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Introduction and aims of the thesis

The first draft of the human genome was stitched together in 2001 thanks to
billionaire efforts by both public (e.g. the Human Genome Project) and private
ventures (e.g. Celera Genomics). This milestone together with decades of prior
research on the central dogma of molecular biology, the genetic code, conserved
sequence motifs and the nascent discipline of bioinformatics, materialized in
the first human transcriptome and proteome; i.e. sequences for all human
RNA transcripts and proteins, respectively. This moment ignites the omics
revolution.

1. The human genome

DNA is the blueprint of life. Chemistry-wise, it consists of a non-identical
pair of polynucleotides strands that coil around one another in the shape of a
double-helix whose stability is owed to π-stacking and hydrogen bonds. Each
polynucleotide chain is itself conformed by nucleotide subunits with variable
bases, adenine (A), cytosine (C), guanine (G) and thymine (T), which are ar-
ranged in a specific configuration or sequence. Additionally, each strand con-
tains the same information since Chargaff pairing rules (A-T, C-G) determine
the sequence of its complementary strand [1]. The haploid human genome
comprises of more than 3 Gigabases (Gb) of DNA split between 23 linear
nuclear chromosomes (Chr1-22, ChrX, ChrY) and one circular mito-
chondrial chromosome (mtDNA or ChrM); the latter of only ∼16 kb [2].
ChrX and Y are the human allosomes (i.e. responsible for sex-determination):
healthy female and male nucleated diploid human cells carry either two copies
of ChrX or one copy of ChrX and Y, respectively. Conversely, autosomes
(Chr1-22) are found in duplicate independent of sex. The diploidy of nuclear
chromosomes is the result of the fusion of haploid meiotic products during
fertilization that preceded the making of a human individual. Each haplo-
type is said to be of paternal or maternal origin depending whether it derived
from the sperm or the egg cell, respectively. Elsewise, human cells present
variable number of mitochondria and variable mtDNA copies per mitochon-
drion. Interestingly, since oocytes are the major mitochondrial contributor to
the zygote, mtDNA has matrilineal inheritance [3]. Covering some descrip-
tive statistics on the human genome, solely around 1.5 % of it encodes for
proteins; as per gene number, our current estimates oscillate around 20,000
protein-coding genes and 40,000 non-coding genes (i.e. coding for RNAs that
are not translated to protein) [4]. Moreover, over 50 % of the human genome
consists of repetitive sequences; to highlight a few examples, transposable el-
ements such as LINE-1 (17.5 %), SINE/Alu (10.5 %) or LTR/ERVL (5.8 %)
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predispose sequence rearrangements via homologous recombination [5].

2. Inter-individual genetic variation

Whilst the great majority of the genome is invariant across human individ-
uals, relevant differences in sequence can be observed at specific locations
(on average, once every 500-1000 bp [6]. This number does not apply in the
comparison of monozygotic (MZ) twins, that derived from the same fertilized
egg, and thus, share the entirety of their genomes in all practicality (except
for post-twinning somatic mutation events). Genetic variation can also be
population-dependent: for example, African populations are more geneti-
cally diverse than European populations (expected outcome from the out of
Africa model) [7]. In any case, the relatively high genetic similarity between
human individuals justifies the use of a common reference genome: the en-
tire sequence of a genome can be guessed by solely specifying the genotype
at polymorphic regions. This powerful idea was the germ of the International
HapMap Project (HapMap) [8] and the 1000 Genomes Project (1KGP) [9],
which themselves built upon the resources that were made available by The
Human Genome Diversity Project (HGDP): an initiative that pre-dates the
Human Genome Project and that generated more than 1000 cultured lym-
phoblastoid cell lines (LCLs) from more than 50 indigenous world populations
[10]. The aims of HapMap and 1KGP were to catalogue human genetic varia-
tion and to quantify minor allele frequencies (MAF) and linkage disequilibrium
(LD). The latter is the tendency of nearby variants to be inherited in block (as
microhaplotypes). This is the case since the chance that a recombination
event happens between genetic variants diminishes the closer the two variants
are (violating Mendel’s law of independent assortment). To quantify LD, let
us have two neighbouring genetic variants whose alleles are A/a and B/b, re-
spectively. The LD coefficient, DAB = pAB − pA · pB (i.e. covariance between
allele indicator variables) quantifies deviations from independence for a pair
of Bernoulli random variables [11]. Under our modern perspective though,
the idea of a single linear reference genome is soon to be outdated due to
the problem of reference bias: sequencing reads covering genetic variants with
matching allele to the reference genome are more likely to align than those that
do not; these might not even align at all if the alleles are different enough.
As an alternative, graph genomes (i.e. pangenomes) are proposed and new
tools are being developed to cope with this new genomic representation. For
now, the biggest limitation is computational performance but may soon be
overcome with a new generation of algorithms [12].

In any case, all genetic variants in the human species initially originated
from germline mutations, meiotic recombination events and very rarely hor-
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izontal gene transfer. For a newly created allele to avoid fixation, it must
confront several evolutionary forces [13]:

• Genetic drift: random fluctuations in allelic frequencies due to sam-
pling variability. In general, according to the neutral theory of molecular
evolution, since most newly created mutant alleles are selectively neu-
tral, their propagation is entirely in the hands of genetic drift.

• Natural selection: positive or negative selection when a given allele
confers an evolutionary advantage or disadvantage, respectively. Vari-
ants nearby may also experience selection (genetic hitchhiking).

• Population bottlenecks: strong reduction in population size can have
drastic effects on allelic frequencies.

• Migrations: transfer of alleles from one population to another (gene
flow), establishment of a new population originating from a small set
of migrators (founder effect), low evolutionary success in the crossing of
distantly related populations (outbreeding depression).

• Non-random mating: inbreeding (favoured crossing between strongly
related individuals), sexual selection (crossing occurs between opposite
sex), assortative mating (preferential mating driven by phenotype).

Theoretically, in the absence of evolutionary forces, the Hardy-Weinberg
equilibrium (HWE) applies: after one generation, the allelic frequencies of
a bi-allelic variant with alleles A/a reach equilibrium at pA and pa, where
f∞(AA) = p2A, f∞(aa) = p2a and f∞(Aa) = 2 · pA · pa and where pA =
f0(AA)+1/2·f0(Aa) and pa = 1−pA, f0 and f∞ denote initial and equilibrium
frequencies, respectively [13]. In practice, allelic and haplotype frequencies and
thus LD, are sensitive indicators of past evolutionary and demographic events
as well as the patterns of geographic subdivision [11].

For the sake of clarity, I propose the following classification of genetic
variants:

• Single-nucleotide variants (SNPs): substitution of a single nucleotide.

• Insertion-deletions (indels): a sequence of < 1 kb that can be present
(insertion) or absent (deletion).

• Small copy number variation (CNV): a sequence of < 1 kb with
variable number copies with more than two alleles. For example, short-
tandem repeats (STRs) are a variable number of repetitions of a 2-6 bp
motif, instrumental for forensic human identification.
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• Structural variants (SVs): genetic variation over DNA sequence >
1 kb. It can be subdivided into large indels (e.g. large duplications),
large CNV, inversions and translocations (fragment exchange between
chromosomes).

• Aneuploidies: gain or loss of entire chromosomes.

The success of HapMap and 1KGP in the mapping of common genetic
variants and the development of cheap genome-wide genotyping technology
(i.e. SNP microarrays) set the start of the era of genome-wide associa-
tion studies (GWAS) in where the genotypes of genetic variants and phe-
notypic traits were tested for association at a large and unbiased scale. This
whole approach relies on LD: as long as a variant is genotyped in the same
LD block as a causal variant for a given phenotypic trait, it will give rise
to significance provided enough power; thus, reducing the genotyping density
requirements. To incorporate the effect of confounders, GWAS is typically
implemented via linear or logistic regression, depending on whether the stud-
ied trait is continuous or binary. For example, the top tens of population
structure principal components are typically included to avoid confounding by
biogeographic ancestry (BGA). Additionally, imputation is often employed to
expand the number of markers to test for association. This relies on avail-
able phased reference haplotypes. GWAS has enabled the discovery of tens
of thousands of genetic variants associated to a large diversity of cardiovascu-
lar, metabolic, immune and psychiatric disorders, cancer and cancer subtypes,
biometric measurements, response to drugs and many more [14, 15].

However, there are notable problems to this approach. To address
them, I first detour towards the concept of heritability. Following Fisher’s
decomposition of phenotypic variance, it can be written that [13, 16, 15]:

P = µ+G+ ξ

σ2P = σ2G + σ2ξ + 2 · Cov(G, ξ)

where P is a quantitative phenotypic trait or the continuous liability of a
binary outcome, µ is its population mean for that trait or its liability, G and ξ
the genetic and environmental components, respectively and Cov(G, ξ) is the
interaction between genetics and the environment for that given trait (often
referred to as G×E). I define broad-sense heritability, H2, as:

H2 =
σ2G
σ2P
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H2 is notoriously hard to estimate. Because of this, σ2G can be further
decomposed in an orthogonal fashion as:

σ2G = σ2A + σ2D + σ2e

where A (additive) includes the genetic contributions that can be added, D
(dominance) includes genetic variants for which the effects of a recessive allele
are masked by the effects of a dominant allele (i.e. allele-to-allele interactions
or a×a) and e (epistasis) includes interactions between different genetic vari-
ants (often denoted as G×G). This expansion inspires the definition of the
more attainable concept of narrow-sense heritability, h2:

h2 =
σ2A
σ2P

≤ H2

where the equality applies only when there are no G×E, G×G and a×a
interactions (Cov(G, ξ) = σ2D = σ2e = 0). h2 can be readily quantified via
twin, family studies and even population cohorts (since all human individuals
are residually related) [15]. For example, in the ACE twin model, the
phenotype trait’s variance is decomposed into three latent variables: additive
genetics (A), shared environment (C) and unshared environment (E). Since
MZ twins and dizygotic (MZ) twins share either 100 % or 50 % of variance
of A, respectively, and the entirety of the variance of C, we can write the
following twin-to-twin covariance matrices [17, 18]:

ΣMZ =

(
σ2P σ2A + σ2C

σ2A + σ2C σ2P

)
; ΣDZ =

(
σ2P σ2A/2 + σ2C

σ2A/2 + σ2C σ2P

)

Such parameters can be fitted via structural equation modelling from which
the narrow sense heritability can be estimated. For a rough approximation,
one can also use Falconer’s formula: ĥ2 = 2 · (r̂MZ − r̂DZ), where r̂MZ and r̂DZ

are the sample Pearson correlation coefficients between a quantitative trait
between MZ twins and dizygotic (DZ) twins, respectively. In general, the
beauty of ACE models is that they can estimate h2 without requiring any
genetic data [13]. Nonetheless, heritability estimates need to be taken with
a grain of salt: they rely on different assumptions and can significantly differ
between the approach employed. Moreover, it does not represent a universal
constant but rather a descriptive statistic of a cohort. Heritability may also
change in time: height used to be a trait dominated by environmental factors
(mostly diet); nowadays, in the developed world, since undernutrition is rare,
differences in height can be mostly attributed to genetics (hence, inflating its
heritability) [15].
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Having this background in mind, I formulate the missing heritabil-
ity problem: a huge gap exists between the heritability of traits estimated
via twin models and that, accounted by genetic variants of common variants
(ĥ2SNP ≤ ĥ2ACE). For the estimation of the latter, given the ill-posed nature
of the problem (number of markers ≫ number of samples), it requires the as-
sumption of additivity. In its most popular interpretation, it serves as strong
evidence to reject the common disease-common variant hypothesis. In other
words, most human traits seem to be multifactorial/multi-genic (or even om-
nigenic), where a large number of low-frequency genetic variants contribute
to the emergence of phenotype, for which the GWAS approach is suboptimal.
Nonetheless, some authors also argue that frequent variants at non-mappable
or badly assembled regions [19], systematically underrepresented genetic vari-
ant types (SVs and medium-sized indels) [20] or variants located at ChrX,
ChrY and ChrM (typically excluded during GWAS analysis) [21], need yet
to be accounted for in current heritability estimates. Some also suggest that
ACE heritability estimates themselves can be inflated [22], while others pro-
pose that dominance and epistasis have a non-negligible role in the resolution
of the missing heritability problem [23]. For example, with phenomena such
as compound heterozygosity, rare alleles manifest a recessive phenotype only
when they are both located on the same chromosome (i.e. phasing). Nonethe-
less, the details on this discussion are rather collateral for this thesis, but may
be consulted elsewhere. For all the above, this GWAS limitation has fuelled
the renaissance of familial aggregation studies in the investigation of genetic
diseases and phenotypic traits despite the additional participant recruitment
constraints required [24, 15].

