (10), or differences in twin intra-padrrelations between same-sex and opposite-sex
dizygotic pairs (11, 12). However, specific disedask variants may not be the same in both
sexes (i.e., “sex-specific” effects) or variantsyrhave different effect sizes in each sex (i.e.,
“sex-dependent” effects). Sex-dependent modificatiballelic effects on the autosomes and X
chromosome may contribute to sex differences ieadie prevalence, similar to other complex
human traits (e.g., blood pressure, waist-hip y4fi8, 14). Aside from sex-specific variants,
incidence differences may result from a female alenprotective effect, whereby one sex may
require a higher burden of genetic liability to €sdhe threshold to disease manifestation. This
suggests quantitative risk differences (i.e., “dependence”), a notion supported by an early
observation that female SCZ cases were more liketypme from multiplex families (15).

Regarding SCZ, there is a long history of examirsgeg differences in familial/genetic
transmission (16), given differences in inciderr@jn abnormalities, and course (17, 18).
Recently, large genetic cohorts of SCZ and autoimardisorders identified greater effects of
complement component 4 (C4) alleles in SCZ men Wnamen (19, 20). Compared with SCZ,
sex differences in incidence of MDD are greatethwi 2:1 female predominance, and there is
some evidence for stronger sex differences in reatiMDD (rMDD) compared with single-

episode MDD, although inconsistent (7, 21-23). Wittreased interest in examining the
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genetics of sex differences in psychiatric disasderd related phenotypes (24-32),
transcriptomics studies are beginning to providgints into mechanisms underlying sex
differences in risk. Notably, >10% of autosomal geexhibit sexually dimorphic gene
expression in the brain, predominantly genes reélstesynaptic transmission, dopamine receptor
signaling, and immune response, suggesting potenéehanisms mediating sex differences in
psychiatric disorders.

In order to test for sex differences in genetik,risis essential to have adequate power to
test for interaction effects (33). Given sample dimitations, genome-wide association studies
(GWAS) of psychiatric disorders have typically maiamined genotype-by-sex (GxS)
interactions. Here, we capitalized on a unique dppdy to utilize cohorts from the PGC and
iPSYCH consortia (n = 195,681) to assess interastietween sex and genetic risk of MDD,

SCZ and BIP within and across disorders.
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Methodsand Materials
Participants

The Psychiatric Genomics Consortium (PGC) (34-86luded 43 SCZ (30,608 patients,
38,441 controls), 28 BIP (18,958 patients, 29,989@mls), and 26 MDD cohorts (15,970
patients, 24,984 controlSupplementary Table 1). The iPSYCH cohort in Denmark (37)
included 2,795 SCZ patients and 2,436 controls,BI&6and 551 controls, and 16,438 MDD and
13,538 controlsQupplementary Table 2). Primary analyses used the PGC and iPSYCH
datasets. Secondary PGC-only analysesSspplementary M aterials) were performed to
facilitate comparison to other PGC studies and renthat different diagnostic criteria in PGC
and iPSYCH (DSM-1V and ICD-10, respectively) we mpacting results. All cohorts were

European ancestry, except three East Asian SCZtsoho

Quality Controls and Analytics

Quality control (QC) and imputation to the 1000 Geres Phase 3 reference panel were
performed using PGC’s Rapid Imputation for COnsar?lpeLine (RICOPILI) (38) and
previously described filtering thresholds (34-3&). overview of subsequent QC and analytic
steps is provided iBupplementary Figure 1. Identity-by-descent (IBD) filtering is described
Supplementary Methods. At MAF=0.05, this study had 83%-99% (within-dider) and 88%
(cross-disorder) power to detect interaction effettan odds ratio of >= 1.2, and >= 1.1,
respectively Supplementary Table 3; Supplementary Figure 2).

Sex-stratified GWAS summary statistics were obthiog logistic regression of men and
women separately within each cohort using PLINK)(88llowed by standard-error weighted
meta-analysis across cohorts using METAL (40). Sanyrstatistics were entered into Linkage

Disequilibrium (LD) Score Regression (LDSC) (41) &2 estimate autosomal sex-specific SNP-
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based heritability/$y) for each disorderRjgure 1) and bivariate genetic correlationg)(
within and across disorders.

PLINK (39) was used to perform a genome-wide Gx8&raction analysis in each cohort,
followed by standard-error weighted meta-analy$iGxs interactions using METAL (40). GxS
interaction analyses were performed using linegiression with main effects for SNPs and sex,
and SNP-by-sex interaction terms, using additivel@efor SNPs (controlling for 10 ancestry
principal components [PC]). Secondary regressiodatsincluded additional controls using 10
SNP-by-PC and 10 sex-by-PC interaction terms (@A8jling too many covariates can
destabilize the effect estimatésading to increased dropout of SNPs due to estimat
problems, especially in smaller cohorts, thus fitls& model is our primary model. Secondary
analytic modep-values are included in brackets.

GxS interactions with X-linked SNPs were testechgswo models. Model A assumed
complete and uniform X-inactivation in women anahifr effect size between the sexes by
assigning 0, 1, or 2 copies of an allele to wommh@or 2 copies to men. As these assumptions
often do not hold, Model B assigned 0 or 1 copgnen.

A three-degrees-of-freedom test omnibus test (4 performed by summing values
for individual disorder GxS interaction meta-anatysn order to identify SNPs with opposing
GxS effects across disorders (Segplementary M ethods).

LD-independent SNPs?« 0.1) with suggestive or genome-wide significanSG
interactions §<1x10°) were used as index SNPs for fine-mapping to abiiély causal SNPs
using FINEMAP (45) and CAVIAR (46) (seaipplementary Methods). Regions for fine-
mapping were defined as all SNPs in LBX(0.6) with the index SNP.

SCZ and cross-disorder analyses of autosomes amiofnosome were conducted with

and without inclusion of East Asian cohorts to eaé population effects. Findings were not
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significantly different and therefore all subsequamalyses utilized only European ancestry
cohorts (se&upplementary M ethods).

