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Purpose: To develop and implement a software that enables centers, treating patients with state-of-the-
art radiation oncology, to compare their patient, treatment, and outcome data to a reference cohort, and
to assess the quality of their treatment approach.
Materials and Methods: A comprehensive data dashboard was designed, which al- lowed holistic assess-
ment of institutional treatment approaches. The software was tested in the ongoing EMBRACE-II study for
locally advanced cervical cancer. The tool created individualized dashboards and automatic analysis
scripts, verified pro- tocol compliance and checked data for inconsistencies. Identified quality assurance
(QA) events were analysed. A survey among users was conducted to assess usability.
Results: The survey indicated favourable feedback to the prototype and highlighted its value for internal
monitoring. Overall, 2302 QA events were identified (0.4% of all collected data). 54% were due to missing
or incomplete data, and 46% originated from other causes. At least one QA event was found in 519/1001
(52%) of patients. QA events related to primary study endpoints were found in 16% of patients. Sta- tistical
methods demonstrated good performance in detecting anomalies, with precisions ranging from 71% to
100%. Most frequent QA event categories were Treatment Technique (27%), Patient Characteristics
(22%), Dose Reporting (17%), Outcome 156 (15%), Outliers (12%), and RT Structures (8%).
Conclusion: A software tool was developed and tested within a clinical trial in radia- tion oncology. It
enabled the quantitative and qualitative comparison of institutional patient and treatment parameters
with a large multi-center reference cohort. We demonstrated the value of using statistical methods to
automatically detect implau- sible data points and highlighted common pitfalls and uncertainties in
radiotherapy for cervical cancer.
� 2023 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 182 (2023) 109524 This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Radiation oncology is an ever-evolving field that promotes
innovation and imple- mentation of novel treatment techniques.
Due to its multi-disciplinary setting, it offers the opportunity to
collect large volumes and variety of data. However, as the com-
plexity of available information increases, so do the challenges of
processing, analyzing and validating it [1–3].

Data dashboards are software tools that offer a comprehensive,
and interactive way to monitor and analyze large amounts of data.
Their usage in healthcare has seen a dramatic surge in popularity
due to the COVID-19 pandemic, that demonstrated their value
for effective data analysis and reporting [4].

The recent rise of artificial intelligence (AI) incentivizes clinics
to implement rou- tine data collection, in order to build advanced
prediction models [5,6,2]. This also presents an opportunity to
implement additional, independent quality assurance (QA) checks
that automatically analyse the stream of incoming data for
implausi- bilities and errors [7–9]. In this work we investigated
the use of these data-driven approaches, to analyze data of patients
treated with radiation therapy for cervical cancer, which is one of
the most common malignancies in women globally [10,11].

Combined radiochemotherapy including magnetic resonance
(MR) Image-Guided Adaptive Brachytherapy (IGABT) is considered
state of the art treatment, achieving high levels of local control in
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patients with locally advanced cervical cancer (LACC) [12,13]. Over
the past decades, the adoption of brachytherapy (BT) guided by
three dimensional volumetric imaging has gained significant inter-
est, especially in Europe, North America and Asia [14]. However, in
part due to historical reasons, there are various clinical approaches
to gynaecological BT with respect to dose prescription, fractiona-
tion and implant technique [15,16]. The introduction of a compre-
hensive target concept outlined by the GEC-ESTRO
recommendations [17–20] and ICRU report 89 [15] enabled a com-
mon language for dose prescription and reporting.

Results of the EMBRACE-I study delivered compelling evidence
for the efficacy of this approach, and support the clinical use of
evidence-based dose objectives and pre- scription protocols for
MR-IGABT [21]. These concepts, including advanced treat- ment
techniques for external beam radiotherapy EBRT and BT are cur-
rently being investigated in the ongoing EMBRACE-II trial
(NCT03617133) [14]. BT is regarded as a critical element for LACC
treatment and a growing shift towards IGABT prac- tice has been
observed [22,23]. However, IGABT is also a complex treatment,
and a decrease in access to competent BT has been reported in
parts of high-income countries as well [22].