Secondly, beyond heritability, the GWAS methodology presents additional
limitations in that LD strongly hinders the mapping of causal variants
(i.e. fine-mapping), a requirement to establish biological relevance. This can
be partially mended by meta-analysis on cross-ancestry cohorts that exploits
variation in LD patterns across ancestry to further pinpoint responsible genetic
variant(s). Alternatively, the combination with other omics can be used for
fine-mapping; however, since there is a strong scarcity of confirmed causal
variants that can be used as a gold standard, it is hard to quantify the success
of any proposed approach. Such scarcity inevitably results from the limitations
to perform controlled experiments in human genetics due to ethical boundaries
together with the higher cost associated with functional studies. In fact, even
when the causal variant is known, since most GWAS hits map to the non-
coding genome, it is very hard to materialize a mechanistic model [24, 15].

Thirdly, as a result of the hypothesis-free nature of GWAS, a notable mul-
tiple testing burden must be confronted. The Bonferroni multiple testing
threshold (α/n) is too conservative since variants are not typically indepen-
dent of one another (the closer they are, the higher their dependence; i.e.
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LD). Typically, the pseudo-arbitrary threshold of 5 × 10−8 is set (reasonable
for MAF ≥ 5 %), but this is not free of critiques given that, in theory, it de-
pends on the patterns of LD and allelic frequencies. For example, the multiple
testing burden for a GWAS on a certain set of variants will be higher for a
cohort composed by individuals with an African BGA compared to that of a
European BGA (variants are more independent since the African LD blocks
are smaller). Thus, there is strong interest to rescue sub-threshold causative
variants, many of which are expected to be of low allelic frequency [25, 26].

Changing the paradigm, the discovery of novel associations inspires the
reverse question: can we predict human traits from genetic data? For
such aim, variants with no causal link with the trait may still be included as
predictors as long as they can provide indirect information via LD. This pursue
provides not only great promise in disease diagnostics, personalized medicine
or forensic phenotyping, but also dystopic repercussions in terms of ethics and
data privacy. However, the common realization of a relatively low percentage
of variance explained dampens the fulfilment of reliable prediction for most
phenotypic traits with the exception of Mendelian traits and a handful of ex-
amples: firstly, genetic variants that exhibit differences in allelic frequencies
(or LD) between populations (quantifiable by the fixation index, FST ), can be
used to estimate the contributions of different BGA for a certain genotype or to
predict admixture. This is of interest in forensics and in the clinic, since BGA
has been shown to be a risk factor for certain conditions such as asthma or car-
diovascular diseases. The persistence of BGA is challenged by inter-ancestry
mixing, promoted by the greater mobility of the modern world, globalisation
and reduced sociocultural barriers. Thus, BGA will increasingly be less infor-
mative with the pass of time, tending towards complete panmixis (FST = 0)
given enough time and assuming that sociocultural barriers completely disap-
pear [27]. Some regions in the human genome, however, lack recombination
and are more robust to such time-wise decoherence: haplotypes from the hy-
pervariable regions of mtDNA and the non-recombining segment of the Y-Chr
evolve slowly. Since they pose matri- and patrilineal inheritance, respectively,
they can be used to track the evolution of female and male human lineages in
so-called mitochondrial and Y-haplogroups. Assuming neutrality, we can esti-
mate the time to most recent common ancestor (TMRCA) in female and male
lineages (i.e. Mitochondrial Eve and Y-chromosomal Adam) which is roughly
of 99-148 thousand years (ky) and 120-156 ky, respectively [28, 29, 30]. Other
successful examples include the prediction of skin, hair and eye colour [31, 32],
hair loss [33], height [34] or the screening of breast/ovarian cancer in women
[14].

Alternative approaches have been devised for those traits at which pre-
diction is not possible from hundreds of markers. So-called polygenic risk
scores (PRS) aggregate the information from thousands or even millions
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of variants, sometimes including sub-threshold variants. To do so, strong as-
sumptions such as additivity are included to face number of markers≫ number
of samples. In practice, for most clinically interesting phenotypes, the perfor-
mance is rather limited even for highly heritable traits [15]. Of course, we
cannot forget that human traits displaying low h2, by definition, cannot be
predicted accurately from genomics only, opening opportunities for other
omics towards this end.

3. The human epigenome

If we stitch together the approximately 6.3 Gigabases (Gb) of the diploid hu-
man genome into one linear sequence, it would measure over 2 meters long
(given a height 0.34 nm/bp [1]. However, an average human cell nucleus is
approximately spherical with a diameter of 10 µm [35]. Thus, DNA must be
bent to fit within the nucleus, but it is among the stiffest known polymers [36].
To overcome its large persistence length, cationic histone octamers (typically
pairs of canonical H2A, H2B, H3 and H4) interact with the anionic phosphate
backbone resulting in the winding of 146 bp of DNA 1.65 times around each
protein core as a left-handed super-helix; this unit is denoted as the nucleo-
some. Each nucleosome is interspersed by 20-30 bp of linker DNA (i.e. histone
unbound state) forming so-called beads-on-a-string. Additionally, it can inter-
act with a histone H1 subunit per nucleosome to form the 30 nm chromatin
fibre state. Its most compact state consists of metaphasic chromosomes (as
typically observed on a karyotype). Any of these states may be loosely referred
to as chromatin. Nonetheless, DNA cannot be unwinded by topoisomerases
(and thus “read”) in its more condensed forms. As a result, the selective
de-condensation at specific loci determines the active part of the genome for
a given cell (euchromatin), whilst the compacted regions correspond to the
inactive regions (heterochromatin). These roughly correspond to the beads-
on-a-string state and 30 nm chromatin fibre states, respectively. Transitions
between one state to the other are mediated by chromatin re-modellers [1].

Before proceeding any further, it is worth reviewing the modern eu-
karyotic gene regulation model. several elements can be distinguished:
promoter, enhancer/silencer, 5’-untranslated region (5’-UTR), open reading
frame (ORF), 3’-untranslated region (3’-UTR) and polyadenylation signal
(PAS). The promoter contains a TATA-box, a sequence motif that enables
the recruitment of RNA-polymerase (RNA-pol), and other cis-regulating ele-
ments (CREs). The enhancer(s)/silencer(s) are distal sequences (up to 1 Mb)
located upstream or downstream from the gene that may promote the acti-
vation or repression of a gene, respectively, via chromatin looping. Solely the
5’-UTR, ORF and 3’-UTR are transcribed into a pre-messenger RNA (pre-
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mRNA) by RNA-pol. The 5’-end is typically modified by the 5’-cap (guanine
nucleotide connected via an unusual 5’ to 5’ triphosphate bond) while the
3’-end is polyadenylated if a PAS is present after the 3’-UTR. Subsequent
splicing by the spliceosome results in the removal of introns giving rise to the
messenger RNA (mRNA); solely the complete coding DNA sequence (CDS)
(corresponding to the stitched exons), flanked by the 5’-UTR and 3’-UTR, is
translated into protein by the ribosome, following the codon-amino acid cor-
respondence rules set by the genetic code [1].

With this in mind, epigenetics is defined as the study of mitotically-stable
changes in gene expression (or more generally in cellular phenotype) that orig-
inate from mechanisms other than changes in DNA sequence [37]. In practice,
the classification of mammalian epigenetic marks is based on which assay is
used for its detection and quantification (Fig 1):

• DNA base modifications. The most common base modifications in
human DNA are 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-
hmC), 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). In gen-
eral, only the first is considered to be of general biological relevance,
whilst the others are rather considered to be intermediate products of
the demethylation pathway (5-mC → 5-hmC → 5-fC → 5-caC → C),
though more and more studies challenge this preconception, especially
in neurons [38]. In any case, 5-mC and 5-hmC are the most studied
marks and can be quantified genome-wide via whole-genome bisulfite se-
quencing (WGBS), methylated DNA immunoprecipitation (MeDIP-seq),
methyl-CpG-binding domain sequencing (MBD-seq), TET-assisted pyri-
dine borane sequencing (TAPS), oxidative bisulfite sequencing (oxBS-eq)
or TET-assisted bisulfite Sequencing (TAB-seq).

• Chromatin accessibility and nucleosome positioning. Chromatin
accessibility refers to the degree to which nuclear macromolecules are
able to contact DNA in the context of chromatin [39]. It is sterically
impeded by histones themselves but also by the occupancy of chromatin-
binding factors and certain local topological properties of chromatin such
as supercoiling or G-quadruplexes [40]. Nucleosome positioning indi-
cates the relative location of nucleosomes with respect to the genomic
DNA sequence; certain motifs can favour strongly-positioned nucleo-
somes in vivo. Both concepts are strongly-related and can be jointly-
profiled genome-wide via micrococcal nuclease digestion with deep se-
quencing (MNase-seq), formaldehyde-assisted isolation of regulatory el-
ements (FAIRE-seq), DNase I hypersensitive sites sequencing (DNaseI-
seq) or assay for transposable accessible chromatin sequencing (ATAC-
seq).
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Figure 1: The diverse mechanisms in epigenomics. Genomic DNA associates with histones in the
nucleoplasm to form nucleosomes. Genomic DNA presents increasing degrees of of condensation:
naked double helix > beads-on-a-string > 30 nm fiber ≫ mitotic chromosomes. Histones tend
to suffer a wide range of post-translational modifications, especially on their N-terminal tails; the
patterns of which are of utmost functional relevance (i.e. histone code). Additionally, chromatin
remodellers may display preference towards specific histone variants. Chromatin also forms loop
structures, stabilized by CTCF and cohesin; chromatin looping between enhancers/silencers and
promoters is a common genic feature. DNA itself can be directly modified; 5-mC in the context of
CpG sites is the most common modification in the context of mammalian cells. Additionally, small
non-coding RNAs are common epigenetic regulators. Lastly, RNAs also suffer epitranscriptomic
modifications (e.g. N6-methyladenosine). Altogether, these processes conform the epigenome.
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• Histone modifications. They are post-translational modifications (PTMs)
on histones that make up nucleosomes, especially concentrated on their
cationic N-terminal tails. The most studied histone modifications are
activatory marks H3K9ac (i.e. acetylation at lysine 9 of histone H3),
H3K14ac, H3K27ac or H3K4me3 (i.e. trimethylation at lysine 4 of hi-
stone H3) and repressive marks H3K9me3 and H3K27me3, but many
more have been described (other PTMs and on other histones and amino
acids). The hypothesis of the histone code proposes that the combinato-
rial repertoire of histone modifications conducts fine genomic regulation
[41]. These can be quantified via chromatin immunoprecipitation (ChIP-
seq), cleavage under targets and release using nuclease (CUT&RUN) or
cleavage under targets and tagmentation (CUT&TAG);

• Histone variants. These are alternative histones that can substitute
core canonical variants. For example, CENPA is an H3 histone variant
that specifically localizes at centromeric DNA nucleosomes during mi-
tosis to assemble the kinetochore complex [42]. They can be quantified
genome-wide also via ChIP-seq, CUT&RUN or CUT&TAG.

• Non-coding RNAs (ncRNAs). These include regulatory RNAs such
as small interfering RNAs (siRNAs), micro-RNAs (miRNAs), PIWI-
interacting RNAs (piRNAs), long non-coding RNA (lncRNAs) or cir-
cular RNAs (circRNAs) [43, 44], which can be quantified genome-wide
via non-coding RNA-seq.

• RNA base modifications. These include the set of biochemical modi-
fications to the transcriptome (epitranscriptomics). The most character-
ized mark is N6-methyladenosine [45]. It can be quantified genome-wide
via RNA immunoprecipitation (RIP-seq).

• Chromatin conformation. This refers to the spatial organization of
chromatin in the nucleus, including chromosomal territories: how chro-
mosomes are distributed in the nucleoplasm; inter-chromosomal con-
tacts: how different chromosomes physically interact with each other;
lamina-associated domains (LADs): how certain regions of the genome
bind to the nuclear lamina; topologically-associated domains (TADs):
how different regions within a chromosome interact forming stable loop
structures (e.g. promoter-enhancer interactions). It can be quantified
genome-wide via Hi-C [46].

The latter can be described by two non-mutually exclusive models:

• Loop extrusion model. CCCTC-binding factor (CTCF) is an abun-
dant protein with a large number of binding sites throughout the genome,
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so called CTCF binding sites (CTCFBS). The toroidal-shaped cohesin
complex binds chromatin and extrudes it through its hole to form a
loop; this loop is enlarged until CTCFBSs are reached at either side of
the stem. The complex is detained due to the strong interaction between
CTCF and cohesin and thus stabilizing the loop [47].