Gene-based analyses were conducted using MAGMA(&ighificantp-value=2.6x10;
seeSupplementary M ethods). Gene set enrichment tests (47) determined whétlear-
)significant SNPsp<1x10™ clustered into particular biological pathways rettderizing
functional similarity of genes implicated by GxS$dractions. Hypothesis-free analyses were
performed for 10,353 gene sets from the Molecuign&ures Database (MSigDB). Data-driven
enrichment analyses were performed for nine getsé gathways implicated in prior studies (48,
49).

Gene expression and expression quantitative trautsl (eQTL) data from several
publicly available resources were evaluated todeddi and interpret SNPs with GxS interaction
p-values < 1x1T (seeSupplementary M ethods).

Finally, GxS interaction results were comparedrevusly reported sex-dependent or

sex-specific effects on psychiatric rigk6x10°) (seeSupplementary Methods and Tables).
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Results

Sex-stratified GWAS

Sex-stratified GWASnalyses were performedittentify sex differences in heritability
and genetic overlap between disorders, providirgfexrence point for interaction analyses.
Manhattan plotsSupplementary Figure 3) and scatter plotsSipplementary Figure 4)
showed considerable sex differences in the assatsidentified. Autosomal sex-specific SNP-

based heritability/y) for each disordeand bivariate genetic correlationg)(within and

across disorders were then estimated. Within eacider the hZ,, for men and women
(Figure 1a) was significantly greater than 0 (mean 0.19patl0.001) Supplementary Table

4), indicating adequate power to detect broadergeaiic signals. Estimates b, increased
minimally across a range of MAF cutoffs (MAF>1%, 2884), indicating rarer variants
contributed little Supplementary Table 4). Heritability estimates were substantially diféfet
between the sexes for SOFdr = 0.019;h% > hZ) and MDD prpr = 0.005;h% > h%,), but not
BIP (pror = 0.381) Supplementary Table 4). Although correlations between male and female
GWAS p-values were lowSupplementary Figure 4), SNP-based genetic correlationg (
between men and women within disorders ranged leetWe86 and 1 and were significantly
different from 1 for SCZ{pr = 0.039) and BIPpepr = 0.039), but not MDDggpr = 0.397)
(Figure 1b; Supplementary Table 5a). Additionally, we observed no significant diffaes in
cross-disorder genetic correlations by sex, excgpetween BIP and MDDr¢r = 0.42;rgv =
0.04;prpor = 0.044) Figure 1b; Supplementary Table 5b). However, within-sex, SCZ and BIP
women were more highly correlated than SCZ with M@&nen, and MDD women correlated
similarly to both SCZ and BIP. In contrast, SCZmi&IP and MDD men correlated similarly,

but MDD and BIP men were uncorrelated. Findingsyesythere may be different within-sex

15



genetic differences that need further understanaimjdemonstrate the complexity of

investigating sex differences in genetics.

Genome-wide S\P-by-Sex Interactions

In order to adequately test for sex effects, nt@sessary to conduct SNP-by-sex
interaction analyses. Quantile-quantile plots iatkd no systematic inflation of test statistics
(Supplementary Figure 5). Genomic control lambdadc) revealed no significant evidence of
population stratification in the meta-analysisioé tross-disorder European ancestry
(Asc=0.9828), cross-disorder European + East Asigs+0.9838), SCZ European ancestry
(Acc=0.9991), SCZ European + East Asiags=1.002), BIP {cc=0.9879), or MDD
(Acc=0.9833) cohorts.

Analyses within disorders did not detect genomeevgiginificant interactions for SCZ,
BIP, or MDD, however suggestive evidenpe1x10°) was obtained for several lodigble 1,
Supplementary Table 8). Overall, there was little overlap between thersgest interactions for
each disorderSupplementary Figure 6). The most significant results were obtained foZSC
for a locus in the 5' UTR of thRlOCOS gene (rs1166528p=1.48x10’ [secondary model
Pec=2.53%107; Supplementary Figures 6-8) and an intergenic locus near the non-coding RNA
geneLINC02181 (rs12445424p=3.52x10" [pex =2.28x10%; Supplementary Figures 6-8).
The top GxS interaction locus for BIP was locataccbromosome 9 near thi&/SC1 gene
(rs12341335p=2.29%10" [pec =7.91x107]; Supplementary Figures 6-8). Suggestive evidence
for GxS effects in MDD risk was detected for chr@mme 1 locus in and arouS8AG17
(rs9428240p=1.64x%10" [pex = 3.31x10]), which remained in rMDDE=1.40%10" [pex
=1.05x10")), and chromosome 17 locus spanning multiple géneludingZNF385C

(rs147515485p=4.61x10" [peq = 4.76x10°; Supplementary Figures 6-8). Post-hoc analysis

16



of rMDD did not reveal additional loci at< 1x10°. Secondary analyses of the PGC SCZ
cohort identified a noteworthy locus in an intergeregion between thlkdO2 andC8orf4 genes
(rs13265509p=1.09x10" [pes =1.23%x10°; Supplementary Table 15a). Meta-analysis of GxS
interactions across cohorts from all 3 disorder@ntrast to omnibus tests) revealed suggestive
evidence for three additional intergenic Iquk{x10°) (Table 1, Supplementary Table 6f-i).
Omnibus tests of autosomal SNP GxS effects aciiessders revealed a significant locus
in NKAIN2 (rs117780815p=3.2x10° [peq =4.67x10]; Figure 2) driven by BIP and SCZ
(Table 2, Supplementary Table 7). The effect was in opposite directions, with thieor allele
increasing risk in BIP women and decreasing risRIid men, and vice versa in SCZ women and
men (sed able 1, Supplementary Table 6a-e, disorder-specific sex-stratified effects). The
second strongest omnibus signal was forAlBGOL/GPR61 gene locus (rs12141273;
p=4.16x10" [peq =1.95x10°)), common to BIP and MDD, though in opposite diieas. Of
note, omnibus tests of the PGC dataset detectedoaa strong signal in th®02/C8orf4 gene
locus (rs13270586=1.55x10" [peq = 4.62x107]), common to BIP and SCZ in opposite
directions Supplementary Table 16). Overall, all results from the secondary analyticdel
supported the primary model.
SNP-by-sex interactions of X chromosome SNPs usiadel A or B detected only
modest effects within/across disorders (lowest6.89x10°% Supplementary Table 8a,b),
similar regardless of modebpplementary Figure 8). Omnibus tests of X chromosome SNPs

detected no significant interactions (lowpst 1.67x10° Supplementary Table 9).

