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Summary
Background Early screening of the brain is becoming routine clinical practice. Currently, this screening is performed
by manual measurements and visual analysis, which is time-consuming and prone to errors. Computational methods
may support this screening. Hence, the aim of this systematic review is to gain insight into future research directions
needed to bring automated early-pregnancy ultrasound analysis of the human brain to clinical practice.

Methods We searched PubMed (Medline ALL Ovid), EMBASE, Web of Science Core Collection, Cochrane Central
Register of Controlled Trials, and Google Scholar, from inception until June 2022. This study is registered in
PROSPERO at CRD42020189888. Studies about computational methods for the analysis of human brain ultraso-
nography acquired before the 20th week of pregnancy were included. The key reported attributes were: level of
automation, learning-based or not, the usage of clinical routine data depicting normal and abnormal brain
development, public sharing of program source code and data, and analysis of the confounding factors.

Findings Our search identified 2575 studies, of which 55 were included. 76% used an automatic method, 62% a
learning-based method, 45% used clinical routine data and in addition, for 13% the data depicted abnormal
development. None of the studies shared publicly the program source code and only two studies shared the data.
Finally, 35% did not analyse the influence of confounding factors.

Interpretation Our review showed an interest in automatic, learning-based methods. To bring these methods to
clinical practice we recommend that studies: use routine clinical data depicting both normal and abnormal
development, make their dataset and program source code publicly available, and be attentive to the influence of
confounding factors. Introduction of automated computational methods for early-pregnancy brain ultrasonography
will save valuable time during screening, and ultimately lead to better detection, treatment and prevention of
neuro-developmental disorders.
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Introduction
The rapid development of ultrasound techniques from
its introduction in 1956 has led to the implementation
of prenatal two-dimensional (2D) ultrasonography in
the 1970s.1,2 2D ultrasonography is used for second
trimester congenital anomaly screening worldwide and
serves as an important baseline with regards to growth
and development.3 Three-dimensional (3D) ultrasonog-
raphy for prenatal diagnosis became available in the late
1980s, after the necessary improvement in computer
*Corresponding author. Department of Obstetrics and Gynecology, Erasmus
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technology and the introduction of transvaginal ultra-
sound probes.4 3D ultrasonography has had a major
impact on the visualization of the embryo and fetus in
the first trimester. Furthermore, 3D ultrasound enables
accurate biometric and volumetric measurements of
structures that are hard to assess in 2D due to irregular
and/or asymmetrical shapes.

During the first trimester of pregnancy, the brain
is already clearly visible in ultrasonography, and its
growth and structural development continue throughout
MC, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands.
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Research in context

Evidence before this study
Early-pregnancy brain ultrasonography before 20 weeks is
becoming routine clinical practice thanks to advances in
ultrasound techniques, e.g. the introduction of high-frequency
ultrasound probes and three-dimensional (3D) ultrasound,
these advances enable early visualization of the human brain.
However, monitoring growth and development and screening
for abnormalities using ultrasound scans is time-consuming
and prone to human errors. Automatic analysis will save time,
reduce errors, and allow for multiple measurements to be taken
at the same time. Hence, the aim of this systematic review was
to gain insight into the future research directions needed to
bring automated early-pregnancy brain ultrasonography
analysis to clinical practice. In order to achieve this, we searched
PubMed (Medline ALL Ovid), EMBASE, Web of Science Core
Collection, Cochrane Central Register of Controlled Trials, and
Google Scholar, from inception until June 2022. We included
studies using ultrasound scans acquired before the 20th week
of pregnancy. We included only full research papers written in
the English language and no protocols, no review papers,
conference abstracts, or case reports. There are several other
systematic reviews focusing on computational methods for
prenatal imaging. However, these reviews all focused on scans
acquired during mid- and late-pregnancy and/or scans acquired
with magnetic resonance imaging (MRI), and were not focused
on the brain specifically.

Added value of this study
In this review, we created an overview of the future research
directions needed to bring automated early-pregnancy brain
ultrasonography analysis to clinical practice. The studies fitted
in the following topics: biometry, standard plane detection,
segmentation, growth models, visualization, abnormality
detection and quality enhancement. The key reported

attributes were: level of automation, learning-based or not,
the usage of clinical routine data depicting normal and
abnormal development, public sharing of program source
code and data, and analysis of confounding factors. We found
that the majority of the studies described the development of
an automatic, learning-based method (62%). The most
studied topic was biometry (40%), followed by standard plane
detection (29%), segmentation (16%), growth models (7%),
visualization (4%), abnormality detection (2%), and quality
enhancement (2%). The majority of the studies did not use
data from routine clinical care (55%). We found that none of
the studies made their program source code publicly available
and only two studies made the ultrasound data used publicly
available. Finally, 35% of the studies did not analyse the
influence of confounding factors and only 7% performed
additional analyses for confounding factors beyond
gestational age, image quality and body mass index.

Implications of all the available evidence
The findings of this systematic review show that there is an
interest in automatic analysis of early-pregnancy brain
ultrasonography. To bring this analysis to clinical practice we
recommend that studies: use routine clinical data depicting
both normal and abnormal, make their dataset and program
source code publicly available, and be attentive to the
influence of confounding factors. Automatic methods have
the potential to drastically reduce the time needed in clinical
practice for measurements of the brain and for the detection
of structural abnormalities. Furthermore, automatic analysis
enables the development of large-scale data-driven models.
These models have the potential to provide insights into the
factors influencing growth and development, which in turn
may lead to early diagnosis, treatment, and prevention of
neuro-development disorders.
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pregnancy.5 The DOHAD paradigm (Developmental
Origins of Health and Disease) states that there is a
strong association between fetal growth and develop-
ment and health and disease later in life.6 For prenatal
brain development between 9 and 11 weeks gestational
age associations were found with maternal age, smok-
ing, mode of conception and folate status.7–9 This high-
lights the importance of monitoring the development of
the early brain, which is reflected in the recommenda-
tion of the International Society of Ultrasound in Ob-
stetrics and Gynecology (ISUOG) in 2021, to perform a
neuro-sonographic examination in the first trimester.10

Since it provides us with information regarding the
etiology and pathophysiology of normal and abnormal
development of the human brain.

The ISUOG recommends performing the neuro-
sonographic examination using a 3D trans-vaginal
probe. However, when this is not feasible the examina-
tion can be performed using a 3D or 2D trans-abdominal
probe. 3D ultrasonography is not always feasible due to
unavailability of the equipment or lack of a trained so-
nographer to acquire and/or analyse the image.10 The
recommended examination of the brain during the first
trimester consists of measuring the biparietal diameter,
head circumference, atrial width of the lateral ventricles
and transverse cerebellar diameter. However, as pointed
out by Volpe et al., by following this recommendation the
majority of brain abnormalities remain undiagnosed
until the second trimester.11 Few studies showed how
to best assess the brain during the first trimester using
3D ultrasonography and how major abnormalities are
characterized.11,12

However, monitoring growth and development and
screening for abnormalities using 2D or 3D ultrasound
scans is time-consuming, prone to human errors and
requires specific expertise. Automatic analysis may save
time, reduce errors, and allow for taking multiple
measurements at the same time. Artificial Intelligence
www.thelancet.com Vol 89 March, 2023
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(AI) has already been shown to enable automatic anal-
ysis of images in several medical applications and can be
applied to its full potential to first trimester ultrasound,
as the whole embryo, thanks to its limited size, can be
imaged in one dataset.13,14 Hence, we argue that auto-
mated analysis of ultrasonography offers an opportunity
to bring early brain ultrasonography to clinical practice.
The systematic review by Liu et al. showed that there is
interest in developing AI for medical ultrasound anal-
ysis in different domains, but this interest is hampered
by the low imaging quality of ultrasound due to noise
and artifacts, and the limited amount of publicly avail-
able medical ultrasound data.15

Looking at related work, several systematic reviews
on computational methods for prenatal imaging have
been performed. Most closely related is the work by
Fiorentino et al., who reviewed deep learning methods
for fetal ultrasound of all gestational ages and all or-
gans.16 Others reviews were focused on mid- and late-
pregnancy, included only fully automatic methods, or
were based on MR images.17–20 However, as in clinical
practice MRI is not the standard modality and mainly
manual or semi-automatic methods are used to analyse
the acquired images; we found these reviews too
limited.

Given the potential impact of automated early-
pregnancy ultrasound analysis and the lack of a sys-
tematic review covering all methods for this crucial
period, we performed a systematic review covering all
types of computational methods for the analysis of early-
pregnancy brain ultrasonography. By creating this
overview, we aim to gain insight into future research
directions needed to bring automated early-pregnancy
brain ultrasonography analysis to clinical practice.
Methods
Search strategy and selection criteria
This systematic review adheres to the PRISMA guide-
lines and was registered a priori at the PROSPERO
registry (CRD42020189888).21 The specific search strat-
egy was created together with a Health Sciences
Librarian with expertise in systematic review searching.
Literature search strategies were developed using med-
ical subject headings (MeSH). We searched PubMed
(Medline ALL Ovid), EMBASE, Web of Science Core
Collection, Cochrane Central Register of Controlled
Trials, and Google Scholar. We searched the databases
from inception until June 2022. To ensure literature
saturation, we scanned the reference lists of included
studies, relevant reviews identified through the search
and full paper proceedings of relevant international
scientific conferences. Search terms used and the list
of screened conference proceedings are given in
Supplementary Material 1.