Consequently, disseminating reproducible knowledge on opti-
mal treatment is of paramount importance to the community,
and advanced educational and training initiatives are needed to
translate the improved outcome into clinical practice globally
[23]. How- ever, centers practicing or adopting IGABT do not have
a comprehensive way to compare their practice to experiences
from other institutions. Based on the ongoing EMBRACE-II study,
a software tool has been developed to enable centers treating LACC
patients with radiotherapy, to compare their patient, treatment
and outcome data to a reference cohort and assess the quality of
their treatment approach. Ad- ditionally, as part of this tool, we
investigated the utility of automatic anomaly detection methods,
to monitor and ensure data quality. The automatic QA checks ana-
lyzed data for implausibilities, and flagged any unusual data points
for review, which provided an additional level of quality assurance
to support centers treating patients with IGABT.
Materials and methods

Patient cohort and data collection

Patients in EMBRACE-II were treated for LACC (FIGO stage IB-
IVA, and nodal status according to TNM as N0 and N1). [14]
Patients were treated according to the EMBRACE-II protocol. The
treatment consisted of concomitant chemoradiation of 45 Gy
external beam therapy with or without nodal boosts, followed by
multifrac- tionated HDR or PDR brachytherapy with intracavitary
and interstitial applicators. The total radiation dose from EBRT
and BT was calculated as equieffective dose in 2 Gy per fraction
(EQD2), using the linear-quadratic model with an.ab of 10 Gy for

tumour, ab of 3 Gy for OAR, and half time of repair (T1/2) of 1.5 h
[15]. The dose prescription protocol included a planning aim (soft
constraint), for the total dose to the high risk CTV of D90 � 90 Gy
EQD2, and � 65 Gy EQD2 for rectum and sigmoid, � 80 Gy EQD2
Gy for bladder and � 75 Gy for bowel. Dose limits (hard con-
straints) in case of failure to achieve the planning aims were
applied in addition.

The study collected data from 51 centers. Recorded data
included diagnostic in- formation based on clinical examination
and imaging, dose-volume and treatment parameters for EBRT
and MR-IGABT, and outcome data. Participating centers en- tered
the information via an electronic case report form (eCRF) on a
study website (https://www.embracestudy.dk). The data was
stored in a centralized, anonymized database. At the time of writ-
2

ing, the study finished accrual with 1475 registered pa- tients.
While the exact number of collected parameters depended on
the individual case, approximately 600 data-points were collected
per patient. 73 fields in the elec- tronic database included upfront
logical tests and checks for valid numerical ranges. The developed
software was only able to read, not write information to the study
database. All participating centers in the study were given access
to the software.

However, since the study was still ongoing during development,
only 31 centers (1001 patients) were included in the analysis.
Software architecture

A custom software was designed using the statistical program-
ming software R (ver- sion 4.0.2), with the Shiny package [24]. A
web-server (CPU 2.6 GHz, 4 GB RAM) provided within the network
of the study office’s university was used to host the entire platform.
51 individualized dashboards, one for each center, were created.
Views were limited to only the data from the particular institution
compared to the entire study population. The overall structure of
the project can be seen in Fig. 1.

Overall, the developed tool provided centers with an convenient
way to access, ana- lyze, and explore their institutional data in
comparison to the entire EMBRACE-II reference cohort, and get
immediate feedback on data quality and protocol compli- ance.
Users were able to access their individualized dashboards by log-
ging in with a username and password via the web. Access to the
tool was restricted to centers and researchers that participated in
EMBRACE-II. Users accounts were created by the QA team and pro-
vided to participating centers. Based on the login information, the
application returned the individualized view for the particular
institution.