Fine-mapping of SNP-by-sex interactions
Loci displaying evidence for GxS interactions (iR&NPp<1x10°) (Tables 1-2,
Supplementary Tables 6-9) underwent fine-mapping to identify those SNPstfi&sly to be

causal. Sixteen loci had a mean of 75 (+ 68) SNPs50% of the loci, the index SNP was

17



among the three most credible SNPs, and >70% ofdithad a “simple” model (<=3 causal
variants). We summarize the posterior probabilititall SNPs in fine-mapping locT @ble 3,
Supplementary Table 10) and highlight SNPs with likely causal effectsomr disorders.
Together, CAVIAR and FINEMAP indicated that genomiele significant SNP rs117780815,
with posterior probability >0.90 (FINEMAP), was theost likely causal variant in tidkKAIN2

locus (sed able 3).

Gene- and pathway-based anal yses

To capture all potential risk-conferring variaticarsd derive aggregate, gene-lepel
values, we conducted gene-based tests. Gene-lea$gavithin/across disorders detected near-
significant GxS interaction of the SLTM gene witl8€Z =4.22x10° [pec =7.28x10°;
Supplementary Figure 10a) and genome-wide significant cross-disorder irtigoa (omnibus
p=8.97x10" [pe¢ = 6.64x10]; Supplementary Figure 10g-h). No other results approached
significance Supplementary Table 11; Supplementary Figure 10b-f).

In order to identify the functional significance s#x-dependent loci, pathway-based
analyses were conducted. Gene set enrichmenstesiged that within MDD, GxS SNPs were
significantly enriched in genes regulating vasceladothelial growth factor (VEGF) receptor
signaling Pror = 3.90%10" [prorex = 2.70%10%; Supplementary Table 12c). SNPs showing
GxS interactions within SCZ or BIP were not sigrafitly enriched for any MSigDB pathway
(Supplementary Table 12a,b). Across disorders, the
'wang_barretts_esophagus_and_esophagus_canceatiwagy showed enrichmerg:br =

0.035 prprext = 0.065];Supplementary Table 12f).

Brain expression analysis

To further validate identified sex-dependent vasdanctionally, brain expression data
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were examined for genes located adjacent to omepassing SNPs with evidence for GxS
interactions §<1x10°). Most of these genes were expressed in multiglimbegions
(Supplementary Figure 11-13), particularly prefrontal, anterior cingulate,ptary, and
hypothalamusQupplementary Figure 14) from prenatal development@orf4 [= TCIM],
CRSP2, GNA12, MOCOS SPAGL17), through pubertylDO2) (Supplementary Figure 12), and
through adulthoodl2-13). Genes were expressed in various brain cell t{gsplementary
Figure 15), with high relative expression BIKAIN2 andGNA12 in oligodendrocytes, and

CSRP2, C8orf4 andMOCOS in endothelial cells.Supplementary Results report other genes.)

eQTL overlap with GxSloci

Examination of eQTL data for SNPs with evidenceGaS interactionsp<1x10°;
Supplementary Tables 6-7) found the highly significant SCRIOCOS SNP (rs11665282) was a
cis-eQTL in several brain regionSupplementary Table 6a) associated with transcriptional
elongation and chromatin remodeling in #eP2 gene in cerebellum and DLPFC. The most
significantcross-disorder SNP (rs7302529) was an eQTICERP2 (Supplementary Table
6f), although the top omnibus cross-disorder SNPL{#880815) ifNKAIN2 was not an eQTL.
Finally, genome-wide SNP rs12141273, intergenievbenhAMIGOL andGPR61, is a cis-eQTL
for AMIGOL in non-brain tissues and associated with expressiglutathione-S-transferase
genesGSTM1 andGSTMS5 and microtubule regulator geRERC1, in DLPFC Gupplementary

Table7).

Overall, consistency of our significant GxS effewith previous GWAS of sex

differences in MDD, BIP, and SCZ is describebupplementary Results, Table 14.

19



Discussion

Sex differences in incidence, symptomatology, bafinormalities and physiology in
SCZ, BIP, and MDD are pervasive (1-7). Previouskndemonstrated the impact of gonadal
hormones on some of these phenotypic differencese,lve hypothesized sex differences may,
in part, be due to genetic variation, either seseffr or sex-dependent, and that risk variants
may be shared among the disorders.

Heritability estimates were significantly differdmttween the sexes for SCZ and MDD,
but not BIP, partly reflecting significant sex @difénces in incidence for SCZ and MDD, but not
BIP. Male-female SNP-based genetic correlationgedrbetween 0.86 (BIP) and 1 (MDD),
significantly <1 for SCZ and BIP but not MDD, willy-sex cross-disorder correlation
differences suggesting further complexity. Thu#)@lgh the majority of common variant
genetic effects were shared between the sexes, Wese sex-specific and sex-dependent effects
on risks, with modest effect sizes (27).

Significant sex effects, primarily sex-stratifiessaciations, were reported previously in
GWAS studies (25-32, 34), implicating neurodeveleptal mechanisms and immune pathways
(26-28, 30). However, sex-stratified analyses alg equivalent to GxS interaction tests when
there are no interactions between covariates andsd the trait variances are equivalent in the
two sexes. As this is unlikely, GxS interactions$esre ultimately necessary to identify
significant sex differences, and sex-stratifiedyses may fail to detect or spuriously report
differences.