Literature search results were uploaded in Endnote.
Two authors (WB, MR) independently screened the
www.thelancet.com Vol 89 March, 2023
titles and abstracts obtained by the search against the
inclusion criteria, any disagreement was resolved
through discussion. Full papers were obtained for all
titles that appeared to meet the inclusion criteria or
when there was any uncertainty. One author (WB)
screened the full papers and decided whether these met
the inclusion criteria, in case of doubt the papers was
discussed by WB and MR. Neither of the review authors
was blinded to the journal titles or to the study authors
or institutions.

Studies were selected according to the criteria out-
lined below. We included computational methods
developed for human prenatal ultrasonography of the
brain. Initially, we performed a broad search not
restricted to brain ultrasonography. After title and ab-
stract screening we obtained over 300 inclusions, which
was too broad for a full text screening. Therefore, we
decided to restrict ourselves to studies involving the
brain only. Studies were excluded when the gestational
age (GA) window of the study did not start before the
20th week of pregnancy and when the target structure of
the study was not the brain or a brain structure. No
restrictions on the type of data acquisition, study design,
and number of subjects included in the study were
applied. We included only full research papers written
in the English language and no protocols, no review
papers, conference abstracts, or case reports.

Data analysis
The extracted data consisted of the following:

• year of publication;
• title;
• brain structures studied
• level of automation: manual, semi-automatic, or
automatic. Here, manual refers to methods where
computation can only be done after a manual action
of the operator, semi-automatic refers to methods
where in interaction with the operator computations
are performed. For automatic methods no actions of
the operator are needed.

• type of method: non-learning based, machine
learning, or deep learning;

• for learning based methods the learning strategy
consisting of: whether cross-validation, an external test
set, and/or data augmentation was used and who
provided the annotations used for learning. Addition-
ally, for non-learning based method we report here
whether an external dataset was used for evaluation.

• type of US used: 2D slices or 3D volumes;
• ultrasonography machine and probe frequency;
• number of subjects used for validation;
• GA window considered in study;
• type of data: whether or not a method used clinical
routine data depicting normal and/or abnormal
development;

• main outcome of the study;
3
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• sharing of program source code and data;
• whether the software is proprietary or not: we define
software as proprietary if payment is required;

• computation time;
• type of computing hardware used.

We divided all studies in the following topics: abnor-
mality detection, biometry, growth models, segmenta-
tion, standard plane detection, quality enhancement and
visualization. In abnormality detection studies the aim is
to distinguish ultrasound images depicting abnormal
development from images depicting normal develop-
ment. Biometry studies focus on performing biometric
and volumetric measurements of relevant structures
within the embryonic and fetal brain. Growth model
studies focus on models that describe the relationship
between growth and development of the entire brain or of
specific brain structures and GA. Segmentations studies
focus on delineating the brain or brain structures in the
ultrasound images. Standard plane detection studies
focus on the detection of standard planes within the
brain. Quality enhancement studies focus on improving
the image quality. Finally, visualization studies focus on
computational methods that visualize the embryonic or
fetal brain. When studies performed tasks from multiple
topics, they were classified in the category of the final
topic. For example, biometric measurements are per-
formed in standard planes, so studies that focus on
biometry subsequently to standard plane detection are
classified as biometry studies.

To assess the risk of bias of the studies included in
this review, the ErasmusAGE quality score was used: a
tool composed of five items based on previously pub-
lished scoring systems that can be adapted to fit the
topic of the review.22 Each of the five items can be
allocated either zero, one or two points. The final score
is the sum of the points given for each item, resulting in
a total score between zero and ten. The five items are:

Q1 Study design: cross-sectional (0), longitudinal (1),
intervention studies (2);

Q2 Number of subjects used for validation, the study
size: ≤35 (0), 35 to 250 (1), ≥250 (2);

Q3 Description of the computational method: not
reproducible based on description (0), key results
are reproducible based on description (1), all re-
sults are reproducible based on description (2);

Q4 Reporting of the outcome: inadequate (0), quali-
tative and/or quantitative outcome reported (1),
additionally: multiple raters and/or comparison to
known clinical outcome (2);

Q5 Influence of confounding factors: not investigated
(0), findings are analysed or adjusted for at least
one of the key confounders (the influence of GA,
acquisition quality and body mass index) (1),
additional analysis or adjustment for confounding
factors was performed (2).
Intervention studies are not applicable in this review;
therefore the highest possible score is 9. The boundaries
of the scoring for study size were determined by
calculating the first quartile (Q1), median and third
quartile (Q3) over the included full-text papers. We have
chosen to evaluate only the number of subjects used for
validation, rather than the total number available, since
learning-based methods typically need a lot of data for
development. However, the quality of the studies is
generally determined by how much data is used for
validation of the method, regardless of the method used.
The complete quality scoring system used can be found
in Supplementary Material 2.

Statistics
No statistical tests were used. The study size in Q2 (see
above) was determined as the number of subjects used
for validation of the method.

Role of funding source
The funder of the study had no role in this systematic
review.
Results
Included studies
The flowchart in Fig. 1 summarizes the literature search
and selection of studies. Initially, 2545 potentially
eligible studies were identified through the database
search, and an additional 30 potential eligible studies
were identified through other sources. After title and
abstract screening 105 studies remained, and the full-
text was screened subsequently. We recorded the rea-
sons for exclusion after full text screening in Fig. 1 and
in Table S1 in Supplementary Material 3. After full-text
screening we included 55 studies in the systematic
review.

Study characteristics
In Table 1 the main characteristics of the included
studies are given. We included 22 studies on biometry,
16 studies on standard plane detection, 9 studies on
segmentation, 4 studies on growth models, 1 study on
abnormality detection, 1 study on quality enhancement
and 2 studies on visualization. Of the included studies 4
(6%) described a manual, 9 (16%) semi-automatic, and
42 (76%) an automatic method. Regarding the type of
method, 14 (25%) studies used a non-learning based
method, 34 (62%) studies used a learning-based
method, of which 10 (18% of the studies) used ma-
chine learning and 24 (44% of the studies) deep
learning, and for 7 (13%) studies the type of method
could not be identified based on the text. These seven
studies used all proprietary software, of the other 10
studies using proprietary software, one was learning
based. Regarding the type of data used, we found in
Table 1 that for 8 (15%) it was unclear what kind of data
www.thelancet.com Vol 89 March, 2023
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2545 potentially eligible studies 

identified through database search 
30 potentially eligible studies 

identified through other sources 

2575 screened 

105 full-text studies assessed for 
eligibility 

2470 excluded; did not meet  
inclusion criteria 

55 studies included in systematic 
review 

50 excluded: 
• Not in English (1) 
• GA≥20 weeks (16) 
• No full text (3) 
• No research paper (9) 
• No US (8) 
• Duplicates (2) 
• Not about brain (11) 

Fig. 1: Study selection.
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was used, 22 (40%) studies used data acquired for
research purposes, and 25 (45%) studies used clinical
routine data depicting normal development. Finally, 7
(13%) studies additionally used clinical routine data
depicting abnormal development and 1 study used data
acquired for research purposes depicting abnormal
development. None of the studies shared the program
source code publicly, and two studies shared the data
(23, 24). 16 (29%) studies reported the computational
time, and 7 (13%) studies reported what kind of
computational hardware was used.23–43 Computation
time ranged from 70 micro seconds to 25 min.32,35 Next,
we discuss the studies per topic in the following order:
biometry, standard plane detection, segmentation, and
together: growth models, abnormality detection, quality
enhancement and visualization.