• Liquid-liquid phase separation model. Certain proteins contain-
ing intrinsically-disordered domains (IDSs) are multivalent and weakly
self-interacting. Promoted by molecular crowding in the cell, when self-
interactions are more thermodynamically favourable than interactions
with the solvent, it may result in the formation of phase-separated per-
meable liquid condensates. This is a membrane-less separate compart-
ment that may have alternate chemical properties (solubility, density,
viscosity, etc). The most known examples in the nucleoplasm include
the nucleolus, Cajal bodies, PML nuclear bodies, nuclear speckles and
paraspeckles [48].

In general, for every epigenetic mark, we can distinguish readers, writers
and erasers. To name a couple of examples: bromodomain (BrD)-containing
proteins, histone acetyl transferases (HAT), histone deacetylase (HDAC), re-
spectively for histone acetylation; Methyl-CpG binding domain (MBD) pro-
teins, DNA methyltransferases (DNMT) and ten-eleven translocation (TET)
methylcytosine dioxygenases, respectively for DNA methylation. As a result,
epigenetic marks are dynamic [37]. Epigenetic marks are also redundant and
thus are highly correlated with one another complicating their study. At-
tempts to distil several of these epigenetic marks into a single representation
have been very insightful. For example, the 15-state hidden Markov model
(HMM) built from ChIP-seq (H3K4me1, H3K4me3, H3K9me3, H3K27me3,
H3K36me3, H3K9ac, H3K27ac), DNaseI-seq, WGBS and RNA-seq classifies
genomic regions into 8 active states and 7 repressed states [49].

4. DNA methylation

DNA methylation is so far the most characterized epigenetic biomarker (Fig
2). In mammals, it almost exclusively occurs in the form of 5-mC at the con-
text of CpG sites (cytosine followed by guanine in 5’→3’ orientation) [50]. In
contrast, examples of CpH-methylation (H: A/C/T) are rare and restricted
to special cell types, typically in neurons [51]. Also, mtDNA is generally
considered to be fully unmethylated, although some controversial claims have
challenged this assumption [52]. When the cytosines at each strand of a CpG
site have opposing methylation state, it is said to be hemi-methylated; this
is rarely the case for cells during interphase. However, during S-phase, since
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Silencing selfish elements Embryonic development

X-inactivation Imprinting

Gene bookmarking Ageing

Figure 2: Functions of DNA methylation in mammals. Hyper-methylation of repetitive regions
promotes chromatin condensation, which results in the silencing of selfish elements such as retro-
viruses or transposable elements. Similarly, to avoid ChrX double-dosage in female cells, one of the
haplotypes is targeted for hypermethylation-mediated condensation. During M phase, genomic DNA
is condensed to form chromosomes. Since daughter cells need to re-establish their gene expression
profiles to avoid loosing their cellular identity, gene bookmarking via DNA methylation is key. DNA
methylation changes are associated to epigenetic reprogramming and differentiation during embry-
onic development. Genomic imprinting is the cellular ability to remember the parent-of-origin for
each haplotype; this is associated to DNA methylation changes. DNA methylation across the genome
may fluctuate with the pass of cellular generations; ageing-associated DNA methylation changes can
occur in a synchronised-fashion between different individuals (epigenetic clock) or not (epigenetic
drift).

DNA polymerase normally catalyses the addition of unmethylated cytidine,
both leading and lagging strand become temporarily hemi-methylated. This
is partly resolved by maintenance DNMT1, a core member of the replication
fork with high affinity for hemi-methylated DNA. Full resolution of hemi-
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methylated DNA is only achieved after a replication-independent polishing
phase a posteriori [53]. This whole process ensures mitotic-stability of
DNA methylation. In contrast, DNMT3a and DNMT3b, with low affin-
ity for hemi-methylated DNA, regulate de novo or targeted methylation at
particular loci, assisted by cofactor DNMT3L. Furthermore, TET1-3, catal-
yse de novo demethylation [50]. All human DNMT and TET enzymes are
highly processive (can catalyse subsequent reactions without separating from
the template) resulting in DNA co-methylation between nearby CpG sites [54].

There are more than 30 million CG dinucleotides in the human genome;
however, this dinucleotide is significantly underrepresented because of its mu-
tagenic potential in its methylated form. The spontaneous deamination of
5-mC to thymine generates a violation of Chargaff pairing rules which the
DNA mismatch repair (MMR) may resolve wrongly favouring A:T instead of
G:C, causing a de novo mutation [50]. In fact, CpG sites tend to cluster into
so-called CpG islands which are found in more than 50 % of the promoters of
mammalian genes [55]. Notwithstanding, the majority of CpG dinucleotides
are actually found in repetitive DNA. Hypermethylation of repetitive regions
enables their hyper-condensation, helping preserve genome stability from po-
tentially destructive recombination events. Moreover, it is key in the silencing
of selfish elements such as retroviruses or transposable elements [56]. DNA
methylation is also important in gene bookmarking. M phase requires the
hyper-condensation of chromatin to form metaphasic chromosomes to enable
equitable chromosomal segregation. Thus, after every cell division, the tran-
scriptome expression programme needs to be restarted from scratch. However,
this is only possible if certain marks (such as DNA methylation) have been
left on the genomic DNA to serve as effective cellular memory [57].

More importantly, DNA methylation is a master regulator of mam-
malian development. DNA methylation profiles are erased twice during
development (i.e. epigenetic reprogramming). Firstly, upon fertilization, the
newly formed zygote suffers rapid DNA demethylation (slower for the mater-
nal haplotype), reaching lowest levels during the morula stage; only with the
formation of the blastocyst, a new wave of re-methylation takes place retriev-
ing prior levels of methylation. Secondly, after implantation in the uterus,
primordial germ cells (PGCs) from the embryo segregate and migrate to the
gonadal ridge where they suffer two phases of methylation: a first via passive
and second via active demethylation, reaching the lowest methylation levels
DNA methylation of any cell. These unmethylated PGCs will eventually dif-
ferentiate to become gametes at some point after birth depending on the sex
of the embryo [58]. Epigenetic reprogramming is relevant in the discussion
of trans-generational epigenetic inheritance, a concept that challenges
neo-Darwinism, but not free of controversy in humans; this is the transmis-
sion of epigenetic information across generations. For epigenetic marks arising
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from environmental variables, this can be considered inheritance of acquired
traits (neo-Lamarckism). This phenomenon is actually quite common in plants
(Lamarck was indeed a botanist). In humans, since epigenetic reprogramming
erases almost the entirety of the epigenome, changes established at the level
of meiotic products are unlikely to pass on (but not impossible). However, we
cannot ignore that other molecules, such as RNA, proteins and metabolites
are transmitted to the zygote from parental gametes; thus, these may mediate
the so-called intergenerational inheritance (from parents to offspring) [59, 60,
61].

Related also to development, since female cells possess ChrX in dupli-
cate, one of the copies is randomly inactivated during gastrulation (i.e. X-
inactivation) in order to avoid double dosage with respect to the male coun-
terpart. This is correlated with the hypermethylation of the inactive chromo-
some and the chromosome-wide tethering of the X-inactive specific transcript
(Xist) lncRNA. The inactive X-Chr becomes highly condensed heterochro-
matin, observable under the microscope as the so-called Barr body. Since this
process is random, in principle, female cells are mosaic with respect to the ex-
pression of ChrX genes. By chance, each haplotype is expected to contribute
to 50 % of the cells. However, skewed X-inactivation has been described as a
marker of clinical significance [62, 63].

Furthermore, DNA methylation is involved in genomic imprinting, this
is parent-of-origin dependent RNA mono-allelic expression which results in
effective hemizygosity for imprinted loci. Imprinting is necessary for develop-
ment and it explains why the transfer of two male or female pronucleus to
enucleated egg cells give rise to inviable embryos in mice. In fact, the an-
drogenetic embryos result in exorbitant placenta and small embryos whilst
gynogenetic embryos give rise to the opposite [64]. This experiment sets the
ground for the parental conflict hypothesis: imprinting could be the result
of differing evolutionary interests for each parent: the mother’s is to conserve
resources for her own survival and her future offspring whilst the father’s is to
give the greatest chance to the current offspring at the expense of the mother
[65]. In any case, imprinting can be primary (established during spermatogen-
esis or oogenesis) or secondary (established after the formation of the zygote)
and it is regulated by so-called imprinting centres (ICs). Curiously, many sites
in the genome have been described with so-called polymorphic imprinting; im-
printing that only occurs in certain individuals [66]. In practice, imprinting
can be mapped via allele-specific expression (ASE) or allele-specific methy-
lation (ASM). Both ASM and ASE identify parent-of-origin effects by using
heterozygous SNP to tag the maternal and paternal allele. In ASE, the RNA
expression per allele obtained in an RNA-seq experiment is compared via a
binomial test; in ASM, the relative counts of methylated and unmethylated
CpG per allele obtained in a WGBS experiment are compared via a Fisher’s
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exact test (Fig 3).
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Figure 3: Statistical approaches in epigenomics. Given sample size n and number of variables
m (m + 1 with intercept), each test is performed per CpGj . (A) EWAS on an outcome y of a
binary or (B) continous nature, where X′ is equal to X but replacing column corresponding to DNA
methylation at CpGj(β) by y. Two equivalent formulations are possible for (B). (C) Additive model
for the statistical analysis of mQTL. Graphical representations (A-C) are solely for visualization
purpose since plots should be of dimension m+2 to properly account for all covariates. (D) Typical
2× 2 contigency table for ASM tested by a Fisher’s exact test.

5. Variation in the epigenome

Unlike the genome, the epigenome changes drastically between tissues within
a same individual. The International Human Epigenome Consortium (IHEC)
which itself can be decomposed into the encyclopaedia of DNA Elements (EN-
CODE), the NIH Roadmap Epigenomics project, the BLUEPRINT epigenome
project, among others, has led the generation of high-resolution human refer-
ence epigenomes for a wide variety of tissue types and cell lines. The epige-
nomic marks covered include DNA methylation, histone modification, chro-
matin accessibility, coding and non-coding RNA expression [67]. However,
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epigenetic inter-individual variation does not fall under the scope of these
large initiatives as of yet. In fact, studies doing so have mostly focused on
DNA methylation, with the exception of some very rare studies where inter-
individual variation on histone modifications [68] or chromatin accessibility
[69, 70] is assessed instead. This thesis focuses exclusively on DNA methyla-
tion variation at CpG sites (from now on referred to as simply DNA methyla-
tion).

Equivalently to GWAS, it is possible to search for associations between
DNA methylation variation and phenotypic traits via epigenome-wide as-
sociation studies (EWAS) (Fig 3); even though, they currently ignore all
other epigenetic markers apart from DNA methylation. Additionally, given
the costs involved in epigenotyping thousands of samples, DNA methylation
microarrays are the most common technology employed. These currently as-
say 1.5-3.0 % of the methylome, hence, “epigenome-wide” is an overstatement.
Like in GWAS, EWAS statistical inference is performed by linear or logistic
regression (sometimes with random effects) for continuous or binary outcomes,
respectively [71]. However, the equivalence of GWAS to EWAS is only in con-
ception, since the nature of the data is quite different.

To begin with, ignoring hemi-methylation, DNA methylation can be con-
sidered a binary signal per haplotype for a given CpG. However, since diploid
cells possess two haplotypes and bulk assays quantify methylation on collec-
tion of cells, bulk DNA methylation is quasi-continuous. For 500 ng
of genomic DNA input typically employed in a DNA methylation microarray
assay (corresponding to ∼75,000 human diploid cells or 150,000 haplotypes),
it can be considered continuous in all practicality. Thus, measurement error is
continuous and its magnitude depends on the assay. For DNA methylation mi-
croarrays, measurement error is not negligible, in contrast to SNP array
genotyping errors which are discrete, infrequent and have virtually no ma-
jor consequence in downstream analysis at standard input [72]. Furthermore,
since environmental and genetic variation may influence DNA methylation,
the correction for confounders is critical [71]. For example, the vast
majority of EWAS are performed in whole blood, a complex tissue conformed
by granulocytes (neutrophils, eosinophils, basophils), monocytes, T cells, B
cells, NK cells among other minor components and non-contributing enucle-
ated cells. Since each cell type may have specific epigenetic profiles, fluctua-
tions in cell type composition (driven by age, sex, inflammation, an infection
or even the circadian rhythm [73]) may confound an EWAS for huge variety
of traits if not properly controlled for. Nicely, cell type composition can be
estimated from microarray-wide methylation data with reference-based (e.g.
Houseman’s method [74]) or other reference-free methods [75]. That said, the
strong differences in DNA methylation between tissues and cell types can be
useful in certain applications; for instance, at the identification of tissue of
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origin in forensic samples [76]. Other confounders to take into account may
be of technical nature such as batch effects [77].