GxS interaction findings in our study implicate nenal excitability and inhibitory
regulation of brain development and functioning anthune and vascular pathways. Omnibus
tests across disorders detected genome-wide signifevidence for GxS emanating from the
NKAINZ2 gene, expressed in brain implicating potassiuniusodTPases regulating neuron

membrane potential, transmembrane fluxes &f @ad excitatory neurotransmitters, and CNS
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differentiation (50)NKAIN2 has previously been associated with cognitivatgl§bl) and SCZ
risk (52, 53). The second most significant omniBxs result was a SNP adjacendI GO1,
which regulates activity of the Kv2.1 voltage-degent potassium channel (54), again important
for regulating neuronal excitability in brain (5®)ther support for GxS interaction was obtained
from gene-based analyses across disorders thatel:& genome-wide significant GxS
interaction with theSLTM gene, a general inhibitor of transcription, higakpressed in
cerebellum and putamen, among others. Taken tagéiiese findings suggest a sex-dependent
genetic contribution to the balance between exayadnd inhibitory regulation of neuronal
development and functioning, a hypothesis worthfuaher functional “omics” investigations.

In fact, the strongest locus identified in GxS gmat for SCZ (PGC-only; rs13270586)
was nearc8orf4 (akaTCIM), which functions as a positive regulator of thati8-catenin
signaling pathway,implicated previously in SCZ, Bé#ad MDD (56-59), with a central role in
fundamental neuronal processes—including synaptsignaxon guidance, and dendrite
development (60)—. Interestingly, recent transonpt work identified female-biased genes
enriched for expression in Cajal-Retzius cells glay a major role in neural migration, whereas
male-biased genes were enriched for neural pragesetls (61). This is consistent with our
earlier work in mice with impaired GABA-B receptsignaling and demonstrating sex
differences in developmental migration of neuronstaining estrogen receptor (ER)nto the
hypothalamus paraventricular nucleus that impadeguessive-like behaviors, particularly in
females (62).

Several genes that implicated neuronal excitakalitg immune functions had opposite
effects on disorder risk by sex. TNKAIN2 SNP GxS effect was opposite in SCZ and BIP, with
the minor allele increasing risk in SCZ women ardrdasing risk in SCZ men, and opposite

effects on risk in BIP women and men. Similarlye AMIGO1/GPR61 GxS effect was opposite
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in BIP and MDD, with the minor allele having stramgffects in BIP women and weaker effect
in MDD women versus men.

Immune pathway dysregulation, shared across disgrdiso demonstrated some
evidence of opposite genetic effects by sex. Tlmngest GxS interaction for SCZ was in a
locus betweehDO2 andC8orf4 (rs13270586p=1.55x10"), with opposite risk effects by sex.
IDO2 is involved in catabolism of tryptophan in the kyanine pathwayAn end metabolite of
the kynurenine pathway, kynurenic acid (KYNA), isvated in the cerebrospinal fluid (63, 64)
and postmortem brains (65, 66) in SCZ and BIP,evteluced plasma levels were associated
with depressive symptoms (63). Given recent evidemplicating the kynurenine pathway as a
link between brain immune activation and disordsk (67, 68) and sex differences in immune
mechanisms (69), it is plausible thBXO2 has different effects on SCZ risk in men and women
through differential KYNA expression between thgese This is consistent with recent findings
implicating the complement system (C4) as a soafeexual dimorphisms in vulnerability to
SCZ and autoimmune disorders (20). Further, ambagtrongest results for MDD was a locus
spanningZNF385C, associated with transcriptional regulation (740 anmune-related
phenotypes via transcriptional enhancers (71, 72).

Our sex-biased genes implicating immune mechangrtiee population level
complement recent transcriptomic work in healthgitodevelopment (73), population work in
SCZ (19), and MDD (74). Sex-by-diagnosis interatdiavere seen in the rearrangement of brain
transcriptional patterns in MDD (74), an effectoad®en in stressed mice (75). In MDD, cell
type—specific analyses revealed MDD men exhibitadscriptional increases and MDD women
transcriptional decreases in oligodendrocyte- ammlaglia-related genes (74).

Consistent with this, animal studies demonstrageddsfferences in microglia density
and morphology in key brain regions beginning ianatal development (e.g., hypothalamic

preoptic area (POA), hippocampus, amygdala). Iresialutero, there is heightened activation
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of POA microglia that mayesult in a priming effect leading to sex-dependeerability for
disorders such as SCZ (76). In contrast, while snafgpear to have a prolonged period of
enhanced immune sensitivity utero in preclinical studies, the period of immune sensitivity for
females is shifted toward the end of prenatal dgveknt continuing into early postnatal life in
rodents (76), a critical period analogous to husexual brain differentiation {2and 3
trimesters). This suggests that timing is criticadentifying sex-by-gene effects, which may
have opposing effects at different developmentabpgs, a fact that must be considered in
transcription studies of brain regions across iflespan. In fact, sex differences in expression of
IDO2 was identified as also critical during pubesiyth post-puberty being the emergence of
sex differences in MDD and SCZ.

Other mechanisms that might account for opposirgrgeraction effects, include
balancing selection due to antagonistic pleiotrgfiects (77), that could play a role in
maintaining common susceptibility alleles in theplation. Opposing effects suggest the
potential presence of a ‘genetic switch’ for pragien to either one of the diseases, in addition
to shared genetic risk factors. Results in autis& &nd SCZ (79) support the idea that these
disorders may be opposite extremes of a singlagradf mental disorders or due to diametric
gene-dosage deviations caused by disrupted genopitting (78) or copy number variants.
Opposing effects were most likely to be significamce they generally have the largest effect
sizes and thus greatest statistical power to defbet majority of common SNPs likely have
disease risk interaction effect sizes of OR <1dvéitheless, findings suggest that overall sex-
specific and sex-dependent genetic correlationsabagure a more complex set of genetic
relationships at the level of specific loci, breagions, and pathways (80), and that timing of
mechanisms implicated in sex effects is critical.