Biometry
The majority of included studies were on biometry.
Detailed information about these studies is given in
Table 2. The head circumference (HC) is measured
most frequently: by 14 out of 22 studies.24–27,30–32,44–50 In
Fig. 2, for all studies measuring the HC, the GA range is
given along with, if available, the mean error in milli-
metres (mm). Overall, the best result was achieved by
Budd et al., and for the first trimester van den Heuvel
et al. achieved the best results.44,45 Both methods used a
www.thelancet.com Vol 89 March, 2023
deep learning approach, and van den Heuvel et al. made
their dataset, referred to as the HC18 challenge dataset,
publicly available.44 This dataset contains data of 335
subjects of the trans-ventricular plane. The other
studies measured the cisterna magna,51 vermian,52

cavum septi pellucidi,53 brain volume,54 brain ventri-
cles,29,55 the biparietal and occipitofrontal diameter,56

and the cavum veli interpositi, which is an interhemi-
spheric cyst-like structure.57 Among the biometry
studies, 11 (50%) were applied to first trimester data
(<14 weeks GA).26,29,30,44,48–50,54,55,57,58

Biometric measurements are performed in their
corresponding standard plane. Most studies used 2D
slices from the 3D volume or 2D images that were
manually acquired and annotated by experienced
sonographers. Only Grandjean et al., Ryou et al., and
Sofka et al. used the entire 3D volume as input.
Grandjean et al. used proprietary software, and both
Ryou et al. and Sofka et al. used an additional deep
learning approach to first detect the required standard
plane for each measurement.25,30,47 Ryou et al. first clas-
sified each slice as containing the head or abdomen,
which was correct in 98.9% of the cases, and subse-
quently used regression to find the biometry plane.30

Sofka et al. first detected landmarks to find the
required standard plane, and reported an average land-
mark detection error of less than 2 mm.47
5
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Topic Author Year Title Level of
automation

Type of
method

Computation
time/hardware

Type of
data

Quality
score

Biometry Araujo et al. 2014 Reference range of fetal cisterna magna volume by three-dimensional
ultrasonography using the VOCAL method

SA N† R 6

Biometry Bertucci et al. 2011 Vermian biometric parameters in the normal and abnormal fetal posterior
fossa: three-dimensional sonographic study

SA N† R 4

Biometry Birnbaum et al. 2021 Normal cavum veli interpositi at 14–17 gestational weeks: three-
dimensional and Doppler transvaginal neurosonographic study

M N† R 5

Biometry Budd et al. 2019 Confident head circumference measurement from ultrasound with real-
time feedback for sonographers

A DL R 5

Biometry Carneiro et al. 2008 Detection and measurement of fetal anatomies from ultrasound images
using a constrained probabilistic boosting tree

A ML <1 s, standard dual
core PC

? 6

Biometry Cinar et al. 2020 Reference intervals and reliability of cavum septi pellucidi volume
measurements by three-dimensional ultrasound between 19 and 24 weeks’
gestation

SA N† C 6

Biometry Grandjean et al. 2018 Artificial intelligence assistance for fetal head biometry: Assessment of
automated measurement software

A ?† <10 s R 5

Biometry Hata et al. 2021 Transvaginal 3-D power doppler ultrasound evaluation of the fetal brain at
10–13 weeks’ gestation

SA N† R 6

Biometry Pashaj et al. 2013 Automated ultrasonographic measurement of basic fetal growth
parameters

A ML† 0.1 s C 5

Biometry Pistorius et al. 2009 First trimester neurosonoembryology with automated follicle tracking:
Preliminary findings

SA N† C* 2

Biometry Pluym et al. 2021 Accuracy of automated three-dimensional ultrasound imaging technique
for fetal head biometry

A ?† <10 s C 6

Biometry Rizzo et al. 2016 The feasibility of using 5D CNS software in obtaining standard fetal head
measurements from volumes acquired by three-dimensional
ultrasonography: Comparison with two-dimensional ultrasound

A ?† 54 s C 6

Biometry Rousian et al. 2013 First trimester brain ventricle fluid and embryonic volumes measured by
three-dimensional ultrasound with the use of I-Space virtual reality

SA N 60 s R 6

Biometry Ryou et al. 2019 Automated 3D ultrasound biometry planes extraction for first trimester
fetal assessment

A DL Intel Xeon CPU at
3.50 GHz with 16.0
GB RAM

R 5

Biometry Shehzad et al. 2007 The correlation between ultrasonic manual and automatic measurements
of fetal head and abdominal circumferences

A ?† CPU: 14.7s, GPU 6.9 s R 3

Biometry Sofka et al. 2014 Automatic detection and measurement of structures in fetal head
ultrasound volumes using sequential estimation and integrated detection
network (IDN)

A DL ? 6

Biometry Van den Heuvel
et al.

2018 Automated measurement of fetal head circumference using 2D ultrasound
images

A ML C 7

Biometry Van den Heuvel
et al.

2019 Automated fetal head detection and circumference estimation from free-
hand ultrasound sweeps using deep learning in resource-limited countries

A DL 0.00007 s for detection,
0.0005 s for HC
estimation

C 6

Biometry Verwoerd-
Dikkeboom et al.

2008 Reliability of three-dimensional sonographic measurements in early
pregnancy using virtual reality

M N R 6

Biometry Verwoerd-
Dikkeboom et al.

2010 Innovative virtual reality measurements for embryonic growth and
development

M N R 8

Biometry Yazdi et al. 2014 Optimal caliper placement: manual vs automated methods A N† C 5

Biometry Zhang et al. 2020 Direct estimation of fetal head circumference from ultrasound images based
on regression CNN

A DL C 5

Standard plane
detection

Bastiaansen
et al.

2020 Towards segmentation and spatial alignment of the human embryonic
brain using deep learning for atlas-based registration

A DL R 3

(Table 1 continues on next page)
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Topic Author Year Title Level of
automation

Type of
method

Computation
time/hardware

Type of
data

Quality
score

(Continued from previous page)

Standard plane
detection

Baumgartner
et al.

2016 Real-time standard scan plane detection and localisation in fetal ultrasound
using fully convolutional neural networks

A DL 39 frames per second R 4

Standard plane
detection

Burgos-
Artizzu et al.

2020 Evaluation of deep convolutional neural networks for automatic
classification of common maternal fetal ultrasound planes

A DL 0.14 s C 6

Standard plane
detection

Cuingnet et al. 2013 Where is my baby? A fast fetal head auto-alignment in 3D-ultrasound A ML CPU: <0.8 s ? 4

Standard plane
detection

Dou et al. 2021 Agent with warm start and active termination for plane localization in 3D
ultrasound

A DL R 4

Standard plane
detection

Drukker et al. 2022 Clinical workflow of sonographers performing fetal anomaly ultrasound
scans: deep learning-based analysis

A DL C 5

Standard plane
detection

Kong et al. 2018 Automatic and efficient standard plane recognition in fetal ultrasound
images via multi-scale dense networks

A DL C 5

Standard plane
detection

Kuklisova-
Murgasova et al.

2013 Registration of 3D fetal neurosonography and MRI A N 25 m ? 5

Standard plane
detection

Namburete 2018 Fully-automated alignment of 3D fetal brain ultrasound to a canonical
reference space using multi-task learning

A DL R 6

Standard plane
detection

Rizzo et al. 2011 An algorithm based on OmniView technology to reconstruct sagittal and
coronal planes of the fetal brain from volume datasets acquired by three-
dimensional ultrasound

SA ?† 40–125 s C* 5

Standard plane
detection

Rizzo et al. 2016 5D CNS + Software for automatically imaging axial, sagittal, and coronal
planes of normal and abnormal second-trimester fetal brains

SA ?† 32–68 s C* 6

Standard plane
detection

Sridar et al. 2016 Automatic identification of multiple planes of a fetal organ from 2D
ultrasound images

A DL R 3

Standard plane
detection

Welp et al. 2020 Validation of a semiautomated volumetric approach for fetal
neurosonography using 5DCNS+ in clinical data from >1100 consecutive
pregnancies

SA ?† C 7

Standard plane
detection

Yaqub et al. 2012 Automatic detection of local fetal brain structures in ultrasound images A ML ? 3

Standard plane
detection

Yaqub et al. 2015 Guided random forests for identification of key fetal anatomy and image
categorization in ultrasound scans

A ML C 4

Standard plane
detection

Yeung et al. 2021 Learning to map 2D ultrasound images into 3D space with minimal human
annotation

A DL 0.07 s R 6

Segmentation Al-bander et al. 2019 Improving fetal head contour detection by object localisation with deep
learning

A DL C 4

Segmentation Gofer et al. 2021 Machine learning algorithms for classification of first-trimester fetal brain
ultrasound images

A ML C* 4

Segmentation Gutierrez-
Becker et al.

2013 Automatic segmentation of the fetal cerebellum on ultrasound volumes,
using a 3D statistical shape model

A ML <2 s C 5

Segmentation Hesse et al. 2022 Subcortical segmentation of the fetal brain in 3D ultrasound using deep
learning

A DL NVIDIA Tesla V100
(32 GB RAM)

R 7

Segmentation Li et al. 2020 Automated measurement network for accurate segmentation and
parameter modification in fetal head ultrasound images

A DL C 6

Segmentation Moccia et al. 2021 Mask-R2CNN: a distance-field regression version of Mask-RCNN for fetal-
head delineation in ultrasound images

A DL NVIDIA
RTX 2080TI, with a
Xeon e5 CPU and
128 GB RAM

C 6

(Table 1 continues on next page)
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Topic Author Year Title Level of
automation

Type of
method

Computation
time/hardware

Type of
data

Quality
score

(Continued from previous page)

Segmentation Shu et al. 2022 ECAU-Net: Efficient channel attention U-Net for fetal ultrasound
cerebellum segmentation

A DL Intel Xeon Silver 4110
2.1 GHz CPU (128 GB
RAM) and two NVIDIA
GTX 1080Ti GPUs
(22 GB RAM)

? 3

Segmentation Wu et al. 2017 Cascaded fully convolutional networks for automatic prenatal ultrasound
image segmentation

A DL ? 5

Segmentation Yaqub et al. 2013 Volumetric segmentation of key fetal brain structures in 3D ultrasound A ML R 3

Abnormality
detection

Zhou et al. 2021 Prediction and value of ultrasound image in diagnosis of fetal central
nervous system malformation under deep learning algorithm

A DL R* 2

Growth model Bihoun et al. 2020 Fetal biometry assessment with Intergrowth 21st′s and Salomon’s
equations in rural Burkina Faso

M N R 6

Growth model Burgos-
Artizzu et al.