The overall tool structure was divided into five different sec-
tions: (i) Overview of data completeness, patient specific parame-
ters and protocol compliance (ii) EBRT data (iii) BT data (iv)
Outcome of disease and morbidity and (v) a list of QA events. As a
large variety of parameters was collected, a pre-selection process
was initially performed; In accordance with a multi-disciplinary
expert team, a set of high-priority parameters to be included in
the dashboard was defined. The goal was to offer users the most
insightful information while at the same time keeping it inter-
pretable and accessible. The final list of incorporated parameters
can be found in Appendix Table A.1.

Custom functions were written to create graphs for 47 treat-
ment and diagnostic parameters of interest. In general, continuous
variables were summarized using Box- plots. Categorical variables
were summarized using stacked bar-charts. Both offered direct
comparison of the center-specific sub-cohort with the overall
study population. In addition, statistical tests for significant differ-
ences between the two distributions were performed with each
plot, using the Wilcoxon rank sum test for continuous vari- ables,
and the Chi-squared test for categorical variables. A heatmap of
all p-values obtained by these test can be found in Appendix
Figure B.2.

The tool was designed to have a semi-automatic update process
that ran on a weekly basis. The process involved extracting data
from the EMBRACE-II study database and then cleaning and adding
new variables through an extract, transform, load (ETL) process.
During this process, scripts were run to analyze protocol compli-
ance, calculate descriptive statistics, and assess data completeness
for each patient.

Additionally, the ETL process included automatic data quality
checks that scanned the database for inconsistencies and anoma-
lies. Any findings were stored in a database and compared against
the previous week’s data. The tool’s dashboard included an interac-
tive table that allowed users to review the results of the identified

https://www.embracestudy.dk


Fig. 1. Schematic overview of the project structure. Centers participating in the EMBRACE-II study enter data in a dedicated database. A software tool was developed on top of
this data-source, that enables centers and researchers to compare their patient, treatment and out- come data to overall study population, and assess the quality of the
treatment approach. A server hosts the platform, and enables secure access via the internet. The output after several data preprocessing and analysis steps, is a comprehensive
data dashboard that contains additional automatic data QA checks. (ETL: Extract Transform Load, QA: Quality Assurance).
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QA events. Each item in the table included a detailed description of
the issue, the relevant patient ID, and the affected parameters in
the study database. Users could also leave comments on each item
for the study office. If any QA event was updated, both the initial
and updated values were stored in the database and displayed in
the table for reference. Detailed information about the algorithms
follows in section 2.3.
Evaluation
To perform an evaluation of the tool’s implementation and user

experience, a short survey was conducted among participating
centers. A link to an anonymous online survey was sent to the 31
EMBRACE-II centers that were included for analysis of this work.
The survey closed after one month, returning responses from ten
centers. The questionnaire consisted of eleven questions based
on the System Usability Scale [25], which includes Likert-scale
assessment of the most important features. The goal was to assess
usefulness, usability and use-cases of the proposed software. In
addition, participants were also asked to indicate how the system
was used in their respective departments.
Data quality management

As part of the software platform, a database was set up to sys-
tematically collect find- ings (”QA events”) from automatic data
quality analyses and manual expert reviews of cases. In this study,
a QA event was defined as any deviation identified through manual
3

or automatic QA methods. It is important to note that the identifi-
cation of a QA event did not necessarily indicate an error, but
rather required further in- vestigation. QA events ranged from
minor discrepancies to more severe issues, all of which were eval-
uated to ensure data and treatment quality.
Automatic data quality solutions
Automatic methods were defined as functions that run in the

background and con– tinuously checked the database for inconsis-
tencies. An overview of all methods can be found in Table 1. Algo-
rithms were chosen based on experience from previous QA efforts
[26], to cover areas of data reporting that were seen as susceptible
to inconsistencies.