Our findings also identified genes associated wétbcular development, interesting in

light of the comorbidity of CVD with MDD (higher imwomen) (81) and SCZ. Results
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demonstrated genes involved in regulation of VE@Raing were enriched among GxS loci for
MDD. Sex differences were reported in VEGF lev8RB)( and brain expression of VEGF has
been associated with cognitive aging and Alzheisdisease (83, 84). Further, the strongest
GxS interaction was detected for SCZ in a locus@MOCOS gene most highly expressed in
endothelial cells lining blood vessels. Interediingur previous work on sex differences in
neuronal migration due to impaired GABA-B signali{sg) was also significantly associated
with sex differences in hypothalamic neurovascdirelopment, being more severe in females
and associated with depression-related behavidjs If8fact, a recent meta-analysis of 22
available gene expression microarrays across nriltigans and tissues cited areas of the brain
(i.e., anterior cingulate cortex, implicated in MDBCZ and BIP) with the most substantial sex
differences in gene expression, followed by thath@®).

Finally, sex-by-gene effects had implications foguitive functions, not surprising given
brain regions implicated by some of the significlei in this study. For exampl&ZNF385C in
MDD may play a role in cognition, since its para@)F385B andZNF385D, have been
associated with intelligence (87), general cognitimathematical ability and educational
attainment (88). It is possible that genes assediaith cognitive abnormalities may be shared
across disorders, given that the two strongesti@beBaction loci for BIP located nedlJSC1
andFHL2 have been associated with educational attainrodrey cognitive phenotypes, and
depression (88, 89).

Although it seems intuitive that genes located exchromosomes would be involved in
sex differences in disease risk, our analyses alidletect evidence for significant GxS
interactions involving X chromosome SNPs. Lackigh#icance could be due to insensitive X
chromosome modeling by sex, thus necessitating nefireed models allowing for variability in
X inactivation patterns and incorporation of theifomosome to clarify the role of sex

chromosomes in disease risk. Recent data suggssetspecific patterns of X inactivation (90).
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Nevertheless, our results of GxS interactions f@osomal genes are consistent with
transcriptomics data demonstrating sexually dimiarpkpression in the brain of a substantial
proportion of autosomal genes related to fundanheetaral functions (61, 74, 91, 92) and data
enriched for tissue-related diseases (92). Thesknfijs underscore the utility of studies like
ours, with statistical power to test for interantieffects, that highlight genes worthy of deeper
mechanistic investigations using transcriptomias proteomics research and animal models.

A limitation of this study is the relatively low setratified SNP heritability, in particular
for MDD men (mearhZy, = 0.2). Nevertheless, all heritability estimatesrevgreater than zero
with very good precision (i.e., small standard esypindicating the ability of this study to detect
common variant effects. Genetic correlations behntbe sexes were high and only differed
significantly for SCZ and BIP. In the latest PGCZSGWAS (93), the cross-sey did not
significantly differ from zero, which may, in palde¢ due to an increased SCZ sample size and
different meta-analysis composition. While genebarelations between the sexes within-
disorder were high, most striking were the diffe@snin genetic correlations by disorder by sex.
High genetic correlations were observed between MBdh sexes) and BIP women (0.42,
0.48), but much weaker with MDD (both sexes) and Bien (0.13, 0.04). Although some have
argued this may reflect study recruitment bias mchassification (94), this is less likely for our
study, given varying sample sizes across disor@ers to differing prevalences), and no genetic
correlations by sex among SCZ compared with highetations among MDD and BIP.
Misclassification of cases is always a possibitifhough clinical diagnoses were based on
extensive DSM-IV or ICD-10 interviews, limiting thi&elihood of this. Further, if there were
bias, it would require similar and substantial laasoss multiple international institutions.

The lack of detailed clinical data prevented exatiom of important questions related to

symptom type, severity, age at onset, and cognilefieits. These limitations emphasize the
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need for larger, deeply-phenotyped datasets tg thlaracterize sex differences in genetic and
clinical characteristics of these disorders, as highlighgedntly in (27). Further, alternative
explanations for sex differences in incidence, @mégtion, and course, include genotype-by-
environment interactions, e.g., implicating gondtu@mone regulation of genes, that we know
from clinical and animal studies are sex-dependeénally, additional replication samples would
significantly strengthen these findings.

Conclusions. In the largest genome-wide GxS analysis of moatpaychotic disorders
to date, we found substantial genetic overlap betwaen and women for SCZ, BIP, and MDD.
However, we also found several loci with signifit@xS interaction effects across and within
disorder -NKAIN2 at the variant levelLTM at the gene level, andEGF at pathway level.
Functional genomics suggests that all genes wgnessed in at least one brain region at some
period across the lifespan, with most genes exedeissmultiple brain regions associated with
mood/anxiety and cognition.

Our results demonstrate that the risk for SCZ, M@id BIP is impacted by interactions
of genotype with sex, beyond the impact of gonatiioid hormones. Though specific
mechanisms remain unknown, our study underscoeesrportance of designing large-scale
genetic studies that have the statistical powéegbfor interactions with sex. Dissecting the
impact of sex, genes, and pathophysiology will tdgpotential targets for sex-dependent or

sex-specific therapeutic interventions.
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Summary statistics are available for download ftdtps://www.med.unc.edu/pgc/ upon

publication.
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FigureLegends

Figure 1. LD Score Regression estimates of sex-specific Shtedfa) heritability, h? (+SE),
and(b) genetic correlationsy (SE).This graph shows andrg4 estimates for MAF > 0.01.
a) Heritability estimates were substantially differéetween the sexes for SQFdr =
0.019) and MDD (por = 0.005), but not BIPpgpr = 0.381).
b) SNP-based genetic correlationg) petween males and females within each disorder
ranged between 0.86 and 1 and were significantfgrént from 1 for SCZf{rpr =
0.039) and BIPgpr = 0.039), but not MDDpr = 0.397). No significant differences in
the cross-disorder genetic correlations betweeresrad females, with the exception of
rq between BIP and MDDr ¢ = 0.42;rgu = 0.04;prpr = 0.044).
Abbreviations: BIP = bipolar disorder; MDD = mapepressive disorder; SCZ = schizophrenia,
F = females; M = males; LD = linkage disequilibriu8E = standard error.