2021 Analysis of maturation features in fetal brain ultrasound via artificial
intelligence for the estimation of gestational age

A DL C* 8

Growth model Namburete et al. 2014 Predicting fetal neurodevelopmental age from ultrasound images A ML C 5

Growth model Wyburd et al. 2021 Assessment of regional cortical development through fissure based
gestational age estimation in 3D fetal ultrasound

A DL NVIDIA GeForce
RTX 2080 Ti (12
GB RAM)

R 5

Quality
enhancement

Perez-
Gonzalez et al.

2020 Deep learning spatial compounding from multiple fetal head ultrasound
acquisitions

A DL 3.4 s ? 4

Visualization Pooh et al. 2016 Recent advances in 3D ultrasound, silhouette ultrasound, and
sonoangiogram in fetal neurology

A N† C* 3

Visualization Tutschek et al. 2009 Virtual reality ultrasound imaging of the normal and abnormal fetal central
nervous system

A N† C* 4

Level of automation: M = manual, SA = semi-automatic, A = automatic. Type of method: N = not learning-based, ML = machine learning, DL = deep learning, ? = unknown, † indicates proprietary software. Type of data: R = data acquired for
research, depicting normal development, C = clinical routine data, depicting normal development, * indicates that method is additionally validated on imaging data depicting abnormal development. m = minutes, s = seconds.

Table 1: General characteristics of included studies.

A
rticles

8
w
w
w
.thelancet.com

V
ol

8
9
M
arch,

20
23

www.thelancet.com/digital-health


Author Year Type of
method

Brain structure GA Description of method Learning strategy
(if applicable)

US machine,
US Probe,
2D/3D

Number
of subjects

Outcome

Araujo
et al.

2014 N CM 17–29 4D view† software, VOCAL
function.

Voluson 730†

?
3D

224 ICC: 0.92

Bertucci
et al.

2011 N Vermian perimeter,
cross-sectional area,
and super inferior
diameter

18–35 4Dview† software. External test set Voluson 730 or E8†,
4–8 MHz TAb or 5–9 MHz TVa,
3D

12 Significantly smaller cross-
sectional area (18-19w), and
perimeter (28-29w) in
abnormal cases

Birnbaum
et al.

2021 N Cavum veli interpositi,
an interhemispheric
cyst-like structure

14–17 4Dview† software. Voluson E6, E8 or E10†,

5–9 MHz TVa,
3D

87 TCD: 13.1–18.4 mm
Cavum veli interpositi:
0.3–0.8 mm
Detection: 45%

Budd et al. 2019 DL HC 18–22 A U-net was used for
segmentation, followed by
ellipse fitting to determine the
HC. Using Monte Carlo drop-
out an ensemble of
segmentation was obtained;
cases with high variance for
the HC estimation were
rejected.

Data-augmentation:
flipping, rotation,
Annotations: expert
sonographers
Strategy: no cross-validation,
external test set

?,
?,
2D

540 Error = 1.81 mm

Carneiro
et al.

2008 ML BPD, HC All Feature extraction of image
regions that were segmented
by a constrained probabilistic
tree classifier. From the
segmentation the
measurements were derived.

Data-augmentation: none
Annotations: 15 expert
sonographers
Strategy: no cross-validation,
3 external test sets

?,
?
2D

1760 Error:
BPD = 2.73 mm
HC = 8.34 mm

Cinar et al. 2020 N Cavum septi pellucidi 19–24 4D view† software, VOCAL
software function.

Voluson E6†,
2–7 MHz TAb,
3D

99 ICC:
Intermediate – experienced:
0.78
Novice – experienced: 0.50
Novice – intermediate: 0.57

Grandjean
et al.

2018 ? BPD, HC 17–29 Smartplanes‡ software. Resona 7‡,
5–8 MHz,
3D

30 Error: BPD = 4 mm,
HC = 11 mm

Hata
et al.

2012 N BV 10–13 4D view† software, VOCAL
software function.

Voluson E8†,
3.7–17.5 MHz TVa,
3D

36 ICC: 0.991

Pashaj
et al.

2013 ML BPD, OFD, HC 11–40 Syngo auto OB§ software. Annotations: not
mentioned

? §,
2.5–6 MHz,
2D

83 Success rate:
BPD = 79.89%,
OFD = 81.80%
HC = 85.97%

Pistorius
et al.

2009 N Ventricles of telencephalon,
diencephalon, mesencephalon
and rhombencephalon

8–9 4D view† software. Voluson E8†,
6–12 MHz TVa,
3D

6 Success rate: 66% for all
ventricles

Pluym
et al.

2021 ? BPD, HC, TCD, CM, LV 18–22 SonoCNS† Fetal Brain software. Voluson E10†,
2–8 MHz Tab,
2D

143 ICC: BPD = 0.81 HC = 0.88
TCD = 0.50 CM = 0.23
LV = 0.26

Rizzo
et al.

2016 ? BPD, HC, TCD, CM 19–22 5D CNS¶ software. WS80A Elite¶,
1–8 MHz TAb,
3D

120 ICC:
BPD = 0.974
HC = 0.995
TCD = 0.994
CM = 0.990

Rousian
et al.

2013 N Brain ventricle
fluid volume

6–12 BARCO I-Space VR system,
V-Scope volume rendering
software.

Voluson E8†,
4.5–11.9 MHz TVa,
3D

112* Success rate: 38%

(Table 2 continues on next page)
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Author Year Type of
method

Brain structure GA Description of method Learning strategy
(if applicable)

US machine,
US Probe,
2D/3D

Number
of subjects

Outcome

(Continued from previous page)

Ryou et al. 2019 DL HC 11–14 2D slices of the image were
used as input for a multi-task
FCNN which outputs the
segmentation of head, embryo
and limbs and classification of
the plane. These steps were
repeated for slices taken from
all three views (coronal,
sagittal and axial). To obtain
the HC, ellipse fitting was used.

Data-augmentation: none
Annotations: checked by
clinicians
Strategy: no cross-validation,
external test set

HD9**,
V7-3,
2D

21 Error = 6.03 mm

Shehzad
et al.

2007 ? HC 14–38 Automatic ellipsoid mode
software††.

EcoCee and Power Vision††,
3.0–4.2 MHz,
2D

72 Correlation = 0.9999,
Mean: significantly
different

Sofka et al. 2014 DL HC, BPD, OFD,
LV, CM, CER

16–35 A sequential estimation and
integrated detection network
was used, which employs the
spatial relationship between
different measurements. This
was used to guide training of
the network to detect the HC.

Data-augmentation: flipping.
Annotations: 1 experienced
sonographer
Strategy: no cross-validation,
external test set

Antares and S2000§,
?,
3D

107 error: CER = 1.37 mm
CM = 0.87 mm LV = 1.01 mm
OFD = 2.31 mm
BPD = 0.94 mm HC = 4.06 mm

Van den
Heuvel et al.

2018 ML HC 10–40 Haar-like features were
extracted from the image and
were used as input for a
Random Forest to detect the
fetal skull. The HC was
extracted using the Hough
transform, dynamic
programming and ellipse
fitting.

Data-augmentation: none
Annotations: during
acquisition, trained medical
researcher
Strategy: three-fold cross-
validation, external test set

Voluson E8 or 730†,
?,
2D

335 Error: first trim. = 3.1 mm
second trim. = 2.5 mm
third trim. = 4.8 mm

Van den
Heuvel et al.

2019 DL HC 15–40 A two-step approach for
minimum computational
resource circumstances used
the well-known VGG-net for
detection of the head and U-
net for HC estimation via
segmentation

Data-augmentation: flipping.
Annotations: 1 experienced
sonographer
Strategy: no cross-validation,
external test set

SonoAce R3¶,
?,
2D

39 Error = 10.3 mm

Verwoerd-
Dikkeboom
et al.

2008 N HC, BPD 6–14 I-space, a virtual reality system
that uses a virtual pointer to
measure length.

Voluson 730†,
?,
3D

28* ICC:
BPD = 0.998
HC = 0.997

Verwoerd-
Dikkeboom
et al.