Methods were divided into two categories:
Pre-defined rules: Checks that worked based on pre-defined

rules followed a clear decision tree. Thus there was no ambiguity
in classifying each data point into correct and incorrect. Three
important aspects with respect to the final analysis of the study
data were surveyed with this approach: TNMT-Stage [27], EBRT
elective targets and missing critical values. The first two methods
cross-checked the selected value in the database with clinical
and imaging information from patient status at diagnosis (see Fig-
ure B.7). The latter verified if all important parameters (see A.1)
were available.

Machine learning/Statistics:On the other hand, issues where
no clear decision boundary could be drawn were detected with sta-
tistical methods. These cases repre- sented uni- or multivariate



Table 1
Overview of automatic QA methods that are implemented in the tool. Techniques are divided into machine learning (ML)/statistics based- methods, and pre-defined rules.
Number of true positives (TP) false negatives (FN) and false positive (FP) classifications are reported alongside precision and recall as performance metrics.

Algorithm TP2/FN3/FP4 Precision Recall

Machine learning/Statistics
Outliers Isolation Forest 99/25/2 99 / 101 (98 %) 99 / 124 (80 %)
IR-CTV volume consistency Coefficient of Variation 7/0/0 7 / 7 (100 %) 7 / 7 (100 %)
DVH Relations Mahalanobis Distance 130/43/52 130 / 182 (71 %) 130 / 173 (75 %)

Pre-Defined Rules
Missing Critical Value Check for missing if treatment completed - 157 / 157 (100 %)1 -
T-Stage consistency Compare selected TNMT-Stage with diagnostic information - 78 / 78 (100 %)1 -
EBRT Elective Target Compare selected EBRT elective target with diagnostic information - 121 / 121 (100 %)1 -

1 Findings are based on unambiguous criteria.
2 True positive.
3 False negative.
4 False positive.

Tools for RT data analytics
anomalies that were impractical or impossible to capture with pre-
defined rules.

Three different statistical algorithms were implemented:

1. First, a machine learning model was trained to automatically
detect univariate outliers in all continuous variables of the data-
base. This method aimed to catch data points that significantly
differed from the norm and most likely originated from true
deviations in the protocol or reporting errors.”Isolation Forest”,
a decision tree-based anomaly detection algorithmwas used for
this purpose [28]. It is an unsupervised algorithm that works by
creating multiple decision trees and partitioning the data set
into smaller subsets. Intuitively, this outlier detection
algorithm”isolates” observations by randomly selecting a split
value between the maximum and minimum values of a selected
feature. This recursive partitioning is repeated until all observa-
tions are isolated. For each observation, it returns an anomaly
score based on the number of splits required to isolate a data-
point. The algorithm was chosen because of its computational
efficiency, and the advantage that it works well when no
anomalies are present in the training set. A separate model
was constructed for each continuous variable with at least
100 non-empty values. The resulting models classified each
data- point into normal and abnormal, based on an anomaly
score threshold of 0.85.

2. The second method aimed to detect variations in the Intermedi-
ate Risk Clini- cal Target Volume (CTV-IR) volume, which is
defined based on initial tumor extension at the time of diagno-
sis. Therefore, no significant variation across BT fractions would
be expected. However, in clinical practice factors like inter-
observer variations and imaging technique lead to non-zero dif-
ferences in most patients. While some variation in reported
CTV-IR volumes across BT frac- tions were therefore antici-
pated, flagging large implausible variations was an important
aspect of BT QA.

The coefficient of variation (cv), defined as the ratio of standard
deviation and mean cv = a

l0, was used for this purpose. As a measure

of relative variability it is widely used in statistics and data analy-
sis, because it offers a simple and robust way to measure relative
variability. A conservative threshold of cv > 0.33 was chosen to flag
implausible events.