Figure 2. Cross-disorder Manhattan plot of SNP-by-sex imtioa p-valuega) and LocusZoom
plot for theNKAIN2 gene locus exhibiting a significant SNP-by-seriiattion effect on cross-
disorder riskb). This graph shows the genome-wide significantltésam the cross-disorder
omnibus test in ASSET (primary model). Negativell@gransformed p-values for each variant
(each dot) (y-axis) are plotted by chromosomaltpmsix-axis). The red and blue lines represent
the thresholds for genome-wide significant assimiaip = 5%x10°) and suggestive association
(p = 1x10°), respectively. The strongest GxS interaction feasd for SNP rs117780815 on
chromosome 6p=3.2x10%) driven by BIP and SCZ. The effect was in oppoditections, with
the minor allele increasing risk in BIP women aredré@asing risk in BIP men, and vice versa in
SCZ women and me @ble 2, Supplementary Table 7). Abbreviations: chr = chromosome;
cM = centimorgans; Mb = megabasés= flinkage disequilibrium leveNKAIN2 =
Sodium/Potassium Transporting ATPase Interacting 2
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Table Legends

Table 1. Single-disorder and Cross-disorder Autosomal SNRdyyinteraction results.
Cross-disorder and within-disorder meta-analysee warried out using METAL, incorporating
cohort-level summary statistics from PLINK. Listage SNPs with interactignvalues < 1x18
in SCZ, BIP, ()MDD, and cross-disorder. Loci wetemped using ‘plink --bfile 1kgp_ref file -
-clump metal_output --clump-pl 1le-4 --clump-p2 leedump-r2 0.6 --clump-kb 3000'.
Extended results (p < 1x19), including eQTL data for the variants highlighiedhis table, and
including secondary extended model statisticsaaedable inSupplementary Table 6.
Abbreviations: SNP, Variant rs ID;p p-value for GxS interaction in combined PGC +
iIPSYCH datasets (p-value for secondary extendecempg, in parentheses); CHR,
Chromosome; BP, Base Pair Position; A1/A2, Alléillkele 2; Freql, Frequency of Allele 1;
MAF, Minor Allele Frequency; Betas, Beta (Standard Error) for GxS interaction; B€GE),
Beta (Standard Error) for female-stratified asstomm p, p-value for female-stratified
association; Befa Beta (Standard Error) for male-stratified asstamm py, p-value for male-
stratified association; &, Z-score heterogeneity females-males;, jp-value heterogeneity
females-males

Table 2. Cross-Disorder Omnibus tests.

Omnibus tests were carried out using ASSET, inaatpwg the within-disorder meta-analysis
summary statistics from METAL. Listed are SNPs wathss-disorder interactigmvalues <
1x10°. Loci were clumped using ‘plink --bfile 1kgp_reilef--clump asset_output --clump-p1
1le-4 --clump-p2 1e-4 --clump-r2 0.6 --clump-kb 30@Xxtended results (p < 1x19, including
eQTL data for the variants highlighted in this gldnd including secondary extended model
statistics, are available Bupplementary Table 7.

Abbreviations: SNP, Variant ID; A1/A2, Allele 1 exence allele)/Allele 2; CHR,
Chromosome; BP, Base Pair Position; p, Omnibuslypevia combined PGC+iPSYCH datasets
(p-value for secondary extended mode};, In parentheses); Pheno.1, Phenotype(s) assoaiated
direction 1; Pheno.2, Phenotype(s) associatedéttitbn 2; p.1, Phenotype(s) 1 p-value; p.2,
Phenotype(s) 2 p-value; OR.1 (Cl), Phenotype(spidsdRatio (Confidence Interval); OR.2 (CI),
Phenotype(s) 2 Odds Ratio (Confidence Interval)taie Basic Meta-Analysis p-value; Meta
OR (ClI), Basic Meta-Analysis Odds Ratio (Confidehaerval)

Table 3. Credible SNP results for genome-wide significactsNKAIN2.

CAVIAR and FINEMAP results for the genome-wide sfgrant locus observed in the omnibus
test of SCZ, BIP, and MDD (European ancestry). €heere four SNPs, including genome-wide
significantNKAIN2 SNP rs117780815, with posterior probability higtiem 0.90. These SNPs
are the most likely variants to have a causal etiaanood and psychotic disorders from that
locus.

Abbreviations: Index SNP, genome-wide significaNPS SNP, all SNPs in locus; A1/A2, Allele
1 (reference allele)/Allele 2; CHR, Chromosome; BBse Pair Position; MAF, Minor Allele
Frequency; PR(), posterior probability (extended secondary mqd&h), Standard Error
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Table 1. Single-disorder and Cross-disorder Autosomal SNiBdyyinteraction results.