2010 N BPD, HC, OFD 6–14 I-space, a virtual reality system
that uses a virtual pointer to
measure length.

Voluson 730†,
?,
3D

125* Success rate:
BPD = 96.8%
OFD = 96.8%
HC = 96.8%

Yazdi et al. 2014 DL BPD, OFD 19–25 SonoBiometry† software. Annotations: two experts, one
resident and two students

Voluson E8†,
?,
2D

95 Error:
BPD = −0.17 mm
OFD = −0.06 mm

Zhang
et al.

2020 DL HC 0–40 Regression of features
extracted by a CNN to predict
the HC. The fetal head is not
segmented explicitly.

Data-augmentation: flipping,
translation and rotation
Annotations: during
acquisition, trained medical
researcher
Strategy: 5-fold cross-
validation, external test set

Voluson E8 or 730†,
?,
2D

199 Error = 4.52 mm

Legend to brain structures: BPD = biparietal diameter, CER = cerebellum, CM = cisterna magna, HC = head circumference, LV = lateral ventricles, OFD = occipitofrontal dimeter, TCD = transverse cerebellar diameter. Legend to description of method:
CNN = convolutional neural network, FCNN = fully convolutional neural network; a brief explanation can be found in Supplementary Material 4. 2D = two-dimensional, 3D = three dimensional, a * indicates longitudinal data. ICC = Intraclass
Correlation Coefficient. †GE Medical Systems, Zipf, Austria, ‡Mindray, Shenzen, China, §Siemens, USA, ¶Samsung Medison, Korea, **Philips, Bothell, WA 98021, USA, ††Toshiba, Japan. TAb = transabdominal, TVa = transvaginal.

Table 2: Detailed information on the biometry studies.
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Fig. 2: Overview of error in the head circumference (HC) per gestational week. The thickness of the bar indicates the number of subjects
used for validation: thinnest: <35 subjects, middle: between 35 and 250 subjects, thickest: >250 subjects. A white bar indicates that no average
error was reported. The error is shown up to the 20th week, since we were interested in the performance during early pregnancy.

Articles
Standard plane detection
For standard plane detection the detailed information is
given in Table 3. All 16 studies used automatic methods.
In 11 out of the 16 studies the trans-cerebellar (TV),
trans-thalamic (TT) and/or trans-ventricular (TV) plane
was detected. Fig. 3 gives an overview of the detection
accuracy and the GA range.23,28,33,34,37,59–64 The best results
for the TT plane were achieved by Kong et al. and the
best results for the TC and TV plane were achieved by
Sridar et al.60,61 Burgos-Artizzu et al. made their dataset
publicly available, which consists of data of 1792 pa-
tients, and contains besides the TC, TT and TV plane,
the abdominal, femur and thorax standard planes.23 The
other studies detected the brain,35,65–67 or other standard
planes.28,37Only the study by Bastiaansen et al. was
applied to first trimester data (<14 weeks GA).65

Segmentation
Table 4 gives the detailed information about the seg-
mentation studies. The fetal head in the TV plane was
segmented by five studies.38,40,68–70 Three of those used
the aforementioned HC18 challenge dataset.40,44,68,69

Furthermore, four studies segmented the
cerebellum,39,41,71,72 and three studies segmented the
choroid plexus.38,39,72 All these studies used a learning-
based method, and four studies used data acquired in
the first trimester (<14 weeks).38,40,68,69 Fig. 4 gives an
overview of the Dice score and GA range for all
studies.
www.thelancet.com Vol 89 March, 2023
Growth models, abnormality detection, quality
enhancement and visualization
Table 5 gives the details of the studies about growth
models, abnormality detection, quality enhancement
and visualization. Four studies present a growth
model.42,73–75 Bihoun et al. compared the growth curves
for a population from rural Burkina Faso, using the
Salomon equation and the Intergrowth 21-st growth
curves.73 Burgos-Artizzu et al. estimated the GA based
on the TT plane using a deep learning approach.74 In
a comparable study, Namburete et al. predicted the
GA from the appearance of the Silvian Fissure using a
machine learning method.75 Finally, Wyburd et al.
estimated the GA based on the Sylvian fissure,
parieto-occipital fissure and calcarine sulcus.42 Wyburd
et al. had the lowest errors of 3.4 days, using the
Sylvian fissure. For abnormality detection, Zhou et al.
developed a deep learning-based method based on 2D
brain slices, with an accuracy of 65%.76 Perez-
Gonzalez et al. developed an automatic method for
quality enhancement, by merging several partially
occluded ultrasound images of the same object.43

Finally, the studies of Pooh et al. and Tutscheck
et al. focused on visualization of the fetal brain during
the first trimester.77,78
2D versus 3D ultrasonography
We found 23 (43%) studies using 2D ultrasonography
and 31 (57%) studies using 3D ultrasonography. The
11
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Author Year Type of
method

Brain structure GA Description of method Learning strategy
(if applicable)

US machine,
US Probe,
2D/3D

Number of
subjects

Outcome

Bastiaansen
et al.

2020 DL Brain 9 A CNN was trained to register an image
to an atlas. The atlas consisted of an
ultrasound image put in a pre-defined
orientation and the brain was
segmented. By learning the
correspondence between image and
atlas the fetal brain was detected.

Data-augmentation: flipping, rotation,
translation, zooming,
Annotations: not mentioned
Strategy: no cross-validation, external
test set

Voluson E8†,
4.5–11.9 MHz TVa,
3D

30* Success rate = 27%

Baumgartner
et al.

2016 DL TC, TT 18–22 A FCNN was trained to predict which
standard plane is shown. A one-to-one
correspondence between each feature map
in thenetworkandpredictionwasenforced.
From this correspondence, a confidence
map was derived. The prediction with the
highest confidence was outputted.

Data-augmentation: flipping, rotation,
translation
Annotations: team of expert
sonographers
Strategy: no cross-validation, external
test set

Voluson E8†,
?,
2D

201 Accuracy: TC = 0.89
TT = 0.95

Burgos-Artizzu
et al.

2020 DL TC, TT, TV 18–40 Three well-known classification
architectures (VGG-net, ResNet and
DenseNet) were compared for common
hyperparameter choices to detect brain,
abdomen, cervix, femur and thorax
standard planes. The most successful
architecture was DenseNet, this was
subsequently trained to detect the TC,
TT and TV within the brain class.

Data-augmentation: flipping, cropping,
translation and rotation,
Annotations: senior maternal–fetal
specialist
Strategy: no cross-validation, external
test set

Voluson E6, S8, S10†

and Aloka
3–7.5 MHz (TAb), 2–10
MhZ (TVa)
2D

536 Accuracy:
TC = 0.70
TT = 0.77
TV = 0.76

Cuingnet et al. 2013 ML TC, TT, TV 19–24 First, the skull was detected using a shape
model and template deformation. Next,
the midsagittal plane (MSP) was
detected using the Hough transform and
eye orbits were detected using a Random
Forest trained on geometric information
and image features. From the positions
of the skull, MSP and the eye orbits the
standard planes can be derived.

Data-augmentation: none
Annotations: not mentioned
Strategy: two-fold cross-validation, no
external test set

?,
?,
3D

78 Median error:
TC = 5.8 mm
TT = 5.1 mm
TV = 5.3 mm

Dou et al. 2021 DL TC, TT 19–31 A reinforcement learning approach is
used. The network was initialized with a
so-called landmark-aware alignment
module, where anatomical landmarks
were detected and aligned with a plane-
specific atlas.

Data-augmentation: none
Annotations: expert sonographers with
5 years of experience
Strategy: no cross-validation, external
test set

DC-9‡,
?,
3D

100 Error:
TC = 3.40 mm
TT = 2.66 mm

Drukker
et al.

2022 DL Brain, face in
sagittal plane,
face in coronal
plane

19–21 A deep spatio-temporal model was
trained to label short scan clips of standard
plane acquisition. This gave insight in the
number of correctly detected standard
planes and the order of acquisition.

Data-augmentation: none
Annotations: four experts
Strategy: no cross-validation, external
test set

Voluson E8,
?,
2D

496 Accuracy:
Brain: 0.97
Sagittal face: 0.79
Coronal face: 0.86

Kong et al. 2018 DL TT 14–18 A multi-scale dense NN was used,
consisting of a cascade of neural networks,
all operatingonadifferent spatial resolution
of the input- and output image, to learn
both global and local information.

Data-augmentation: none
Annotations: during acquisition
Strategy: 5-fold cross-validation,
external test set

?,
?,
2D

5700 Accuracy = 0.98

Kuklisova-
Murgasova
et al.

2013 N Brain, landmarks
for CP, VC, CH, CSP

18–22, 28 The brain was aligned by finding the
location of the landmarks for the CP,
VC, CH and CSP. This was done via
block-matching of ultrasounds with so-
called pseudo ultrasound. These pseudo
ultrasound images were derived from
MRI images with known positions of
the landmarks. The brain was detected
using the alignment of the pseudo
ultrasound and clinical ultrasound.