3. Finally, some observations may only appear abnormal when
two or more vari- ables were included in the analysis. In
EMBRACE-II, discrete DVH parameters were collected to repre-
sent the dose distribution. The aim was to automatically flag
inconsistencies in dose reporting, based on multivariate DVH
parameter distributions, using Mahalanobis Distance MD.
4

MDwas calculated as the distance of point x! from the center of
the distribution l!l while taking into account covariance (R)
between variables:

MD2 ¼ ð x!� l!ÞTR�1ð x!� l!Þ ð1Þ
Five 3D and two 2D data distributions of DVH parameters were

investigated (Table A.2). Classification into normal and anomalous
data points followed the process of:

a) Ensuring that the data were multivariate normally dis-
tributed by applying logarithmic transformation if necessary

b) Calculation of MD for each observation. Manual definition of
a classifica- tion threshold in terms of upper quantile Q of
the respective Chi-Square distribution with d degrees of
freedom.

c) All samples with MD > Q were declared as an anomaly
(Appendix Figure B.6)

MD thresholds Q were chosen conservatively based on observed
variations of DVH distributions. For a list of all thresholds see
Table A.2.

Manual review
In addition to automatic checks, all data was further manually

reviewed by an ex- tended 10 members expert panel of the
EMBRACE-II research team. During the review process researchers
focused on their individual area of expertise and had ac- cess to the
developed dashboard and study database. The expert panel
reviewed 31/51 centers (1001/1475 patients). At least one physi-
cist and radiation oncologist from the pool of 10 experts reviewed
each case, Weekly discussions among the QA group were used to
present findings and discuss questions with the whole panel of
experts.

Evaluation
To assess the performance of the automatic detection algo-

rithms, each finding was manually classified into either true posi-
tive, false negative or false positive by an expert panel of medical
physicists and radiation oncologists. True positives were defined
as a findings that, based on the observed values, a human reviewer
would forward to the respective center for verification or clarifica-
tion. Manually detected anomalies that went undetected by the
automated methods were classified as false negatives. Precision
and recall were calculated as performance metrics.

Furthermore, to learn about prevalent pitfalls in current MR-
IGABT practice, all identified QA events were manually categorized.
First, items were divided into events that arose due to missing or
incomplete data, and events from other origins. Entries that were
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not related to data completeness were analyzed in more detail.
These were categorized into one of six classes, based on their origin
with respect to the radiotherapy workflow. An overview of all
classes, and their respective proportion of the total findings can
be found in Table 2. In addition, they were also divided based on
their severity, and impact on the study (Table 3).
Results

Fig. 2 shows several representative screenshots of the devel-
oped dashboard for an example center. The results of the survey
are summarized in Fig. 3. The profession of survey participants
was indicated as Radiation Oncologist (7/10) and Physicist (3/10).
Results show generally favorable reactions to the prototype. All
features were deemed to be valuable assets. Overall the platform
was perceived as very helpful. Most users indicated that it is used
for self-learning and departmental discussions. The number of
automatically identified QA events for the different algo- rithms
were; Isolation forest (IF): 101, coefficient of variation (CV): 7,
Mahalanobis distance (MD): 182, missing critical value: 157, T-
stage consistency: 78, and EBRT elective target: 121.

IF had a precision of 98 % and a recall of 80 %. Only 2/101 cases
were deemed to be insignificant findings by human experts. One
related to the reported body height of a patient, which was subse-
quently judged as plausible given its geographic origin and age.
The other was related to very high, but possible creatinine clear-
ance (Cockroft). CV had a precision and recall of 100 %, hence all
Table 2
Categorization of QA events, not related to data completeness, based on their origin in the
shows the most common event, including its percentage within each group.

Origin Description

Patient
Characteristics

Patient and diagnostic related data such as TNM stage, OAR inv
pathological node involvement or diagnostic procedures

RT Structures Errors related to characterization of structures used for dose pr
contouring of targets and OAR, dose reference points or anatom

Treatment
Technique

Factors influencing RT treatment procedure. Fractionation Sched
targets, Usage of Needles/Applicator, Needle loading, TRAK, nod

Dose Reporting DVH parameters that characterize the clinically used dose distr
optimization, violation of protocol limits for targets and OAR, im
relations

Outcome Patient status after treatment completion. Morbidity and Diseas
Status

Outlier Implausible values, transcription errors, significant deviation fro

1 n total (percent of all findings)/n manual/n automatic.
2 (percent of category).