Al Fregl Gene N Cases N Controls Betacxs Betar Betay
SNP - CHR BP A2 MAF Compartment pyooncein kb) (%Female) (%Female  (SE) Pos(Pe) (gpy PF gy Pwo Zew o Pr
Schizophr enia (Eur opean only)
0.69 21,581 24,250 -0.156 1.48E-7 -0.081 0.072
rs11665282 18 33767479  AIG 0.31 UTR5 MOCOS (35.18%) (48.62%) (0.030) (2.53E-5) (0.023) 3.98E-4 (0.019) 2.16E-4-5.09 3.50E-7
0.26 . . LINCO02188 (291.9); 29,467 34,519 0.140 3.52E-7 0.097 -0.050
rs12445424 16 87063374 AIG 0.96 intergenic " \\ico2181 (280.2) (36.04%) (48.33%) (0.028) (2.28E-4) (0.021) 5.80E-6 (0.018) 4.67E-3 5.30 1.19E-7
Schizophrenia (Eur opean + East Asian)
0.69 22,060 24,674 -0.149 3.74E-7 -0.077 0.070
rs11665282 18 33767479 AIG 0.31 UTR5 MOCOS (35.39%) (48.26%) (0.03) (4.46E-5) (0.023) 6.74E-4 (0.019) 2.53E-4-4.96 6.89E-7
Bipolar Disorder
0.90 . . 7,730 13,635 0.373 2.29E-7 0.176 -0.201
rs12341335 9 25649145  TIC 0.10 intergenic  TUSC1 (27.2) (57.72%) (51.28%) (0.072) (7.91E-7) (0.048) 2.59E-4 (0.054) 2.11E-4 5.20 2.03E-7
0.52 16,365 28,140 0.155 3.72E-7 0.079 -0.069
rs17651437 2 106055684 T/C 0.48 upstream FHL2 (60.18%) (50.75%) (0.031) (1.04E-5) (0.020) 9.97E-5 (0.023) 3.08E-3 4.79 1.63E-6
Major Depressive Disorder
0.59 . . 14,232 21,846 -0.181 1.64E-7 -0.087 0.094
rs9428240 1 118831676 T/C 0.41 intergenic ~ SPAG17 (103.8) (68.63%) (50.63%) (0.035) (3.31E-7) (0.022) 6.41E-5 (0.028) 8.41E-4-5.08 3.70E-7
0.02 . . 31,149 35,385 -0.472 4.61E-7 -0.190 0.303
rs147515485 17 40182099 T/IC 0.02 intronic ZNF385C (61.17%) (50.89%) (0.094) (4.76E-6) (0.060) 1.55E-3 (0.074) 4.39E-5-5.17 2.39E-7
Recurrent Major Depressive Disorder
0.59 . . 7,685 15,976 -0.240 1.40E-7 -0.109 0.142
rs61138090 1 118832069 DI/I12 0.41 intergenic ~ SPAG17 (104.2) (70.59%) (51.71%) (0.046) O (0.028) 1.03E-4 (0.038) 2.08E-4-5.28 1.30E-7
Cross-Disorder SCZ-BIP-M DD (European only)
0.26 . . CSRP2 (48.8); 34,638 34.696 0.145 1.60E-7 0.087  -0.051 2 R
rs7302529 12 77321581  TIC 0.96 intergenic E2F7 (93.4) (51.36%) (50.15%) (0.028) (5.35E-7) (0.019) 5.09E-6 (0.020) 1.15E-2 4.98 6.51E-7
0.86 . . GNA12 (26.7); 14,916 17,547 0.246 8.82E-7 0.116 o -0.128 3 )
rs73033497 7 2910659 AIT 0.14 intergenic CARD11 (35.0) (49.21%) (47.81%) (0.050) (2.24E-6) (0.036) 1.09E-3 (0.035) 2.69E-4 4.89 1.03E-6
Cross-Disorder SCZ-BIP-MDD (European + East Asian)
0.89 . . MIR4682 (44.3); 78,640 71.790 0.146 6.39E-7 0.064 -0.077
rs7914279 10 122161890 T/G 011 intergenic 5 55, (54.6) (49.95%) (49.70%) (0.029) (4.78E-6) (0.020) 1.86E-3 (01021)2.27E—4 4.82 1.43E-6
0.86 . . GNA12 (26.7); 14,916 17,547 0.246 8.82E-7 0.116 o -0.128 3 )
rs73033497 7 2910659 AIT 0.14 intergenic CARD11 (35.0) (49.21%) (47.81%) (0.050) (2.24E-6) (0.036) 1.09E-3 (0.035) 2.69E-4 4.89 1.03E-6
0.25 . . CSRP2 (48.8); 35,114 36,707 0.133 9.37E-7 0.082 = -0.044 2 )
rs7302529 12 77321581  TIC 0.95 intergenic E2F7 (93.4) (50.69%) (50.72%) (0.027) (2.69E-6) (0.019) 1.35E-5 (0.020) 2.37E-2 4.64 3.51E-6
Cross-Disorder SCZ-BIP-rM DD (Eur opean only)
0.86 . . GNA12 (26.7); 13,497 14,619 0.267 6.22E-7 0.142 -0.129
rs73033497 7 2910659 AIT 0.14 intergenic  ~ 11 (35.0) (47 220%) (48.26%) (0.054) (2.22E-6) (0.039) 2.55E-4 (0.037) 4.89E-4 5.05 4.37E-7
0.26 . . CSRP2 (48.8); 31,541 31,377 0.144 7.43E-7 0.094  -0.048 2 )
rs7302529 12 77321581  TIC 0.9¢ intergenic E2F7 (93.4 (49.75% (50.42% (0.029 (2.32E-6) (0.020 4.48E-6 (0.021 2.13E-2 4.86 1.18E-6
Cross-Disorder SCZ-BIP-rMDD (European + East Asian)
0.86 . . 41,001 43,732 0.183 3.90E-7 0.084 -0.093
rs8040598 15 71857368 A/G 014 intronic THSD4 (45.92%) (50.94%) (0.036) (8.25E-7) (0.026) 1.18E-3 (0.025) 2.18E-4 4.89 9.90E-7
0.86 . . GNA12 (26.7); 13,497 14,619 0.267 6.22E-7 0.142 -0.129
rs73033497 7 2910659 AIT 0.14 intergenic  ~ \ooq1 (35.0) (47.220%) (48.26%) (0.054) (2.22E-6) (0.039) 2.55E-4 (0.037) 4.89E-4 5.05 4.37E-7
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Table 2. Cross-Disorder Omnibus tests of SNP-by-sex intenas