External test set HD 9 or IU22§,
?,
3D

34 Dice, error:
CP = 0.58, 2.38 mm
VC = 0.46, 2.42 mm
CH = 0.57, 1.87 mm
CSP = 0.43, 2.77 mm

(Table 3 continues on next page)
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Author Year Type of
method

Brain structure GA Description of method Learning strategy
(if applicable)

US machine,
US Probe,
2D/3D

Number of
subjects

Outcome

(Continued from previous page)

Namburete
et al.

2018 DL Brain 18–34 A multi-task FCNN learning approach
was used. The transformation to align
the brain was derived from the
orientation of individual 2D slices, the
position of the eye orbits, and the
segmented brain.

Data-augmentation: none
Annotations: not mentioned
Strategy: no cross-validation,
external test set

HD 9§,
2.5 MHz,
3D

140 Dice = 0.82

Rizzo et al. 2011 ? TCaudc, TFc,
TTc, TCc

18–24 OmniView† software. Voluson 8†,
4–8 MHz TAb,
3D

105 Cohen’s kappa:
Tcaudc = 0.89,
TFc = 0.93
TTc = 0.92
TCc = 0.93

Rizzo et al. 2016 ? TC, TCaudc,
TCc, TFc, TT,
TTc, TV

18–24 5DCNS+¶ software. WS80A Elite¶,
1–8 MHz TAb,
3D

205 Cohen’s kappa:
TC = 0.97
Tcaudc = 0.89
TCc = 0.94
TFc = 0.90
TT = 0.98
TTc = 0.92
TV = 0.96

Sridar et al. 2016 DL TC, TT, TV 18–20 A pre-trained CNN was used to extract
features. Using these features a SVM
was trained to classify the standard
planes.

Data-augmentation: cropping, flipping
Annotations: medical imaging
researcher under clinical supervision
Strategy: no cross-validation, external
test set

Voluson E8†,
?,
2D

85 Accuracy:
TV = 0.98
TT = 0.93
TC = 0.97

Welp et al. 2020 ? TV, TT, TC, TFc,
Tcaudc, TTc, TCc

15–36 5DCNS+¶ software. WS80A Elite¶,
1–8 MHz TAb,
3D

1019 Success rate:
8/9 planes = 98%,
9/9 planes = 94%

Yaqub et al. 2012 ML Detection of the
TT by detection of:
CP, VC, CSP,
CER

19–24 A Random Forest was used to detect
the CP, VC, CSP and CER, from extracted
Haar, cuboid, binary and unary features.
From the detected position the TT
plane was derived.

Data-augmentation: none
Annotations: experienced sonographer
Strategy: 10-fold cross-validation,
external test set

?,
?,
3D

30 Accuracy:
CP = 0.93
VC = 0.91
CSP = 0.92
CER = 0.92

Yaqub et al. 2015 ML TC, TV 18–22 A Random Forest was trained guided by
features that indicate the relevance of
structures in the image. These features
were calculated by comparing the image
to a template.

Data-augmentation:
Cropping, flipping
Annotations: 14 qualified sonographers
Strategy: 10-fold cross-validation, no
external test set

Voluson E8†,
?,
2D

200 Accuracy:
TV = 0.90
TC = 0.60

Yeung et al. 2021 DL TT 18–22 A regression CNN was trained that
consists of four sequential modules: a
feature extracting CNN, a comparison
module for the extracted features, an
attention mechanism to weigh the
contribution of each comparison, and a
prediction module to predict the
position in 3D space.

Data-augmentation: rotation
Annotations: not mentioned
Strategy: 10-fold cross-validation,
external test set

HD 9§,
25 MHz,
3D

189 Error:
11.4 voxels

Legend to brain structures: CER = cerebellum, CH = cerebellar hemisphere, CP = choroid plexus, CSP = cavum septi pellucidi, TC = transcerebellar plane, TCc = coronal transcerebellar plane, TCaudc = coronal transcaudate plane, TFc = coronal
transfrontal plane, TT = transthalamic plane, TTc = coronal transthalamic plane, TV = transventricular plane, VC = posterior ventricular cavity. Legend to description of method: CNN = convolutional neural network, FCNN = fully convolutional neural
network, NN = neural network, SVM = support vector machine; a brief explanation can be found in Supplementary Material 4. 2D = two-dimensional, 3D = three-dimensional, a * indicates longitudinal data. †GE Medical Systems, Zipf, Austria,
‡Mindray, Shenzen, China, §Philips, Bothell, WA 98021, USA, ¶Samsung Medison, Korea, **Aloka CO., LTD. TAb = transabdominal.

Table 3: Detailed information on the standard plane detection studies.
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Fig. 3: Overview of detection accuracy of the trans-cerebellar plane (TC), trans-thalamic plane (TT) and trans-ventricular plane (TV) per
week gestational age. The thickness of the bar indicates the number of subjects used for validation: thinnest: <35 subjects, middle: between 35
and 250 subjects, thickest: >250 subjects. A white bar with a black edge indicates that no accuracy was reported. The accuracy is shown up to
the 20th week, since we were interested in the performance during early pregnancy.

Articles

14
studies using 2D data were mainly using automatic
methods (96%), and made use of deep learning (65%).
For the studies using 3D data there was no main type of
method used: there were 19 (61%) automatic, 9 (29%)
semi-automatic and 3 (10%) manual methods, of which
8 (26%) used deep learning, 6 (19%) machine learning,
and 12 (39%) were not learning-based. Only 9 (29%) of
the studies using 3D ultrasonography mentioned that
the ultrasound was acquired trans-vaginally, as recom-
mended by the ISUOG. For the most studied topics,
biometry, standard plane detection and segmentation,
the included studies used both 2D and 3D ultrasonog-
raphy, for biometry in 45% of the studies 2D ultraso-
nography was used and in 55% of the studies 3D
ultrasonography was used, for standard plane detection
this was 33% versus 66%, and for segmentation 55%
versus 45%.

Learning strategy
For the 34 studies using a learning-based approach
we reported the usage of data-augmentation, an
external test, and cross-validation. Furthermore, we
reported who provided the annotations used for
evaluation. Of the 34 studies, 14 (41%) used data-
augmentation.23,32,33,37,40,41,45,47,50,61,64,65,68,69 Flipping and
rotation were the most used in 71% and respectively
57% of the cases. Five (15%) studies used only cross-
validation, 19 (56%) studies used only an external test
set, 7 (20%) studies used both, and for three (9%)
studies this was not mentioned. Regarding the an-
notations, they were mainly provided by a single
clinical expert (44%), multiple experts (21%), or
trained researchers under supervision of a clinical
expert (24%).

Risk of bias
For all included studies we found quality scores be-
tween 2 and 8, with a median of 5. The total quality
score for each study can be found in Table 1, and the
scores given per item can be found in Table S2 in
Supplementary Material 5. There were only four (7%)
studies using longitudinal data29,48,49,74 and only two of
the studies gave an unreproducible description of their
method.67,76 Furthermore, 27 (49%) studies had, be-
sides qualitative and/or quantitative reporting of
outcome, additionally multiple raters or compared their
result to known clinical outcomes. Regarding analysing
the influence of confounders, 19 (35%) studies did not
adjust or analyse the influence of at least one of the
key confounders (GA, acquisition quality or body mass
index) and only four (7%) studies performed an anal-
ysis to identify or adjust for additional confounders
such as, challenging fetal position, abdominal scarring
and uterine fibroid,67 fetal position, maternal body
habitus and prior uterine surgery,27 maternal age,
pregnancy duration, birthweight, number of ultra-
sound examinations,49 maternal age and fetal
position.62
www.thelancet.com Vol 89 March, 2023
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Author Year Type of
method

Brain
structure

Gestational
age

Description of method Learning strategy (if applicable) US machine,
US Probe,
2D/3D

Number of
subjects

Outcome

Al-Bander
et al.

2019 DL Fetal head 10–40 A FCNN was trained for segmentation
and refined using ellipse fitting.

Data-augmentation: cropping, rotation,
zooming
Annotations: during acquisition, trained
medical researcher
Strategy: no cross-validation, external test set

Voluson E8 or 730†,
?,
2D

335 Dice = 0.98

Gofer
et al.

2021 ML Fetal head,
CP

12–14 Two segmentation algorithms were compared:
1) statistical region merging, which uses image
intensities, and 2) trainable Weka segmentation,
which is based on an ensemble of machine
learning algorithms. Trainable weka
segmentation performed best.

Data-augmentation: none
Annotations: two obstetricians with a
subspecialty in fetal imaging
Strategy: k-fold cross-validation, no
external test set

Voluson E10†,
6–12 MHz TVa,
3D

56 Mean percentage
error: 1.71%

Gutierrez-
Becker et al.