The most studied trait via EWAS has been chronological age for which
thousands of robust associations have been found (though a percentage of
which disappear after correcting for cell type composition [78]). Some of the
discovered markers have such strong effect sizes that can be used to estimate
chronological age in healthy individuals at an accuracy unmet by any other
biomarker. Age prediction models are typically coined “epigenetic clocks”
since the DNA methylation changes in time at the selected sites occur at a
rate that seems to be synchronised between unrelated individuals. The most
famous so far is the Horvath clock, which is a multi-tissue predictor based
on an elastic net model built from 353 CpG markers [79]. Most impressively,
equivalent epigenetic ageing clocks can be built for a wide range of mammalian
species [80] or even plants [81]; though, very little is known on the underlying
mechanism of action [82]. In practice, the estimation of chronological age is
useful, for instance in forensic phenotyping [83]. Beyond healthy tissues, it
was noticed that epigenetic clocks were less predictive on diseased samples.
In general, a positive bias was observed (prediction larger than observations),
but with many exceptions. To explain this, it was speculated that epigenetic
clocks were actually measuring biological age (rather than chronological age),
quantifiable with the prediction bias metric (bizarrely coined epigenetic accel-
eration, instead). This hypothesis, despite its popularity, was a substantial
speculative leap given the lack of ground truth measurement for biological age
[84]. Currently, to circumvent such limitations, a new generation of models
are being proposed. For example, in the DunedinPoAm model, the change of
18 ageing biomarkers per year was summarized as a single metric (so-called
pace-of-ageing). An elastic net model was then fitted to predict this artificially-
created outcome based on 46 CpGs [85]. Overall, it is widely believed that
accurate biological age prediction could serve as a proxy to evaluate how dif-
ferent clinical interventions slow down the ageing process. The detailed study
of this metric may lead to extended healthy lifespan, a reduction of chronic
disease in the world’s ever-ageing population together with the potential relief
to the ever-growing health care burden. On another note, changes in DNA
methylation with time are not always synchronised between human individu-
als. The analysis of DNA methylation on longitudinal cohorts revealed how
methylomes tend to diverge over time, supposedly due to the gradual accumu-
lation of maintenance errors over cell divisions (coined epigenetic drift) [86].
This same phenomenon manifests in MZ twin studies as increasing discordance
in DNA methylation with age [87] or in cross-sectional studies as increasing
methylation variability with age [88].

The second most studied trait in EWAS is cigarette smoking, for which a
good number of robust associations have been found as well [89]. Since tobacco
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smoking is a major risk factor for several diseases, being able to accurately
predict habitual smoking behaviour could help account for self-reporting bias
in public health studies [90]; for instance, questionnaires tend to underesti-
mated true smoking in pregnant woman by 25 % [91]. It also finds value in
investigative intelligence for forensics [76]. Other traits associated to DNA
methylation in adults include body mass index (BMI), alcohol consumption
and a huge variety of diseases including type 2 diabetes, breast cancer, obe-
sity, gestational diabetes mellitus, etc. In new-borns (typically epigenotyped
on cord blood), more and more evidence supports that the environmental con-
ditions at the womb may cause epigenetic changes that persist throughout life.
For example, the imprinted gene IGF2 was significantly hypo-methylated six
decades after prenatal exposure to famine during the Dutch Hunger Winter
(1944–1945) compared to unexposed siblings [92]. This is probably due to
the reduced availability of nutrients during famine; specifically, methyl donors
such as folate, vitamin B12, methionine, betaine or choline, and Zn2+, which
are required in the biosynthesis of S-adenosylmethyonine (SAM) and DNMT
catalysis. Additionally, strong associations have been found in new-borns for
maternal smoking in pregnancy, persisting into later childhood [93]. Under-
standing to what extent early exposure during development has implications
to health over the lifespan may have interesting clinical avenues towards pre-
venting human disease.

Relevant to this discussion, I define metastable epialleles: loci with
variable methylation levels among individuals without underlying genetic dif-
ferences (typically shared across tissues). Metastable in this context means
established stochastically during early development an faithfully maintained
thereon. This is typically exemplified with the agouti mice, a murine strain
in where an intra-cisternal A particle (IAP) retrotransposon has inserted up-
stream the promoter of the agouti gene (Avy allele). A cryptic promoter at
the IAP can induce ectopic expression of the agouti gene which encodes for a
signalling protein that can switch eumelanin (black) biosynthesis to phaeome-
lanin (yellow) at melanocytes, giving rise to yellow-furred mice. This only
occurs when the IAP is hypomethylated (denoted UAvy). The agouti allele
is inactive when hypermethylated (denoted MAvy) and is often referred to
as pseudo-agouti. Thus, variability in the methylation of IAP gives rise to
variability in fur colour on genetically identical agouti mice (the agouti gene
can be thought of as a reporter gene). Given the trans-acting nature of the
biosynthetic signalling mechanism, it is not surprising that UAvy is dominant
over A or MAvy, in general. In fact, to properly account for the propor-
tions of pseudo-agouti litter, it is necessary to invoke maternal imprinting
effects and dependence on methyl donors provided in the diet during preg-
nancy. Agouti mice tend to be obese, more susceptible to cancer, and have
reduced life expectancy compared to the pseudo-agouti counterpart [94, 95,
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96, 97, 59]. Profoundly, the ultimate underlying source of variability is on
the proper identification of foreign or repetitive DNA within the vast space of
the genome, heavily investigated in the context of transgene silencing, often
denoted as repeat-induced gene silencing (RIGS) [98].

As for GWAS, EWAS is not free of limitations. Firstly, EWAS is
often performed on tissues that are convenient for epigenotyping (blood, buc-
cal cells or saliva). However, these tissues may be irrelevant for phenotypic
traits affecting brain, heart, etc. Thus, the use of surrogate tissues requires
cautious interpretation [71].

Secondly, given the dense network of confounders at play, especially for
complex and behavioural phenotypes, indirect associations are common
and hard to avoid. For example, the top EWAS hit in smoking and maternal
smoking in pregnancy, located at the Aryl-Hydrocarbon Receptor Repressor
(AHRR) gene, is also the top hit in EWAS for coffee consumption even after
correcting for smoking confounding. This can be explained by either residual
confounding and/or the role of AHRR in the xenobiotic metabolism pathway:
polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances and ac-
tive regulators of this pathway, and can be found in tobacco smoke but also
are formed during the roasting of coffee beans [99]. Thirdly, unlike GWAS, the
direction of association is unclear: does changes in DNA methylation result in
a disease or does the disease cause changes in DNA methylation? The most
successful strategy to establish causative relationships is to follow-up with
functional studies. However, given its high cost and low throughout, other
in silico alternatives have been devised such as Mendelian randomization
(MR). This takes advantage of an instrumental variable (e.g. genetic vari-
ants) to estimate the direction and causal effects of an exposure (e.g. BMI) on
an outcome (e.g. DNA methylation at a given CpG). Mendelian randomiza-
tion requires three strong assumptions. As a result, MR can only be applied
for a handful of cases. Specifically, the assumptions are:

• Relevance: there are genetic variants associated with the exposure.
Since a genetic variant typically explains only a small proportion of
the variance, multiple variants are often combined to increase statis-
tical power. In some cases, no variants are associated to the outcome of
interest (for example, chronological age) nullifying the MR approach.

• Exchangeability: there are no common confounders between the ge-
netic variants and the outcome of interest. Genetics is considered a rela-
tively good instrumental variable given the general lack of confounders.
But special care needs to be taken to account for LD, BGA, assortative
mating or even sometimes dynastic effects (confounding by characteris-
tics that are transmitted across generations).
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• Exclusion restriction: there is no independent causal pathway be-
tween the genetic variants and the outcome of interest other than via
the exposure. This assumption is violated in the presence of horizontal
pleiotropy.

Thirdly, the general tendency of low effect sizes puts the biological rele-
vance in doubt and complicates any further functional follow-up [100]. Indeed,
almost the entirety of EWAS associations have resisted mechanistic elucida-
tion if not all. Indeed, if thousands of individuals are required to detect an
association, this association must be quite weak and maybe, irrelevant. To
give an example, methylation by the microarray probe cg19693031, mapping
to the 3’-UTR of the gene thioredoxin interacting protein (TXNIP), was signif-
icantly associated to type II diabetes in whole blood (top hit with an FDR of
1.6× 10−18) via meta-analysis on five European cohorts (totalling 1250 cases
and 1950 controls), with an aggregate effect size of -0.0198 (i.e. ∼2 % de-
crease in methylation for diabetics with respect to controls), where individual
studies were corrected for covariates (age, sex, predicted cell type composition
and batches) [101]. This finding replicates in different populations and prox-
ies (i.e. glycated haemoglobin) and has gathered great excitement [102, 103].
Nonetheless, being the devil’s advocate, it is very unlikely that a 2 % change
in DNA methylation at the 3’-UTR of a gene could cause or greatly contribute
to this multifactorial disease with environmental and genetic architecture and
much less likely that reversing it could serve as a therapy; to say the least, an
extraordinary claim requires extraordinary evidence.

In any case, equivalent to GWAS, the frequency of low effect sizes in
EWAS justifies the development of PRS-like approaches for DNA methylation,
namely, methylation risk scores (MRS) [104]. To do so requires assuming
additivity to face the number of markers ≫ number of samples and aggregat-
ing hundreds if not thousands of markers, sometimes including sub-threshold
CpGs. For now, the success has been limited as for PRS. For example, an
MRS based on 76 significant CpG sites for type 2 diabetes achieved an AUC
of 0.591 (only slightly better than random assignation) [101]. Some studies
explore the generation of risk scores based on both genetic variants and CpG
methylation [105]; combining several omics may be the right direction towards
accurate phenotypic prediction with strong relevance in early disease detec-
tion, general diagnostics, prognosis or risk stratification.

6. Genetics of DNA methylation

The construction of ACE models using DNA methylation data on MZ and
DZ twins for certain model tissues reveals that a percentage of the methyla-
tion variation is highly heritable at certain CpGs [106, 107]. This observation
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justifies the interest towards mapping genetic variants responsible for this her-
itable DNA methylation component. In a methylation quantitative trait
loci (mQTL) mapping study (Fig 3), DNA methylation is tested for associ-
ation with the genotype of specific genetic variants [108]. This approach can
be thought of as a simultaneous GWAS and EWAS and thus, requires joint
(epi)genotyping (same samples typically assayed on SNP and DNA methy-
lation microarrays). Given the huge number of pairwise comparisons, the
multiple testing and computational burden is considerable. The result of an
mQTL mapping study is a long list of significant CpG-SNP pairs. These find-
ings can be classified into local (< 1 kb), proximal (> 1 kb, < 1 Mb), distal (>
1 Mb) and inter-chromosomal. In the bibliography, the terms cis- and trans-
mQTL are used instead to refer to distance less or more than 1 Mb [108], but
in this thesis we avoid so since it is considered abuse of notation: cis/trans in
genetics are reserved terms that refer to the mechanism of action (cis: acting
only on the same haplotype, trans: acting independent of haplotype). Real-
istically, due to co-methylation between neighbouring CpGs (approximately
up to 1 kb) and linkage disequilibrium (LD) between nearby genetic variants
(approximately up to 1 Mb), these mQTL reports are highly redundant and
impractical and thus, of limited use for experimentalists pursuing the elucida-
tion of mechanisms of action. Alternatively, local mQTL can be identified via
pooled allele-specific methylation (pASM); this is just a standard ASM but
performed on pools of samples, in order to remove spurious parent-of-origin
and allele associations. The pASM approach can only identify genetic variant-
CpG methylation interactions at read length resolution.