Al Compart- Gene (Distance OR.1 OR.2 Meta OR
SNP CHR BP A2  MAF ment in kb) p (Pe) Pheno.l Pheno.2 p.1 p.2 (ChH) (Ch) Metap (Ch)
SCZ-BIP-MDD (European only)

rs117780815 6 124326227 T/A  0.036 intronic NKAIN2 .1%E-8 BIP SCcz 1.34E-7 1.12E-2 2.0 0.79 8.10E-2 1.12
(4.67E-7) (1.52,2.51) (0.65, 0.95) (1.11, 1.13)
rs12141273 1 110079143 A/G 0.067 intergenic AMIGQ4A.8); 4.16E-7 BIP MDD 1.60E-4 1.40E-4 1.3 0.81 2.03E-1 0.96
GPR61 (3.3) (1.95E-6) (1.14,1.50) (0.73, 0.90) (0.95, 0.96)
rs431414 15 59147800 TIC 0.181 UTR3 MINDY2 4.60E5CZ BIP 1.62E-7 1.53E-1 1.2 0.91 1.67E-2 1.07
(4.36E-7) (1.14,1.34  (0.80, 1.04 (1.07,1.07

SCZ-BIP-MDD (European + East Asian)
rs117780815 6 124326227 T/A  0.036 intronic NKAIN2 .84E-8 BIP SCcz 1.34E-7 9.89E-3 2.0 0.79 9.46E-2 1.11
(5.90E-7) (1.52,2.51) (0.65, 0.94) (1.10,1.12)
rs12141273 1 110079143 A/G 0.067 intergenic AMIGQA.8); 4.16E-7 BIP MDD 1.60E-4 1.40E-4 1.3 0.81 2.03E-1 0.96
GPR61 (3.3) (1.95E-6) (1.14,1.50) (0.73, 0.90) (0.95, 0.96)
rs35477914 15 59197669 TIA 0.193 intronic SLTM & BIP; SCz 1.30E-2 3.60E-6 1.1 0.86 4.84E-1 0.99
(1.73E-6) MDD (1.01,1.14) (0.80,0.92) (0.98, 0.99)

SCZ-BIP-rM DD (European only)

rs117780815 6 124326227 TIA 0.036 intronic NKAIN2 17E-8 BIP SCz 1.33E-7 1.12E-2 2.0 0.79 1.58E-1 1.10
(1.69E-7) (1.52,2.51) (0.65, 0.95) (1.09, 1.11)
rs431414 15 59147800 TIC 0.182 UTR3 MINDY2 4.58E5€CZ BIP 1.62E-7 1.53E-1 1.2 0.91 7.27E-3 1.08
(4.34E-7) (1.14,1.34) (0.80,1.04) (1.08, 1.09)

SCZ-BIP-rMDD (European + East Asian)
rs117780815 6 124326227 T/A  0.036 intronic NKAIN2 .8ZE-8 BIP Scz 1.33E-7 9.88E-3 2.0 0.79 1.81E-1 1.10
(2.14E-7) (1.52,2.51) (0.65, 0.94) (1.09, 1.11)
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Table 3. Credible SNP results for genome-wide signifiddKtAIN2 locus.

FINEMAP CAVIAR
PP causal PPcausal Compart-
Index SNP SNP (PPext) (PPext) ment Gene CHR BP ALA2 MAF Beta SE Z
1 0.83
rs11778081 rs11778081 1) (0.88) intronic NKAIN2 6 12432622 T/A 0.04 0.67( 0.127 5.217
1 5.9E-03
rs117780815 rs4574657 (1) (7.2E-03) intronic NKAIN2 6 124319710 AIG 0.04 038 0.089 3.17
1 8.0E-02
rs11778081 rs489538 1) (7.8E-03) intronic NKAIN2 6 12431265 G/A 0.0z 0.73¢ 0.171 4.2¢
1 1.4E-02
rs11778081 rs7355707 Q) (5.6E-03) intronic NKAIN2 6 12431373 AIG 0.04 0.19¢ 0.11¢ 1.71
6.7E-02 (3.5E-  8.8E-03
rs117780815 rs7748718 02) (1.6E-02) intronic NKAIN2 6 124317132 C/IA 0.05 085 0.108 3.33
2.9E-02 (5.4E- 6.1E-02
rs117780815 rs7754419 01) (1.6E-01) intronic NKAIN2 6 124318348 G/A 0.04 054 0.118 4.58
3.7E-02 (4.8E-  6.8E-03
rs11778081 rs776150 05) (7.2E-03) intronic NKAIN2 6 12431441 G/A 0.0z 0.49: 0.15¢ 3.0¢

46






069 | 056 | 042 | 0.28
(0.04) | (0.05) | (0.07) | (0.1)
059 | 061 | 034 | 0.64
(0.04) | (0.04) | (0.05) | (0.12)

0.69 | 0.59 042 | 0.48

(0.04) | (0.04) (0.07) | (0.14)

056 | 0.61

(0.05) | (0.04)

042 | 034 | 042

(0.07) | (0.05) | (0.07)

028 | 0.64 | 048

(0.1) | (0.12) | (0.14)

» » © &) = =

Q Q T T O O

| | . Iz o O

SCZ F '

SCz_M
BIP_F
BIP_M
MDD_F

MDD_M

0.8
0.6
0.4
0.2



—|°910(P)

o rs117780815
rs12141273 ° rs431414
. . s .
Pk P
§ g o®s N
S ~ @ ° - o
Chromosome - K
10 ? |k 100
08
06
0.4
8 rs117780815 02 | &
L 2
(@]
6 - 60

—logyo(p-value)

< TRDN NKAIN2— \
]

T T T T 1
124 124.2 124.4 124.6 124.8
Position on chré (Mb)

(qi/N) eres uopeulquiodey