2013 ML CER 18–24 A point distribution model was used. This model
is a special case of statistical shape model. Thirty
points were used to segment the cerebellum.

Data-augmentation: none
Annotations: expert fetal medicine specialist
Strategy: 20-fold cross-validation, no external
test set

Voluson 730†,
4–8 MHz,
3D

20 Dice = 0.80

Hesse et al. 2022 DL CP, LV,
CSP, CER

18–26 A 3D U-net for segmentation was trained using
only 9 fully annotated volumes, combined with
many weakly labeled volumes obtained from
atlas-based segmentations.

Data-augmentation: none
Annotations: two experienced sonographers
Strategy: no cross-validation, external test set

Philips HD 9‡,
TAb,
3D

278 CP = 0.85
LV = 0.85
CSP = 0.78
CER = 0.90

Li et al. 2020 DL Fetal head 10–40 A FCNN was trained, combined with ellipse
fitting for the final segmentation.
Simultaneously, fetal head measurements were
performed with a special regression branch to
regularize the segmentation result.

Data-augmentation:
Brightness, contrast, sharpness, Gaussian blur,
flipping
Annotations: during acquisition, trained medical
researcher
Strategy: no cross-validation, external test set

Voluson E8 or 730†,
?,
2D

335 Dice = 0.97

Moccia
et al.

2021 DL Fetal head 10–40 A CNN was trained to predict the HC distance field,
bounding box, and segmentation of the fetal head.
The CNN is based on a recurrent neural network,
which is a specific type of architecture designed to
propagate information across images.

Data-augmentation: scaling, translation,
rotation and shearing
Annotations: during acquisition, trained
medical researcher
Strategy: no cross-validation, external test set

Voluson E8 or 730†,
?,
2D

335 Dice = 0.98

Shu et al. 2022 DL CER 18–26 A U-net was combined with an adaptive soft
attention module for segmentation. This
attention module makes use of convolutional
layers instead of fully connected layers.

Data-augmentation: flipping, Gaussian blur
Annotations: radiologist of the ultrasound
department
Strategy: no cross-validation, external test set

Voluson E10†,
2.5–7 MHz Tab,
2D

192 Dice = 0.91

Wu et al. 2017 DL Fetal head 19–40 A cascaded FCNN was trained, which consists of
multiple so-called levels of a FCNN. Every level uses
information learned in the previous level.

Data-augmentation: none
Annotations: during acquisition, trained
medical researcher
Strategy: no cross-validation, external
test set

?,
?,
2D

236 Dice = 0.98

Yaqub et al. 2013 ML CP, CSP,
CER, VC

18–26 A Random Forest was trained for segmentation.
Distance features for the skull, the center of the
head, and eye orbits were used besides classical
image features.

Data-augmentation: none
Annotations: experienced clinician
Strategy: no cross-validation, external test set

iU22‡,

?,
3D

20 Dice:
CP = 0.79
CSP = 0.74
CER = 0.63 VC = 0.82

Legend to brain structures: CER = cerebellum, CP = choroid plexus, CSP = cavum septi pellucidi, LV = lateral ventricles, VC = posterior ventricular cavity. Legend to description of method: CNN = convolutional neural network, FCNN = fully
convolutional neural network; a brief explanation can be found in Supplementary Material 4. 2D = two-dimensional, 3D = three-dimensional, a * indicates longitudinal data. †GE Medical Systems, Zipf, Austria, ‡Philips, Bothell, WA 98021, USA.

Table 4: Detailed information on the segmentation studies.
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Fig. 4: Overview of the Dice score for segmentation of the fetal head in the trans-ventricular (TV) plane, cerebellum (CER) and choroid
plexus (CP) per week gestational age. The thickness of the bar indicates the number of subjects used for validation: thinnest: <35 subjects,
middle: between 35 and 250 subjects, thickest: >250 subjects. A white bar with a black edge indicates that no Dice score was reported. The Dice
score is shown up to the 20th week, since we were interested in the performance during early pregnancy.
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Discussion
First trimester 3D ultrasonography screening of the
brain has the potential for early detection of major ab-
normalities.11 This is supported by the recent recom-
mendation of the ISUOG to perform a 3D, or if not
feasible a 2D, neuro-sonographic screening. However,
this screening currently relies on manual measure-
ments and visual inspection of the ultrasound scans,
which is time-consuming, prone to human errors, and
requires additional imaging and interpretation exper-
tise. However, this expertise is not always present in
clinical practice.10 Computational methods can these
analyses, hence the aim of this systematic review was to
gain insight into the future research directions needed
to bring automated early-pregnancy ultrasound analysis
into clinical practice.

In this review the most studied topic was biometry
(40%), followed by standard plane detection (29%),
segmentation (16%), growth models (7%), visualization
(4%), abnormality detection (2%), and quality enhance-
ment (2%). We observed a focus on fully automated
learning-based methods, as 76% of the studies used an
automatic method and 62% used a learning-based
method. However, of the 17 studies using proprietary
software available in clinical practice only one is
learning-based.26 Hence, automated learning-based
methods are being developed, but are not yet widely
integrated in software used in clinical practice. A
possible explanation for this, is that early brain ultra-
sonography is not yet standard practice worldwide. This
is due to the fact that early brain ultrasonography
requires a high level of expertise, which is not available
in all clinical settings.10

The fact that early brain ultrasonography is not yet
widely part of clinical practice, is reflected in this review:
most studies do not evaluate their method using data
from clinical routine practice: the data source is either
unclear (15%) or the used data was acquired for research
purposes (40%). Moreover, only 13% of the studies used
clinical routine data depicting abnormal development in
the development of their method, and none of these
studies were learning-based. However, abnormal devel-
opment often leads to structural malformations of the
brain, which may be wrongly handled by learning-based
methods that are not trained and evaluated for these
cases. Hence, our first recommendation is that there
should be more focus on developing and evaluating
automated learning-based method using clinical routine
data depicting both normal and abnormal development.
Evaluation on clinical routine data shows the potential
benefit a computational method can have in terms of
accuracy and time needed, which can lead to integration
by commercial parties into already widely used software.

We observed that only 31% of the included studies
focused on the first trimester. An explanation might
be that there is a limited amount of ultrasound data
available for method development, both from clinical
practice and research. This is due the fact that recom-
mendation by the ISUOG to perform ultrasonography
of the brain in this period is fairly recent and that only
two studies shared their data publicly. The dataset by
van den Heuvel et al. consists of data covering all three
www.thelancet.com Vol 89 March, 2023
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Topic Author Year Type of
method

Brain
structure

Gestational
age

Description of method Learning strategy
(if applicable)

US machine,
US Probe,
2D/3D

Number
of
subjects

Outcome

Abnormality
detection

Zhou et al. 2021 DL Brain 17–32 A CNN for classification was
combined with the Java fuzzy
cognitive maps algorithm to filter
the found features before final
classification.

Data-augmentation: none
Annotations: diagnosed
based on the pathological
results of the fetus
Strategy: not mentioned

Voluson E8§,
?,
2D

? Accuracy:
Week 17–19: 0.64

Growth
model

Bihoun et al. 2020 N BPD, HC 16–36 Comparison of the resulting growth
curve based on Salomon equation
and the Intergrowth 21-st growth
curves was performed, for a
population from rural Burkina Faso.

FFsonic UF-4100†,
3.5–5.0 MHz TAb,
2D

276 Error = - 0.01 mm
for HC

Growth
model

Burgos-
Artizzu et al.

2021 DL TT 16–42 A CNN, pre-trained to detect key
brain structures, was trained to
estimate the gestational age from
the brain image. Within the
architecture of the CNN, regular
convolutions were replaced by a
series of slightly altered
coordinated convolution layers,
which incorporated image
resolution into the computation.

Data-augmentation: none
Annotations: GA was
determined by CRL
measurements on
first-trimester ultrasound
Strategy: no cross-validation,
external test set

Voluson E6, S8 and S10§,
and Aloka¶,
3–7 MHz Tab,
2D

598 Error: 14.2 days

Growth
model

Namburete
et al.

2014 ML Silvian fissure 18–27 A Regression Forest was trained
on image features extracted
from the Silvian fissure to
predict the GA of the given
image.

Data-augmentation: none
Annotations: combination of
first day last menstural period
(LMP) and first trimester US
measurements
Strategy: 12-fold cross-validation,
external test set

HD9‡,
2–5 Mhz,
3D

32 Error: left
hemisphere = 6.11
days
right
hemisphere = 6.66
days

Growth
model

Wyburd et al. 2021 DL Sylvian fissure,
parieto-occipital
fissure, calcarine
sulcus

19–30 The 3D VGG-Net and 3D ResNet
architectures were compared to
predict the GA from the different
structures. Furthermore, attention
maps for GA prediction were studied
for the different structures.