It is useful to have in mind idealized mechanistic models on mQTL [109,
26, 110] (Fig 4). Local cis-mQTL can be envisioned as transcription factor
binding sites (TFBS) that contain genetic variants such that for a given allele,
the TFBS loses its direct or indirect recruiting ability on the DNA methylation
regulation machinery; here, we refer to transcription factors as any protein
with DNA binding activity, not necessarily affecting transcription. As for
distal cis-mQTL, we envision a chromatin loop stabilized by a DNA-binding
homo- or hetero-dimer where each monomer binds at either side of a DNA loop
stem (e.g. pairs of CTCF binding site); the TFBS at least at one of the stems
contains a genetic variant with the capacity to disrupt transcription factor
binding. This is an mQTL when the DNA loop formation is coupled somehow
to DNA methylation changes (for example, loop formation results in the steric
blockade of DNMT). As for trans-mQTL, the causal variant in question is
an expression quantitative trait loci (eQTLs) that regulates the transcription
of an epigenetic regulator (e.g. a TFBS at the promoter of DNMT3a with
an eQTL genetic variant that enhances RNA polymerase recruitment for one
of the alleles). This way, DNA methylation at downstream targets will be
acted upon in trans. In any case, these idyllic models are not comprehensive;
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Figure 4: Mechanistic models for mQTL. A local cis-mQTL can arise when a genetic variant
collocalizes with a TFBS that is targeted by a transcription factor with the ability to recruit the
DNA methylation regulation machinery but only for one of the alleles. Distal cis-mQTL can arise
when a genetic variant disrupts a chromatin looping stem, if this is accompanied by DNA methylation
changes. A trans-mQTL can be an eQTL at the promoter of an epigenetic regulator.
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despite that, they help provide an intuition for the sequences of events that can
give rise to the associations detected in an mQTL study. Importantly, since
transcription factors are highly tissue-specific and these are the mediators of
mQTL, we expect mQTL to also be highly tissue-specific. In other words, it
is not enough to have the right allele but the right protein factor needs to be
expressed in order for an mQTL to experience DNA methylation changes. In
a landscape where we aggregate the mQTL for all the tissues in the human
body, genetics becomes a key player in epigenomics.

The study of mQTL is relevant for GWAS. For a given genetic variant
found significant at a given GWAS, if we can show that it behaves as an mQTL
at a tissue of interest, we may then hypothesize a mechanism of action where
DNA methylation is a mediator. This is relatively straightforward to follow-up
by experimentalists in functional studies (for example, via epigenome-editing
[111]) and specially relevant given how most GWAS hits map to the non-coding
genome. Moreover, since associating genotypes with DNA methylation is more
direct than associating genotypes with complex phenotypes, it may serve to
identify sub-threshold genetic variants of interest especially pertinent towards
alleviating the missing heritability gap [26]. Mapping genetic effects may also
be of interest towards filtering highly heritable DNA methylation markers in
the study of environmental influences. In any case, given the tissue-specific
nature of mQTL, mapping studies require the right tissue: convenient proxies
(buccal cells, venous blood, cord blood) may not serve as a surrogate for a
given disease or phenotypic trait. For example, an asthma GWAS hit may act
as an mQTL in lung tissue (assuming it mediates its effects via the epigenome).
Whether such mQTL is also shared with whole blood will depend on whether
the mQTL-associated transcription factor is also expressed in blood at rea-
sonably high levels.

7. Aims of the thesis and summary per chapter

The inability of GWAS to close the missing heritability gap, to fine-map ge-
netic variants associated to heritable traits, to provide markers for accurate
trait prediction and to serve as a window for low heritability traits has opened
the stage for other omics. Immediately beneath, the epigenomics layer may
hold the key to some of the aforementioned problems. Large scale surveys
have been carried out to profile epigenetic variation across tissues; however,
the exploration of epigenetic inter-individual variation is only in its infancy.
Additionally, many methodological challenges need to be solved to fully ex-
ploit human epigenetic inter-individual variation for diverse applications. The
aim of this thesis is to push the boundaries of human DNA methylation inter-
individual variation and to mitigate some of the many methodological chal-
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lenges for its effective application. Chapter 2 describes the identification of
inter-individual variation controlled by stochastic processes during embryonic
development and early life. To do so, an equivalence testing-based approach
was devised and deployed on whole blood DNA methylation microarray data
on young and healthy MZ twins. Chapter 3 describes the study of artifacts
in DNA methylation microarrays caused by underlying genetic variants, un-
accounted during probe design. This was achieved by the development and
benchmark of UMtools, an R-package containing novel methods for the quan-
tification and qualification of genetic artifacts based on fluorescence intensity
signals. Chapter 4 describes the mapping of inter-haplotype, inter-cell and
inter-individual DNA methylation variation from pooled WGBS data in blood
and sperm. This was achieved via Binokulars, a novel randomization test
that detects joint CpG methylation from sequencing reads spanning multiple
CpGs. This study demonstrates how Binokulars can integrate a wide range of
epigenetic phenomena under the same umbrella. Chapter 5 describes a novel
statistical method that accounts for missing predictors in linear models to en-
able robust prediction on incomplete data. We demonstrate its utility in the
context of epigenetic ageing clocks. Chapter 6 describes the development of a
targeted epigenetic assay and data analysis pipeline based on massively paral-
lel sequencing (MPS) to quantify DNA methylation on 13 smoking-associated
DNA methylation sites for the prediction of smoking status. Chapter 7 pro-
vides the general discussion on the topics discussed across Chapters 2-6.
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Abstract

Background
Although the genomes of monozygotic twins are practically identical, their
methylomes may evolve divergently throughout their lifetime as a consequence
of factors such as the environment or aging. Particularly for young and healthy
monozygotic twins, DNA methylation divergence, if any, may be restricted to
stochastic processes occurring post-twinning during embryonic development
and early life. However, to what extent such stochastic mechanisms can sys-
tematically provide a stable source of inter-individual epigenetic variation re-
mains uncertain until now.
Results
We enriched for inter-individual stochastic variation by using an equivalence
testing-based statistical approach on whole blood methylation microarray data
from healthy adolescent monozygotic twins. As a result, we identified 333
CpGs displaying similarly large methylation variation between monozygotic
co-twins and unrelated individuals. Although their methylation variation sur-
passes measurement error and is stable in a short timescale, susceptibility to
aging is apparent in the long term. Additionally, 46 % of these CpGs were
replicated in adipose tissue. The identified sites are significantly enriched at
the clustered protocadherin loci, known for stochastic methylation in devel-
oping neurons. We also confirmed an enrichment in monozygotic twin DNA
methylation discordance at these loci in whole genome bisulfite sequencing
data from blood and adipose tissue.
Conclusions
We have isolated a component of stochastic methylation variation, distinct
from genetic influence, measurement error, and epigenetic drift. Biomarkers
enriched in this component may serve in the future as the basis for universal
epigenetic fingerprinting, relevant for instance in the discrimination of monozy-
gotic twin individuals in forensic applications, currently impossible with stan-
dard DNA profiling.
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Background

Compared to its genomic counterpart, human epigenomic inter-individual vari-
ation remains relatively unexplored. Particularly for cytosine-guanine dinu-
cleotide (CpG) methylation, the currently known sites of substantial inter-
individual variation are restricted to a limited number, as most are completely
unmethylated or methylated across healthy populations [1, 2]. Via epigenome-
wide association studies (EWAS) numerous traits have been associated to epi-
genetic variation; trait-associated CpGs, however, tend to display small effect
sizes [3, 4]. The main drivers of inter-individual DNA methylation variation
identified so far are genetics, sex, cell type/tissue, environment, and aging [5,
6, 7]. The latter includes both the epigenetic clock, i.e., the direct associa-
tion between CpG methylation and age across individuals, and the epigenetic
drift, defined as individual-specific accumulation of stochastic and environ-
mental changes over time [8, 9].

On this note, it was widely popularized that healthy monozygotic (MZ)
twins sharing sex, age, and practically identical genomes display indistinguish-
able methylomes at a young age, while at an older age, differential exposures to
environmental factors promote methylation divergence over time (epigenetic
drift) [10, 11]. As exceptions to the above, developmental stochastic mecha-
nisms promoting epigenetic variation do exist; for example, X-inactivation or
genomic imprinting [12, 13]. Moreover, metastable epialleles were recently
identified, presenting methylation levels that are stochastically established
during early development, but faithfully passed on across cell divisions and
differentiation [14, 15, 16]. In practice, however, metastable epiallele variation
in MZ co-twins is limited due to the phenomenon of twin super-similarity;
namely, a stochastic setting of methylation states prior to the twinning pro-
cess results in identical methylation profiles for both twins [17].

Some attempts to map epigenome-wide variation via twin models have
been previously reported. Particularly successful by employing both MZ and
dizygotic (DZ) twins, ACE models decompose the total variance into an addi-
tive genetic component (A), a common environmental component (C), and an
unshared environmental component (E). The E component encompasses both
intra-individual measurement error and inter-individual stochastic biological
variation since both qualify as non-genetic influence unshared between twins
[5, 6]. As a result, CpG sites displaying no biological variation and hence
only subject to measurement error display relative E components close to 1.
This turns out to be a problem as generally ACE models are fitted to ev-
ery CpG, disregarding whether they present inter-individual variation or not.
Separating between measurement error and genuine stochastic inter-individual
epigenetic variation persists as a long-standing challenge in epigenetics.

Integrating all this information, if the prevalence of stochastic epigenetic
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inter-individual variation surpassing intra-individual measurement error is fre-
quent enough, this could serve as a source of variation that promotes diver-
gence between any two individuals including MZ twins. Hence, we hypothe-
sized that such a universal stochastic epigenetic component exists and can be
isolated following a MZ twin study design. This concept of universal epige-
netic variation is the opposite to rare epigenetic variation that only affects a
small subset of MZ twin pairs, for example, due to pathological discordance.
Assuming limited genetic influence, absolute methylation differences of CpGs
susceptible to inter-individual stochastic variation are expected to be similarly
distributed between MZ co-twins and unrelated pairs of individuals. However,
to avoid other stochastic components, whose predominance increases with age
such as epigenetic drift, we decided to direct our analysis to MZ twins of young
age. That way, we also expected to enrich for post-twinning stochastic DNA
methylation differences having originated during embryonic development and
early life rather than changes due to epigenetic drift.

Based on these hypotheses, the objective of this study was to identify
CpGs that display inter-individual methylation variation equivalent between
young co-twins and unrelated individuals that cannot be explained by epige-
netic drift and/or measurement error. Given that such a universal stochastic
component is expected to generate inter-individual variation for every pair of
individuals including MZ twins, we envision that it could serve as the basis
of an epigenetic fingerprint, relevant for individualizing MZ twins in forensic
applications in the future, although further research is necessary. To address
the different questions posed throughout the manuscript, we integrated 11
publicly available datasets. We considered data derived from two methods:
the Illumina Infinium HumanMethylation450K Beadchip array (450K), cover-
ing >450,000 CpG sites and the whole genome bisulfite sequencing (WGBS),
currently considered as the gold standard in methylomics. Among them, we
included MZ twins, unrelated individuals, longitudinal samples, and technical
replicates obtained from whole blood, adipose tissue, and post mortem tissues.

Results

Discovery of equivalently variable (ev)CpGs

In search for CpGs displaying similar variation between MZ co-twins and
unrelated individuals, an epigenome-wide discovery phase was implemented
in 450K CpG methylation data derived from whole blood of 426 MZ twin
pairs sampled at age 18 (dataset-A, Table 1) [5]. Described thoroughly in
Supplementary Methods, we firstly implemented strict quality control and
preprocessing (Fig S1–5). For example, we excluded SNP-containing, cross-
reactive, low-quality, and X,Y-chromosomal probes, controlled for predicted
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Table 1: Description of the 13 DNA methylation datasets employed in this study
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cell composition differences (Fig S5) and employed three different normal-
ization methods in parallel (Fig S6). Secondly, given that CpGs with no
biological variation display only measurement error and are also expected to
show equivalent co-twin and inter-individual variation, we pre-selected vari-
ably methylated CpGs using empirical cut-offs for inter-individual variation
(inter-quantile range (IQR)> 0.07) and replicability (intra-class correlation
coefficient (ICC)> 0.37) [27].