Table 3
Categorization of QA events, not related to data completeness, based on their severity and

Category Definition

High Impact Events that have high impact on study integrity and outcome anal

Low Impact Reporting errors
Minor deviations from study protocol
Variations of institutional practice
Implausible data entries

No Event -

5

identified cases with high variance in CTV-IR volumes were
deemed to be implausible within known uncertainties, and no
additional cases were flagged by manual review. MD had a preci-
sion of 71 % and a recall of 75 %. While no clear trend could be iden-
tified, many of the incorrectly flagged cases involved the
placement of dosimetric reference points during treatment plan-
ning (ICRU-RV, ICRU Bladder, PIBS). Detailed values on True Posi-
tives, False Negatives and False Positives are shown in Table1.

Overall 2302 QA events were identified. 1235 (54 %) items were
attributed to missing or incomplete data, and 1067 (46 %) origi-
nated from other sources. 646 (28 %) were found via automatic
methods, and 1656 (72 %) by manual case reviews. At least one
event, not related to data completeness, was found in 519/1001
(52 %) of patients. The number of patients with High Impact, and
Low Impact events was 16 %, and 36 %, respectively (Table 3).
The allocation of EBRT elective targets and TNMT- Staging were
identified as major areas of uncertainty, with the former present
in 12 %, and the latter in 8 % of patients (Table 2).

The number of events, not related to data completeness
(Table 2), were related to Treatment Technique 287 (27 %), Patient
Characteristics 235 (22 %), Dose Reporting 181 (17 %), Outcome
156 (15 %), Outlier 126 (12 %), and RT Structures 82 (8 %).
Discussion

Using novel software tools to monitor clinical trials in the phar-
maceutical field has gained significant traction in the past decade.
treatment workflow. Proportion: number and percentage of all events. Last column

Number1 Most Common Event2

olvement, 235(22 %)/157/78 T-Stage consistency (34 %)

escription, e.g.
ical structures

82 (7.7 %)/29/53 Implausible relation between CTV-
HR, CTV-IR and GTV volume: (10 %)

ule, EBRT elective
al boosting

287 (27 %)/156/
131

EBRT Elective Target: (42 %)

ibution. Dose
plausible DVH

181 (17 %)/55/126 Implausible relation between ICRU-
RV and Vagina reference points:
(11 %)

e Events, Vital 156 (15 %)/156/0 Definition of local disease status:
(13 %)

m the norm 126 (12 %)/25/101 FUP date reporting: (2 %)

impact on the study.

Examples of QA events Number of patients (n = 1,001)

yses Primary study endpoints
Local control
Nodal control
Systemic control
Vital status
Morbidity
Quality of life
Violation of dose limits
Tumor staging

162 (16 %)

Typing errors
Inter-observer variations
Dose optimization
Exceeding overall treatment time
EBRT elective targets

357 (36 %)

- 482 (48 %)
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Fig. 3. Results of the anonymous survey among 10 participating centers. Panel (A) shows responses regarding utility and usability of the tool. Panel (B) summarizes for what
purpose the tool was used among re- sponders. In this case multiple answers were allowed.
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Driven by economic considerations, centralized monitoring and
statistical monitoring are now being recommended by both the
FDA and EMA to effectively handle the ever increasing volume
and va- riety of collected data [29–32]. However, to the best of
our knowledge, no comparable projects exist in radiation oncology.
Using modern IT infrastructure facilitated secure access to individ-
ualized dashboards for multiple authorized users. Feedback from
the small survey indicated good usability, and potential value of
the tools features. The individualized dashboards indicated that
even among advanced EMBRACE-II centers, there can be consider-
able differences in treatment approach. While this outcome was
Fig. 2. Example screenshots of the dashboard. Panel (A) shows a represen- tative figure
overall cohort (right). Shown here is the dose to the HRCTV D90 in EQD2 Gy. Red and oran
analogue, panel (B) shows a summary graph for categorical vari- ables, in this examp
application, with a navigation bar on the left, and various summary figures for treatment
top, and a summary table of protocol compliance with respect to total dose limits to ta