Data-augmentation: none
Annotations: combination of
first day last menstural period
(LMP) and first trimester US
measurements
Strategy: 12-fold cross-validation,
external test set

?,
?,
3D

811 Error:
Sylvian fissure: 3.4 days
Parieto-occipital
fissure: 4.9 days
Calcarine sulcus: 5.0
days

Quality
enhancement

Perez-
Gonzalez
et al.

2020 DL Brain 14–27 Several partially occluded
ultrasound images of the same
object were merged using a
pipeline of CNNs. Two CNNs
were used to segment the fetal
skull, one was used to register the
fetal brain to a common reference
space, and the final CNN was used
to merge different acquisitions
together by learning how to weigh
their influence on the resulting
image.

Data-augmentation: none
Annotations: expert obstetrician
Strategy: cross-validation, no
external test set

?,
8–20 MHz,
3D

18 Increase image
sharpness: 34.9%

Visualization Pooh et al. 2016 N Brain 8–31 HDlive§ software was used to
visualize the cerebral vascular
structure.

Voluson E10§,
6–12 MHz TVa,
3D

(Table 5 continues on next page)
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trimesters and can therefore be used to extend
methods that were initially developed for the second
and third trimester. However, this dataset consists
only of 2D slices of the trans-ventricular plane, which
are not usable for all studies presented in this review.
The second publicly available dataset by Burgos-
Artizzu et al. is not covering the first trimester, as it
starts at gestational week 18.23

Regarding the balance between 2D and 3 ultraso-
nography, we found 23 (43%) studies using 2D and 31
(57%) studies using 3D ultrasonography. Further-
more, we observed that for the studies using 2D ul-
trasonography the majority used an automatic (96%),
learning-based (65%) method, which was not the
case for 3D ultrasonography. This can partly be
explained by the two aforementioned publicly available
2D datasets,23,44 and partly by the fact that 3D ultraso-
nography is not yet widely integrated in clinical prac-
tice,11 which may lead to fewer available annotations.
Hence, the availably of a dataset containing also 3D
ultrasound would be beneficial to push the develop-
ment of automatic, learning-based methods.

Sharing data publicly is in some cases impossible
due to privacy regulations; therefore, another good
option is to share the program source code. Hence,
our second recommendation is that studies should
make their dataset and program source code publicly
available, especially for 3D ultrasonography during the
first trimester. Having the program source code
available would lead to more easy comparison between
methods, since every research institute can repeat the
analysis on their own available data. This was done for
none of the studies in the review, but is rapidly
becoming the standard as shown in the systematic
review of Shen et al., where over the last 10 years the
number of open source GitHub repositories,
providing code for medical applications, had an annual
growth rate of 55%.79 Another promising approach is
federated learning, where learning-based models are
trained locally and only the locally learned models are
shared and aggregated.80

An additional challenge for 3D ultrasonography is
that prior to biometry, growth modelling, abnormality
detection and visualization the required standard
plane must be detected. Only three (5%) biometry
studies in this review detected the appropriate stan-
dard plane, all other studies assumed its availabil-
ity.25,30,47 However, in clinical practice the appropriate
standard planes are not available and have to be found
manually by the sonographer. Hence for adoption in
clinical practice, the integration of standard plane
detection prior to other tasks is a topic that should be
studied in more detail.

All studies adequately reported their outcomes
qualitatively and/or quantitatively, and additionally
49% of the studies had multiple raters or compared
their results to clinical known values. Regarding the
www.thelancet.com Vol 89 March, 2023
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evaluation of the learning-based methods, 76% used an
external test set and 20% additionally performed cross-
validation. Furthermore, for 88% of the studies the an-
notations were made by, or under supervision of, one or
multiple clinical experts.

We found that 16 (29%) studies reported the
computational time, which ranged from 70 micro sec-
onds to 25 min. However, when a method is commer-
cialized, optimization steps are taken to minimize the
computation time. Furthermore, different computational
resources and data-types were used (2D/3D), which also
dramatically influences the computational time. There-
fore, the computation time reported by each study can
not be compared directly, and should be seen as an upper
estimate for the possible computation time in clinical
practice. For the adoption of such a method in clinical
practice, the computation time should be at least be
equally fast as manual analysis.

Finally, for the bias assessment of the included
studies, we obtained a relatively low median score of 5
out of 9. This is due to the fact that the ErasmusAGE
score was initially designed for epidemiological
studies, and although it can be adapted, the score is
biased towards this type of research. However,
currently there is no quality score tailored for
computational methods available. Therefore, we have
chosen to adapt the ErasmusAGE score, since it is
general, well validated and covers key points such as
description of methodology and quality of evaluation.
As a consequence, in our review, studies scored lower
due to the fact that only 5 (9%) of the studies used
longitudinal data and 19 (35%) studies did not adjust
or analyse for any confounding factors. Although in
the evaluation and development of computational
method the usage of longitudinal data is not neces-
sary, in some cases, such as growth models, it offers
more insight. For the other topics such as biometry,
segmentation and standard plane detection analysis of
confounding factors is to heavily penalized here.
Regarding the analysis of the influence by confound-
ing factors: it is known that image quality of ultra-
sound varies widely since it is operator and vendor
dependent15 and is influenced by the BMI of the
mother. Another challenging aspect for ultrasound
images of the fetus, are the rapid development during
early pregnancy and movements during acquisition.
Hence, our third recommendation is that every
computational method should be evaluated in terms of
robustness to at least these key confounders.

We have chosen to focus only on studies involving
the brain, since it is clearly visible during early ultra-
sonography, and its growth and structural development
continues throughout pregnancy. However, when
abnormal brain development occurs, this may affect the
growth and development of the entire embryo and fetus,
and thus may also become apparent when monitoring
the growth and development of other organs, or the
www.thelancet.com Vol 89 March, 2023
embryo and placenta as a whole. Similarly, other ab-
normalities not related to the brain, such as spinal and
cardiac congenital defects, could affect the development
of the brain. The influence of abnormalities in other
organs should therefore be taken into account when
monitoring growth and development of the brain.

We compared our findings to related systematic re-
views, and observed that Fiorentino et al. reviewed deep
learning methods for fetal ultrasound of all gestational
ages.16 They found, in line with our findings, that most
studies are about biometry and standard plane detec-
tion, and were mainly applied to second and third
trimester data. The most studied topic was the cardiac
system, followed by the brain. Furthermore, they found
three public datasets, two of which we found as well,23,44

and one additional public dataset by Rueda et al. for
head and femur segmentation in gestational weeks 21,
28 and 32.81 Fiorentino et al. stressed the importance of
automated analysis of first trimester data, as it can be
used to determine gestational age, whereas biometry at
later gestation can only be used to monitor growth
progress.

Although less common, during pregnancy MR
imaging can be used. We compared our findings to
systematic reviews about prenatal and neonatal MR
imaging of the brain, and firstly found that segmen-
tation is a well-studied topic, with respectively 3320,
1617, and 1418 automatic methods. Secondly, Oishi
et al. found 16 atlases, starting at the 20th week of
pregnancy, describing normal growth of the fetal and
neonatal brain which are publicly available.19 Finally,
for the neonatal and infant brain Li et al. found 5
datasets and 7 image processing tools which are
publicly available.17 Hence, we conclude that prenatal
and neonatal MR imaging of the brain is an active
field of research and sets a good example for early
brain ultrasonography in terms of making both data-
sets and program source code publicly available.
However, similar as for early ultrasonography, prena-
tal MR imaging of the brain is mainly focused at the
second half of pregnancy.

In summary, we recommend the following to
improve the adoption of automated learning-based
methods in routine clinical practice for early brain
ultrasonography:

1. We recommend that in the evaluation of computa-
tional methods routine clinical data depicting both
normal and abnormal development is used: this will
result in a direct reflection of the effect these
methods can have in clinical practice.

2. We recommend that studies should make their
dataset and program source code publicly available,
especially for 3D ultrasonography during the first
trimester. Sharing code and/or datasets allows re-
searchers of other institutes to evaluate and extend
already existing methods, for example by integration
19
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of different tasks such as standard plane detection
and biometry.

3. We recommend that studies pay more attention to
the influence of the key confounding factors, GA,
image quality and body mass index, on the accuracy
of their computational methods.

Bringing automatic methods to routine clinical
practice will not only drastically reduce the time needed
for measurements of the brain and for detection of
structural abnormalities, but it will also enable large-
scale data-driven model development. These models
may provide more detailed insight into the factors, such
as lifestyle and epigenetics, that influence growth and
development of the fetus. On the one hand, this insight
could lead to earlier and better diagnosis of neuro-
developmental disorders, which positively influences
treatment. On the other hand, this insight could
also contribute to prevention of neuro-developmental
disorders, for example by introducing periconceptional
lifestyle coaching focusing on the factors that influence
growth and development.82–87 Hence, introducing auto-
matic methods to routine clinical practice, especially
targeted at early pregnancy, may ultimately lead to better
neuro-development of the fetus.
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