Thirdly, for the remaining 4652 variably methylated probes, we estimated
MZ co-twin and inter-individual variation by computing absolute methyla-
tion differences between MZ twin pairs and all combinations of unrelated MZ
twin individuals, respectively. We then employed statistical inference under
the scheme of equivalence testing to test whether these methylation differ-
ences are similarly distributed (Fig 1A). This approach identified 333 equiv-
alently variable CpGs (evCpGs) between co-twins and unrelated individuals
that were statistically significant across all three normalization methods em-
ployed (Fig 1B-C, Fig S6). To ensure that our statistical approach has not
been compromised due to the artificial exploration of all the unrelated individ-
ual pairs based on the MZ twin dataset, we performed additional verification
tests (Supplementary Methods, Fig S7). As expected, while most CpGs
covered in the Illumina 450K array tend to present low inter-individual vari-
ation concordant between MZ co-twins, evCpGs display substantial co-twin
and inter-individual variation (Fig 1D, Fig S8).

evCpG variation versus measurement error

Within our pipeline, given that the exclusion of CpGs subject only to mea-
surement error relies heavily on the correct setting of empirical thresholds, it
was of importance to prove that our selected evCpGs indeed displayed a level
of variation larger than the measurement error. Towards this goal, we firstly
checked that the distributions of 450K array technical measures, including
number of beads per probe, high detection p value and ICC [27], were simi-
lar between evCpGs and non-significant CpGs (Fig S9, see Supplementary
Methods for details). This analysis confirmed that our pipeline did not just
deliberately enrich for CpGs displaying sub-standard technical performance in
the microarray. Secondly, employing independent data from the Danish Twin
Registry (dataset-B, Table 1) [18], we confirmed that evCpG variation was in-
deed significantly larger in MZ co-twins than in technical replicates (Fig S10;
p value = 4.3×10−41, Kolmogorov-Smirnov). Moreover, evCpG variation was
large enough to successfully separate technical replicates into clusters within
each twin pair unlike a set of equal number of genetically influenced CpGs
acting as negative controls, extracted from previously reported methylation
quantitative trait loci (mQTL) (Fig 2) [7]. This was also true on a single
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Figure 1: Discovery of evCpGs. (A) |∆βMZ twin pairs| and |∆βunrelated pairs| distributions in an ex-
ample of an evCpG (left) and a variably methylated non-evCpG (right). Similarity p values were ob-
tained via equivalence testing with a two one-sided tests procedure. (B) Venn-Euler diagram display-
ing significant hits across three normalization methods (StrQN, dasen and oob RELIC QN BMIQ),
where the intersection between the three sets corresponds to evCpGs. (C) Manhattan plot displaying
CpG significance across chromosomes (odds and even represented either in blue or orange), where
evCpGs are highlighted in green. For each CpG, we used the maximal p value across three normaliza-
tion methods. (D) Agreement between twins measured as concordance plotted against methylation
range (see Supplementary Methods for details), where evCpGs are highlighted in blue.
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twin pair with technical replicates in the dataset of Zhang et al (dataset-C1 )
(Fig S11A) [19].
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Figure 2: Superior evCpG variation in MZ twins compared to technical replicates. (A) A subset
of the Danish twin cohort including 3 twin pairs with technical replicates. (B) Heatmap with
unsupervised hierarchical clustering employing 329 out of the 333 evCpGs and equal number of
genetically influenced negative control probes. Technical replicates within MZ twin pairs cluster
together for evCpGs, unlike negative control probes that cluster per microarray chip batch.

evCpG variation versus measurement error

Once proven that the observed DNA methylation differences at evCpGs were
greater than measurement error and to shed light on their hyper-variability, we
examined whether evCpG methylation levels behaved erratically in time. To
do so, we moved on to a second subset of the dataset from Zhang et al (dataset-
C2, Table 1) including multiple samples from 6 unrelated individuals and one
twin pair taken up to 9 months apart. Via hierarchical clustering, we observed
that longitudinal replicates of unrelated individuals tended to cluster together
per individual; the single twin pair though could not be separated into its
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longitudinal replicates (Fig 3A). From these findings, we conclude that evCpG
methylation in whole blood is relatively stable in time as temporal variation
is unable to overcome inter-individual variation at least regarding the tested
timescale. For a more quantitative view on short time stability of evCpGs,
we also provide the temporal ICC distributions obtained from estimates by
Flanagan et al [28] (Fig S11B).

Epigenetic clock/drift of evCpGs

Once evCpG short-term stability was confirmed and given that we used ado-
lescent MZ twins in the initial discovery phase rather than newborns, we next
investigated whether methylation divergence at evCpGs could be solely ex-
plained as a result of aging in the timescale including infancy and adolescence.
Though a longitudinal study design would allow us to identify CpGs suscepti-
ble to aging at an individual level, we here focused on population level changes
in DNA methylation (e.g. universal variation). Under a cross-sectional design,
the epigenetic clock and epigenetic drift can be observed as a direct association
or increased variation with age, respectively.

On this note, we first examined the cross-sectional dataset of Shi et al
(dataset-D, Table 1) [20] containing 48 children aged from 6.4 to 14.6 years.
From the set of evCpGs (n = 333), only one (0.3 %) showed a direct association
between age and DNA methylation (i.e., epigenetic clock), while two (0.6 %)
showed age-associated increase in methylation variation (i.e., epigenetic drift)
(Fig S12A). Motivated by the absence of strong evidence of evCpG aging ef-
fects in this narrow period between late childhood and adolescence, we moved
on to the cross-sectional dataset of 727 individuals of the Northern Sweden
Population Health Study [21] with a wider age interval ranging from 14 to 94
years (dataset-E, Table 1). Out of 331 evCpGs available in this dataset, 122
(36.9 %) showed only age-associated effects (i.e., epigenetic clock), 63 (19.0
%) showed only an age-associated increase in variation (i.e., epigenetic drift),
while 67 (20.2 %) showed both (Fig 3C-D). Further confirming the influ-
ence of epigenetic drift on evCpGs in a broader timeframe, observed absolute
methylation differences in the older TwinsUK cohort (dataset-F, Table 1) [29]
were significantly higher than in the adolescent twins used for evCpG discov-
ery (Fig S12C; p value = 7.8× 10−144, Kolmogorov-Smirnov). Thus, evCpG
methylation is subject to epigenetic drift at large timescales but its influence
in the period between late childhood and adolescence seems to be minor. To
trace back the source of inter-individual variation, we searched for data from
even younger cohorts. Moving on to a dataset consisting of 2-year-old Gam-
bian children (dataset-G, Table 1), strong inter-individual evCpG variation
was also evident (Fig S12B). If strong deterministic genetic effects were to be
predominant on evCpG variation, these would fuel inter-individual, but not
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Figure 3: Time-stability of evCpGs. (A) A subset of the dataset of Zhang et al that includes
short-term longitudinal replicates obtained 3, 6, and 9 months apart. (B) A heatmap with unsu-
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co-twin variation; hence, the discovery condition of equivalence would not be
met. For this reason, it is improbable that strong genetic effects are a ma-
jor contribution to the inter-individual variation of evCpGs in the Gambian
children cohort. Together with the lack of strong evidence for epigenetic drift
in the children from dataset-D, we conclude that epigenetic drift cannot be
fully responsible for the observed discordance in 18-year-old MZ twins. Thus,
evCpG stochastic variation likely originates in embryonic development and/or
early life but is amplified over a lifetime via epigenetic drift.

evCpG methylation in other tissues

As tissue type is known to be a strong driver of DNA methylation varia-
tion, we aimed to assess whether this was also the case for evCpGs that we
had identified in whole blood. In addition, after having discarded genetic ef-
fects, observing a strong correlation between tissues would serve as convincing
evidence for the establishment of evCpG methylation in early development,
similarly to metastable epialleles.

In order to achieve sufficiently large numbers of different tissues per in-
dividual, we made use of a panel including 17 different post mortem somatic
tissues (dataset-H, Table 1) [23]. The results from multi-dimensional scaling
(MDS) analysis did not reveal the formation of clusters per individual in the
first two principal components, indicating that evCpGs are subject to strong
variation between tissues (Fig S13C). This effect percolated even in the set of
genetically influenced control CpGs, for which inter-individual variation was
pushed back to the second principal component (Fig S13B). This could be
due to reduced data quality due to the post mortem nature of the tissue or
simply that mQTL discovered in the blood do not apply to other tissues.

Setting aside the idea of co-methylation across tissues, we aimed to investi-
gate whether the stochastic behavior of evCpGs itself was beyond whole blood.
Saliva and buccal cells are the second most employed tissues in epigenomic
datasets; however, suitable large MZ twin datasets are not publicly available.
Therefore, we sought to replicate the effect of evCpGs in subcutaneous adi-
pose tissue, a relatively homogenous tissue composed primarily by adipocytes,
with only a minor component of endothelial cells and macrophages [30]. To-
wards this goal, we employed adipose tissue data from the TwinsUK cohort
that includes 97 MZ twin pairs (dataset-I, Table 1), in which we replicated
a total of 154 (46 %) of the evCpGs (Fig 4A). Moreover, we also confirmed
short-term temporal stability of the replicated evCpGs in this tissue via hi-
erarchical clustering on longitudinal replicates derived from obese individuals
subject to weight intervention (dataset-J, Table 1, Fig S14A). For a more
quantitative interpretation, we also estimated temporal ICCs and examined
their distributions (Fig S14B). In conclusion, almost half of the identified
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evCpGs display stochastic variation in both the blood and adipose tissue.
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Figure 4: evCpG variation in other tissues. (A) Replication on 332 out of 333 evCpGs in adipose
tissue. − log10(equivalence p values) is plotted against IQR. Threshold lines represent IQR filter of
0.07 and Bonferroni significance. Numbers in red highlight the number of hits in a given sector.
(B) Gene ontology (GO) term enrichment of evCpGs (red) and the replicated subset in adipose
tissue (orange). The threshold line indicates false discovery rate of 0.05. (C) Whole genome bisulfite
sequencing validation on epigenetic discordance between MZ twins in the cPCDH region using data
of the TwinsUK cohort. Here, we observe the dependence between significance and coverage in the
cPCDH region. Twin pairs 1 to 5 were assayed in both tissues. For twin pair 8 in whole blood,
no sites were shared between twins and hence, enrichment could not be performed. Twin pairs are
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Functional annotation of evCpGs

In order to investigate the functional role of evCpGs, we firstly sought for
insights in the sequence context of evCpGs. We performed DNA motif enrich-
ment analysis, but no motif showed a large and statistically significant odds
ratio (Fig S15, S16A). Looking closer in the sequences surrounding evCpGs,
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we observed a significantly diminished [G+C] content (p value = 1.1 × 10−8,
Mann-Whitney U test, Fig S16B), consistent with variable methylation as
previously reported [31]. However, we did not observe a significant decrease
in CpG island-associated CpGs (Fig S17B).

To uncover other putative functional roles of evCpGs, we consulted a wide
range of public databases and annotations. Examining the evCpG relationship
to nearby genes, we noted statistically significant profile divergence compared
to the background (p valuefunc = 1× 10−5; nbootstrap=100,000; Fisher’s exact
test), driven by an enrichment in CpGs not associated to genes and CpGs as-
sociated to 1st Exon and within 1500 bp range from transcription starting site
(TSS1500), as well as a depletion in CpGs associated to 5’-untranslated regions
(5’-UTR) and within 200 bp range from transcription starting site (TSS200)
(Fig S17A). Altogether, this suggests that evCpGs tend to lie outside im-
portant regions for gene regulation. To further test this concept, we made
use of the 15-state ChromHMM model from peripheral blood mononuclear
cell (PBMC) [32], which is a Hidden Markov Model (HMM) representation
of the genome based on the patterns of post-translational modifications of
histones and DNA methylation that segments different genomic loci into 15
types of chromatin regulation. Confirming our prior notes, we observed statis-
tically significant divergence in chromatin states between evCpGs compared
to the background (p value = 1 × 10−5; nbootstrap = 100,000; Fisher’s exact
test). More specifically, a strongly significant increase in heterochromatin in
addition to both strongly and weakly polycomb repressed states were observed
together with a statistically significant depletion in active TSS flanking regions
and actively transcribed states (Fig S18). Finally, after confirming generally
low mRNA expression in blood for evCpG-associated genes compared to a
wide panel of tissues from the genotype-tissue expression (GTEX) database
(Fig S19), we conclude that evCpGs tend to lie outside functional genomic
regions in blood.

Moreover, we examined potential enrichment in imprinted regions and
metastable epialleles, as the literature has highlighted these regions as po-
tential subjects to stochastic methylation variation. We found that evCpG-
associated genes were not significantly enriched in imprinted genes (p value
= 0.8436, Fisher’s exact test) in contrast with previously reported metastable
epiallele-like CpGs [33], which showed almost a 10-fold enrichment (p value=
3.87 × 10−8, Fisher’s exact test). Besides, looking into previously discovered
mQTL in the blood of adolescents [7], we found a 5-fold depletion with respect
to a background composed by the 4319 variably methylated CpGs which were
not included in the evCpG set due to missing co-twin variation and potential
influence by genetics (p value = 1.34 × 10−43, Fisher’s exact test). This was
expected since genetic effects were expected to promote inter-individual, but
not co-twin variation. Also, utilizing the EWAS Atlas database [3], we fur-
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ther tested for enrichment in previously reported phenotypic associations. A
significant enrichment was present not only in probes associated to aging as
expected, but also to other traits, such as gender, ancestry, respiratory aller-
gies, some syndromes caused by mutations in the epigenetic machinery, and
others associated with pregnancy and early childhood (Fig S20).