3

7

expected and is acknowledged in the community [26,33], the
developed project offered additional evidence, but also quantifi-
able metrics re- garding this topic. It could serve as a platform to
monitor and study inter-center uncertainties in the future, and
assist in implementing a high standard of care for LACC patients
treated with EBRT and MR-IGABT. However, it should be noted that
the tool’s ability to compare individual institutional/patient data
with a refer- ence cohort may be limited by the amount of avail-
able data. In cases of smaller trials or institutions with limited
patient data, data from other sources may need to be utilized to
establish a larger reference set. Beyond interventional clinical trials
that summarizes continuous variables with boxplots for the center (left) and the
ge horizontal lines represent protocol dose limits and planning aims, respectively. In
le histopathological type at diagnosis. Panel (C) shows the entire interface of the
parameters in the center. Panel (D) shows several patient related parameters at the
rgets and organs at risk.
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such as EMBRACE-II, the presented methodologies could also be
adapted for routine data collection in radiation oncology, or for
the set-up of registries.

Of the automatic QA methods, both isolation forest and coeffi-
cient of variation showed excellent precision. Given that the
thresholds were chosen rather conserva- tively in order to prevent
overwhelming detection of false positives, this result was in line
with expectations. It is also acknowledged that some anomalies
likely evaded manual detection, as this was still a human process,
and that classification into”nor- mal” and”abnormal” can be bor-
derline and subject to interpretation. These aspects should always
be considered when interpreting the reported numbers.

Nevertheless, the use of Isolation Forest to automatically scan
univariate data for outliers proved to be a computationally inex-
pensive and flexible method. Most out- liers could be attributed
to human transcription errors in the eCRF, underlying that for
reporting and documentation of RT data, eliminating the human
factor to prevent inaccuracies would be of considerable interest.

The results of using the coefficient of variation to detect varia-
tions in the CTV-IR volume suggest that this method is effective
in identifying substantial deviations across fractions. However,
the threshold was set to specifically detect only major variations,
as inter-observer variations in radiation oncology are known to
be sub- stantial [34]. For example, a study by Petric et al. report
a volumetric conformity index for expert consensus contours of
only 0.68 for CTV-IR [35]. As a result, while this method may be
suitable for detecting significant implausible variations, it may
not be as sensitive to more subtle deviations and can only be
applied to parameters that are expected to remain constant
throughout treatment. Although only a limited number of implau-
sible CTV-IR volume variations were detected, none were identi-
fied through human review. Again, this is likely due to the review-
ers’ expectation of large inter-observer variations. Nonetheless, the
identified cases are important to highlight as they likely resulted
from other sources of error.

Detection of implausible reported treatment plans through
multivariate analysis of DVH parameters, proved to be a more chal-
lenging task. The comparatively low precision of 71 % highlighted
that more sophisticated methods may be required to automate this
task. For example, Li et al. showed how Gower distance can be used
to flag anomalous prescriptions in radiation oncology[36]. As can
be seen from the comparatively large number of false positives
and false negatives, additional infor- mation from diagnostic and
treatment variables may be required to model existing variations
in the data. Nevertheless, it was demonstrated that the method
could identify many reporting inconsistencies, based on discrete
DVH metrics alone.