Furthermore, we performed gene ontology (GO) term enrichment analy-
sis. Our results on evCpGs support a putative relationship to development,
as evCpG-associated genes are significantly enriched in (nervous) system de-
velopment processes (Fig 4B). However, the most striking result was the
strong enrichment in “homophilic cell adhesion via plasma membrane adhe-
sion molecules” terms, explained by a large number of clustered protocadherins
(cPCDH )-associated CpGs. From the total evCpGs, almost 5 % collocated
with cPCDHs in a 1-Mb stretch on chromosome 5 (16 out of 333 CpGs, p
value = 2.8 × 10−16, Fisher’s exact test). Such significant GO term enrich-
ment and collocation was also observed in the replicated set in adipose tissue
(12 out 154 CpGs, p value = 3.7 × 10−17, Fisher’s exact test). cPCDHs
are three combinatorial gene clusters (respectively, α, β, and γ), coding for
homophilic membrane receptors whose promoter choice is established during
early embryonic neurodevelopment via stochastic methylation [34, 35, 36].
cPCDHs are involved in the self-recognition of extending neurons by supply-
ing a set of unique membrane receptor identifiers via combinatorial epigenetic
silencing of promoters, key to avoid the formation of self-synapses, and hence,
short-circuits in the neuronal circuitry (e.g. self-avoidance). Also, functions
concerning post-natal same-lineage preferential synapsis formation in neurons
have been reported [37, 38, 39, 40]. Little is known about the epigenetic be-
havior of cPCDHs in whole blood or adipose tissue, although cPCDHs are not
expressed in either of them (Fig S19). Finally, to search for other putative
clusters of evCpGs collocated in the genome, we performed an unbiased posi-
tional enrichment, finding 11 other smaller but significantly enriched loci in a
1-kb window centered around evCpGs.

Validation of clustered protocadherins across technologies

Aiming at replicating the observed methylation differences at cPCDHs on
a different technological platform, we used publicly available whole genome
bisulfite sequencing (WGBS) data from whole blood and adipose tissue of
MZ twin pairs (dataset-K1 (n = 7) and dataset-K2 (n = 7)), from which 5
twins pairs were available in both tissues [26]. Given that these datasets do
not include technical replicates, we were forced to implement an extra con-
servative pre-processing to guarantee reliable results. This meant excluding
sites posing strong methylation differences between strands, sites aligning to
regions known to yield artefactual high coverage, sites with low or abnormally
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high coverage, and lastly, sites that were not included in both MZ twins for
each pair. Additionally, via computer simulations, we established the vastly
conservative threshold of absolute methylation difference of 40 % as being
very unlikely to have arisen simply from random sampling only (see Supple-
mentary Methods for details). Per MZ twin pair, we then counted sites
displaying differences higher and lower than the established threshold within
and outside cPCDHs to perform enrichment analysis (see Supplementary
Methods for details).

With regards to the cPCDHs region, 3 out of 6 twin pairs in blood and 3
out of 7 in adipose tissue were significantly enriched in methylation differences
larger or equal to 40 % compared to the background (Fig 4C, Fig S21-S23);
significant twin pairs coincided with those displaying a higher coverage in the
cPCDHs region. For the twin pairs not displaying significant enrichment, this
may be due to the 5 to 10 times lower coverage in cPCDHs in these samples.
Finally, methylation differences were visualized for the two twin pairs posing
higher coverage in cPCDHs that also displayed significant enrichment in both
tissues (Fig 5). In summary, our discovery in 450K highlighted a strong en-
richment for probes subject to stochastic variation distinct from epigenetic
drift and measurement error in the cPCDHs loci. By replicating MZ twin
discordance on a different technological platform we have not only gained con-
fidence on our claims concerning cPCDHs, but also on the discovery strategy
itself.

Discussion

This study was dedicated to isolate stochastic inter-individual epigenetic vari-
ation, distinct from epigenetic drift, genetic influence, and measurement error.
To achieve this, we made use of young MZ twins because these are subject
to only limited epigenetic drift effects. Additionally, by requiring equivalence
between co-twin and inter-individual dissimilarity, we excluded CpGs under
genetic control. Given that mechanisms promoting twin-to-twin divergence
during embryonic development and early life should potentially generate vari-
ation in every individual, we claim to have isolated a universal source of epige-
netic inter-individual variation that may individualize even young MZ twins,
as it does not rely on epigenetic drift. As previously stated based on different
grounds [41, 42], our results confirm that the view of healthy MZ twins posing
identical methylomes at a young age is an unrealistic approximation for cer-
tain genomic loci.

Under this mindset, we have separated epigenetic drift from epigenetic
changes occurring during embryonic development/early life. Since it is un-
known whether these two influences operate differently on evCpGs, this seg-
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Figure 5: Integration and visualization of the cPCDH region (Chromosome 5) using IGV and the
MZ twin datasets employed in this study. Tracks are highlighted in red for whole blood and gold
for adipose tissue. (A) 450K tracks (dark blue thin bar plots) include the 450K background, total
evCpGs and replicated set in adipose tissue. (B) CpGs in this region not included in the evCpG
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of the normalized density of CpGs) for the two twin pairs displaying the highest WGBS coverage,
indicating significant enrichment in MZ twin divergence in the cPCDH loci.

mentation might seem artificial at first. We cannot ignore, however, that a
strong link between the definition of epigenetic drift and aging has been es-
tablished in the literature [8, 43]. Nonetheless, processes occurring during
embryonic development and early life are not necessarily related to aging. For
example, the agouti mouse is a model for stochastic developmental variation
[44]: a long-terminal repeat from an intracisternal-A murine retrotransposon
acts as a cryptic promoter for the agouti gene, a key regulator of fur color
in mice. However, stochastic variable methylation in the cryptic promoter
results in variable expression of the agouti gene. As a result, genetically iden-
tical mice can give rise to a palette of fur colors, ranging from yellow to brown.
Though it remains unknown whether evCpG methylation hypervariability op-
erates like an agouti cryptic promoter, we believe it is practical to make such
distinction, especially given the common misconception that the epigenome
of young MZ twins is identical at young ages, but diverges as a result of ag-
ing. Given our evidence obtained from children, it is very unlikely that aging
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alone occurring between childhood and adolescence can explain the observed
methylation discordance in the cohort of 18-year-old MZ twins, in agreement
with the literature. For example, in [45], they claim that epigenetic changes
occurring between birth and 5 years of age outclass those occurring between
5 and 10 years of age.

On another note, from the 4652 variably methylated CpGs tested, only
333 (7 %) showed equivalent co-twin and inter-individual variation; hence, 93
% of variably methylated CpGs potentially displayed genetic effects. This is
in concordance with studies claiming that genetic effects have a strong impact
on variably methylated CpGs [1, 2, 5]. Hundreds of identified evCpGs may
seem a small number at first glance given the average unshared environment
component of 81.0 % [6] or 67.4 % in the blood [5] and 80.8 % in the adi-
pose tissue [24] based on previously published ACE models. However, these
estimates are expected to be strongly biased since they include CpGs devoid
of inter-individual variation, for which measurement error accounts for most,
if not all the observed variation. We emphasize that the aim of this study
was not to conduct an exhaustive discovery of all evCpG-like biomarkers in
the human methylome but to correctly identify a subset for which we can
ensure with high confidence that measurement error is not fully accountable
for the observed discrepancies between MZ twins. As evidence for such in-
tention, we excluded a large proportion of CpGs via the applied empirical
inter-individual variation threshold. We also employed Bonferroni correction,
known to be over-conservative for (epi)genome-wide discoveries; as a result, it
is possible and plausible that a proportion of false negatives remains uniden-
tified. Furthermore, our discovery pursues pure inter-individual stochastic
variation, hence neglecting ambivalent CpGs posing mixed deterministic ge-
netic and stochastic epigenetic influence, except for minor genetic influences
not sufficiently large to escape the equivalence range. Studies evaluating the
frequency of CpGs subject to both genetics and environment exist; particu-
larly, those employing genetic and environment interaction (GxE) models [46,
47] claim that most variably methylated CpGs are under the jointed influence
of genetics and the environment and that CpGs posing solely environmental
influence are extremely rare (only 1 in the entire Infinium MethylationEPIC
array [46]); thus, challenging our claims on the hundreds of evCpGs identified
in the 450K. However, E in a GxE model unlike in an ACE model is defined
as variation explained by a list of environmental phenotypes such as maternal
age, smoking, and concentration of certain metabolites. As a result, measure-
ment error, stochastic influence, or the variation associated to variables not
included in the model will end up being part of an unexplained variance term.
The percentage of unexplained variance for their models was not reported,
which could well be larger than the percentage of variance explained. Particu-
larly, stochastic influence is expected to be a key component in evCpGs. Also,
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GxE models are fitted in cord blood, uninfluenced by the early life period
that might contribute to the hypervariability of evCpGs. In summary, it is
not possible to extrapolate conclusions from such GxE models to our analysis
on evCpGs which takes into account the total variance, without including an
unexplained variation term in the model.

That aside, the biggest challenge we faced in this study was separating
genuine inter-individual methylation variation from measurement error. Un-
like common practices in previously published ACE models [5, 6], we have
thoroughly tackled the confounding issue between measurement error and
stochastic variation by extending our analysis to both technical and longi-
tudinal replicates. Altogether, we have provided convincing evidence that our
observations cannot be explained by measurement error or erratic longitudinal
drift. That said, we were unable to cluster the longitudinal replicates of the
MZ twin pair of Zhang et al [19]. Even though we cannot generalize conclu-
sions from a single MZ twin pair, it seems to suggest that short-time variation
surpasses co-twin variation at least in this single twin pair. Supporting this
idea, the twin pair in question is aged 26 at the time of sample collection;
thus, we do not expect strong epigenetic drift contributions. However, we do
not know with confidence whether there were differences in the methylation
of evCpGs to begin with, as no technical replicates were included at time
point zero. Moreover, we cannot ignore that the raw data of the Zhang et
al was unavailable; since it is required for our pre-processing approach, the
degree of control was smaller than in our core datasets. Moreover, in this
analysis, we used only 296 out of the 333 evCpGs; 37 evCpGs (11.1 %) were
not available. It could well be that by applying our careful pre-processing
and normalization that the MZ longitudinal stability incongruence could be
eliminated. That aside, our longitudinal analysis on unrelated individuals of
evCpGs in whole blood and the replicated set in adipose tissue provide our
core evidence on the short-term temporal stability. In summary, future stud-
ies are required to shed light on the concern of temporal stability of evCpG
methylation in MZ twins, required for any practical application. Furthermore,
throughout the paper, we have made no distinction between embryonic devel-
opment and early life influences, which may require some explanation. Since
evCpGs were discovered in whole blood, the peculiarities in the development
of the immunological system apply. Any successful pregnancy requires the
correct suppression of any immunological response between the fetus and the
mother; thus, both immune systems actively cross-talk to promote a tolero-
genic environment [48]. It is well established that newborns deviate from
adults in both the innate and the adaptive immune systems [49, 50]. Soon
after birth, factors such as the sudden and massive exposure to environmental
antigens or the need to overrun mother-embryo allotolerance results in strong
post-natal development [51] that potentially affects DNA methylation profiles
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in blood. There is a vast literature regarding changes in methylation occurring
during the first years of life further justifying no need for distinction between
development and early life in whole blood DNA methylation data [52, 53, 54,
55]. These changes may provide a temporal context to the variation occurring
at evCpGs. However, claims concerning this period are often confounded in
tissue as whole blood extraction or adipose tissue biopsies tend to be too inva-
sive for pediatric use. Instead, other tissues like buccal epithelial tissue, saliva,
blood spots, or cord blood are preferred in practice for children or newborns,
with problems of between-tissue variation and lower technical replicability [56,
57, 58]. In any case, the lack of co-methylation between post mortem tissues
shown here pushes the balance towards early life experiences, assuming that
the post mortem quality has not altered the quality of the epigenetic profiles.
There remains reasonable doubt, however, whether the methylation levels are
firstly set during early development and then reset again at latter stages in a
tissue-dependent way. Nonetheless, 46 % of evCpGs we had identified in whole
blood could be successfully replicated in adipose tissue, which supports that
the observed changes in blood cannot be caused by imperfect correction of
cell composition differences in our pipeline. It also strengthens the confidence
that a large portion of our evCpGs are indeed true positive findings. More
fundamentally, it suggests the existence of regions concentrated in stochastic
epigenetic variation that are common between tissues. We do, however, ac-
knowledge some limitations in our replication, such as a lower sample size,
an older age distribution in the TwinsUK cohort, and the lower control on
preprocessing given the absence of raw data files.