Overall, it can be seen that automatic anomaly detection meth-
ods have the potential to play a valuable role in clinical trial QA and
in clinical practice for radiation oncology. As demonstrated in this
work, even simple methods can help to identify and flag unusual
data points that deviate from expected patterns, which could serve
as an additional safety measure. Examples of how such methods
could be used in radiation oncology include:

� Treatment plans: Identify unusual treatment plans e.g., if a
treatment plan has an unexpected high dose to OAR or an
implausible target volume.

� Treatment delivery: Check for proper machine and patient
setup using treat- ment machine parameters (e.g. log files),
and identify potential issues early on.

� Patient outcome: Monitor toxicity and survival rates, and alert
trial coordina- tors.

However, as shown in this work, finding a suitable threshold for
anomaly detection can be difficult, as it depends on data character-
8

istics, and the domain of it’s appli- cation. Thus, it is important to
note that, while these automatic methods can help to ensure the
accuracy and integrity of the data, they should be used with man-
ual review and oversight by trained medical professionals.

While the tool cannot go into as much depth as manual expert
review of individual patients, it enabled researchers and centers to
identify patterns in reported data, sub- stantially save human
effort and flag deviations more efficiently. For 1001 patients,
2302 QA events were identified. This would correspond to 0.4 %
of all collected data (assuming 600 data points per patient). How-
ever, reporting of a robust number is challenging as the number of
mandatory fields in the database varied among patients, and ana-
lysing each case in full detail was not feasible. Therefore the
reported event rate should be interpreted as a rough estimate.
While this indicates that overall study data was of high quality,
in 16 % of patients at least one high impact event was detected,
which highlights the value of thorough QA efforts.

Overall, issues regarding treatment technique were most com-
mon. This could orig- inate from the complexity of the treatment,
that offered a wide range of treatment options for EBRT and BT.
However, since the analysis was based on retrospective data col-
lected in a clinical study, the relations between defined QA origins
may not be directly representative for the clinical environment. As
no DICOM RT files were directly collected, treatment plans could
only be evaluated based on reported DVH parameters. This limited
the assessment of structure definitions and dose distribu- tions,
and likely resulted in underestimation of these events in compar-
ison to clinical practice. The frequent inconsistencies in allocation
of EBRT elective targets and TNMT-Staging may require future
investigation. While TNM staging uncertainties are a known phe-
nomenon [37], the elective target concept is a newly introduced
con– cept in EMBRACE-II, which intends to adapt the EBRT target
volume to patient- specific risk factors. Novelty of the concept
may explain frequent inconsistencies, however deeper analysis
would be warranted.

The analysis of QA events was based on a list that was generated
through automatic checks and manual expert case reviews. Both
methods were inherently biased. Au- tomatic checks that were
implemented were chosen due to pre-existing knowledge about
pitfalls [26] and cover only a small fraction of recorded data. Like-
wise, human experts reviewers tended to focus on their field of
expertise. This bias was reflected in the reality that some issues
gained more attention than others. Collection of structured, high-
quality data was a prerequisite for this project. In this case such
a database was already established due to the underlying
EMBRACE-II study. It is acknowledged that for translation into clin-
ical practice, such routine data collection would require overcom-
ing several significant practical challenges at first.

Nevertheless, we believe that our work can serve as an example
of what could be achieved once these barriers are overcome. We
believe that our results show that it would be of considerable
interest to extend automatic QA algorithms, as presented in this
work, beyond applications in clinical trials.
Conclusion

A software was developed and tested within a clinical trial in
radiation oncology for cervical cancer. This tool enabled the quan-
titative and qualitative comparison of institutional patient and
treatment characteristics and outcome data, with a large multi-
center reference patient cohort. We demonstrated the value of
using statisti- cal methods to automatically detect implausible
data points, and highlighted com- mon pitfalls and uncertainties
in radiotherapy for cervical cancer. A comprehensive framework
was presented that could serve as a blueprint for advanced data
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analysis methods for clinical studies in radiation oncology, and
beyond.
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