In addition, our findings highlight the clustered protocadherins as a puta-
tive hotspot for stochastic methylation variation in blood and adipose tissue.
In the context of aging, strong DNA methylation variation for CpGs within
these loci has been previously reported [11, 59, 60, 61]. In fact, given the age
distribution of the MZ twins in our WGBS validation study, the methylation
differences were observed at cPCDHs which are expected to be a consequence
of not only developmental-early life stochastic variation, but also of epige-
netic drift. However, as these loci were highlighted upon the discovery in the
E-risk twins cohort composed by 18-year-olds (Fig 5), it is improbable that
only epigenetic drift drives the twin divergence we observe at cPCDHs. Func-
tions where cPCDHs are expressed in a combinatorial way to generate a wide
range of membrane receptors have been previously described in the context
of the brain, all of which strictly require gene expression. However, the joint
evidence of enrichment in regions with low [G+C], avoidance of important re-
gions for gene regulation, association to genes not expressed in the blood, and
enrichment in heterochromatin states all seem to indicate that the majority
of the stochastic methylation variation of evCpGs in the blood may be the
result of biological noise rather than a biological function. As it stands for
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cPCDHs concretely, it is unlikely that stochastic methylation plays a role in
whole blood or adipose tissue given that the mRNA expression in both tissues
is residual. More functional studies are required in the future to shed light on
the epigenetic dynamics of the cPCDHs loci in tissues beyond the brain.

Finally, having identified hundreds of CpGs displaying MZ co-twin diver-
gence at young age has implications for future practical applications. For
instance, being able to discriminate between human individuals has proven vi-
tal in paternity testing, the determination of perpetrators in crime and in the
identification of missing persons including victims of mass disasters. Nowa-
days, genetic markers rich in inter-individual variation are routinely exploited
to separate biological samples derived from different human individuals; how-
ever, current forensic DNA analysis is unable to discriminate between MZ
twins [62]. Extending the concept from genetic to epigenetic fingerprinting by
making use of markers such as evCpGs may one day also allow the discrimina-
tion of MZ twins, with strong repercussions for law enforcement [63]. Further
work is required though to shed light on the feasibility of this approach for
any practical forensic application; towards one day being able to provide evi-
dence that is admissible in court, greater understanding is required concerning
the measurement error, longitudinal stability in MZ twins, and the statistical
modeling of uncertainty. Beyond forensics, we also envision further implica-
tions of our findings that branch out into philosophy regarding the uniqueness
of human beings.

Conclusions

We have discovered and characterized hundreds of variably methylated CpGs
in the blood of young MZ twins showing equivalent variation among co-twins
and unrelated individuals. Being able to cluster technical and longitudinal
replicates while distinguishing between young MZ twins, the evCpGs we iden-
tified here are enriched in a stochastic variation component distinct from mea-
surement error, genetic influence, and epigenetic drift. Additionally, we have
highlighted the clustered protocadherin region in blood and adipose tissue
as loci concentrated in MZ co-twin variation and verified our findings across
technologies. Future functional studies are required to clarify the underlying
molecular mechanisms and putative biological implications of our identified
evCpG markers. It has not escaped our notice that such a class of biomarkers
may one day allow universal epigenetic fingerprinting, which for instance is
relevant in forensics for differentiating MZ twin individuals, typically impos-
sible with standard forensic DNA profiling.
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Methods

450K microarray data analysis

All data analysis was performed in R 3.4.4 (“Someone to Lean on”) [64]. We
employed the libraries minfi [65], ENmix [66], wateRmelon [67], and miss-
Methyl [68] for reading IDAT files, performing normalization, and quality
control. For publicly available data derived from the GEO database, pheno-
types were parsed with the help of GEOquery [69]. On this note, we only
chose pre-processed data when no similar public data was available in IDAT
format. The quality control that can be performed on pre-processed data
is inferior, as the information regarding internal 450K control probes (SNP,
out-of-band, bisulfite conversion probes, etc.) has been discarded. Also, de-
pending on the choice of authors depositing the dataset, additional information
is often unavailable, such as detection p value and beads-per-probe matrices,
separate intensity channels, CpG-SNPs, or even sex chromosomes, the latter
required for checking for sex mismatches. Details concerning the processing
of each individual dataset used in this study are available in Supplementary
Methods.

Marker discovery

For the 450K data pertaining the E-risk study, we removed outlier samples,
filtered-out potentially noisy probes including low-quality (n = 2561), SNP-
containing (n = 99,337), cross-reactive (n = 41,993) [70, 71], and X- (n =
11,232) and Y-chromosomal (n = 416) probes. We normalized in parallel
using three popular methods: stratified quantile normalization [65], dasen
[67], and oob RELIC QN BMIQ [66]. Additionally, we used ComBat [72] and
a modified Houseman method [73, 74] to correct for potential batch effects and
for whole-blood cell composition differences, respectively (Fig S5). Following
normalization, probes displaying either ICC < 0.37 [27] or IQR < 0.07 were
filtered out. On the one hand, ICC measures the proportion of non-technical
variance compared to the total variance. An ICC of zero indicates that 100
% of the variance could be explained by variance between technical replicates
(a.k.a. measurement error). In the 450K array, probes displaying ICC close
to zero are common and mostly represent probes lacking any inter-individual
variation. On the other hand, an IQR of 0.07 is expected from measurement
error only in a CpG following a beta distribution with mean = 0.5 and standard
deviation = 0.05.

For the remaining 4652 CpGs, we computed per CpG the absolute dif-
ference in methylation for twin pairs and for all combinations of unrelated
pairs. We tested for similarity under the paradigm of equivalence testing with
a two one-sided tests (TOST) procedure based on the Yuen t test that toler-
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ates non-normality [75]. We subsequently selected significant CpGs (α/n =
0.05/4652; Bonferroni-corrected) and intersected significant hits across nor-
malizations. Employing several normalization methods is not a standard rou-
tine in epigenome-wide studies and was initially introduced as another quality-
control step. But given that strong differences between methods were observed
(Fig S3-4, S6), and to avoid normalization method-specific outcomes, we de-
cided to search for significant results across multiple normalization strategies.
The parameter epsilon (ϵ), which characterizes the resolution at which the
difference in two means can be defined as equivalent, was also established per
normalization; we justify this choice as the |∆β| distribution in twin/unrelated
pairs highly differed between normalizations. We based the selection of epsilon
solely on the distribution of the trimmed mean of |∆β|twin across all tested
CpGs. Discovery statistics and effect sizes were visualized via Manhattan and
concordance plot, respectively (see Supplementary Methods for details).

Evaluation of measurement error and longitudinal stability

To ensure that technical measurement on its own cannot explain the results
obtained in the discovery, we confirmed similarity in distribution of number
of beads, detection p value, and ICC between significant (n = 333) and non-
significant CpGs (n = 4319). Secondly, the set of evCpGs was evaluated in the
resolution of technical replicates within MZ twin pairs and in the pairing of
longitudinal replicates by employing heatmap and unsupervised hierarchical
clustering. We compared their performance with a set of negative control
CpGs previously reported for strong genetic effects, which were not expected
to resolve between MZ twins or longitudinal replicates. These derived via
ranking reported blood mQTL CpGs by significance in adolescents from the
ARIES cohort [7] and selecting a number equal to that of available evCpGs in
the given cohort.

Assessment of aging effects

For epigenetic clock, we evaluated the association with age via linear regres-
sion, where the dependent variable is the evCpG methylation value and the
independent variable is age, correcting for sex as a covariate. For epigenetic
drift, we evaluated heteroscedasticity (increased variance with age) via the
White test. We preferred this option to an ordinary Breusch-Pagan test as in
[11], as it additionally includes a quadratic term for age in the auxiliary linear
model.



Stochastic epigenetic variation 63

Replication across tissues

To assess whether evCpG methylation is subject to tissue-to-tissue variation,
we made use of a large panel of post mortem tissues to achieve a high number
of tissues per individual; more details are available in Supplementary Meth-
ods. We performed multi-dimensional scaling (MDS) for the 65 450K SNP
probes, the genetically controlled CpGs employed previously and for evCpGs.
Additionally, we performed replication of the discovery in adipose tissue on
dataset-I similarly to evCpG discovery in whole blood, but in absence of cell
composition and batch effect correction. Finally, we tested time stability of
replicated evCpGs on dataset-J for which temporal ICC’s were estimated.

Functional annotation

We deeply annotated evCpGs based on the IlluminaHumanMethylation450ka-
nno.ilmn12.hg19 file. Furthermore, we extracted 500 bp up- and down-stream
evCpGs and background via samtools (v1.9) [76]. We ran Homer (v4.10) [77]
in search for known and de novo motif enrichment analysis. We input fasta
files into R and computed [G+C] content with the help of the seqinr R-package
[78]. Also, as part of Roadmap Epigenomics mapping consortium [32], a hid-
den Markov model had been built based on data derived from PBMC from
peripheral blood, by which the whole genome was segmented into 15 cate-
gories or states, ChromHMM. The data was obtained from the Encyclopedia
of DNA Elements (ENCODE) (accession ID: ENCSR550VPH) in bigBed for-
mat, which was subsequently converted to a Bed format file with the BigBed-
ToBed tool obtained from the UCSC server (http://hgdownload.soe.u
csc.edu/admin/exe/). We subsequently annotated all probes in the 450K
with its respective category and performed enrichment for evCpGs. On the
same note, median transcriptional expression levels for 247 out of the 264
evCpG-associated genes were extracted from the GTEx portal. Also, known
and predicted imprinted human genes were extracted from the Geneimprint
database (http://www.geneimprint.com/site/genes-by-species), human
metastable epiallele CpGs were extracted from [33], and EWAS-associated
trait CpG annotation was obtained from the EWAS Atlas [3], while mQTLs
discovered in the blood of adolescents were obtained from [7]. Gene Ontology
(GO) term enrichment was performed with the library missMethyl [68] that
can correct for the number of probes per gene.

WGBS pre-processing

Unfiltered processed whole-genome bisulfite sequencing (WGBS) data derived
from whole blood belonging to MZ twins were obtained from the ArrayExpress
database (accession ID: E-MTAB-3549). Similarly to [26], we excluded sites
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with more than 20 % methylation differences between the strands or sites that
fell within the Duke Excluded Regions (https://www.encodeproject.or
g/annotations/ENCSR797MUY/) or the DAC Blacklisted Regions (https:
//www.encodeproject.org/annotations/ENCSR636HFF/), known to yield
artefactual high coverage. We additionally applied both high- and low-end
coverage filters. We excluded (i) sites with coverage less or equal to 10 reads
and (ii) larger than the per-sample 99.9 % quantile. Altogether, this procedure
improves the accuracy of the methylation estimates per site and filters out
possible PCR artifacts at the high end of the coverage. Per twin pair, we then
selected only those sites that were common.

Via simulations, we estimated the 95 % quantile of the sampling |∆β| dis-
tribution to be 0.4 for 10 reads given no β difference between samples (see
Supplementary Methods for details). Differences higher or equal to this
threshold are very unlikely to have arisen from random sampling only. Fi-
nally, positional enrichment analysis was performed on the cPCDHs region
(chr5:140165876:140892546 for genome assembly hg19). Per twin, we com-
puted the number of sites with |∆β|twin ≥ 0.4 and |∆β|twin < 0.4 within and
outside this region and performed a Fisher’s exact test to obtain an enrich-
ment p value.

Availability of data and materials

All datasets employed in this study are compiled on Table 1. Additional details con-
cerning cohort characteristics can be found in Supplementary Methods. The ac-
cession identifiers are also listed here: (dataset-A) GSE105018 (GEO) [79], (dataset-B)
GSE61496 (GEO) [80], (dataset-C ) GSE51388 (GEO) [81], (dataset-D) GSE104812
(GEO) [82], (dataset-E ) GSE87571 (GEO) [83], (dataset-F ) partially available at
GSE121633 and at GSE62992 (GEO) [84, 85], (dataset-G) GSE99863 (GEO) [86],
(dataset-H ) GSE50192 (GEO) [87], (dataset-I ) E-MTAB-1866 (ArrayExpress) [88],
(dataset-J ) GSE103768 (GEO) [89], and (dataset-K ) E-MTAB-3549 (ArrayExpress)
[90]. The complete TwinsUK methylation dataset can be applied for through the
TwinsUK data access procedures described in detail at (https://twinsuk.ac.uk/
resources-for-researchers/access-our-data/). Data analysis was performed
by employing custom R-scripts, which have been released to the public domain under
an MIT license at GitHub [91] and at the Zenodo digital object identifier-assigning
repository (https://doi.org/10.5281/zenodo.4271916) [92].
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[45] R. F. Pérez et al. “Longitudinal genome-wide DNA methylation analysis un-
covers persistent early-life DNA methylation changes”. In: J Transl Med 17.1
(2019). doi: 10.1186/s12967-018-1751-9.

[46] Darina Czamara et al. “Integrated analysis of environmental and genetic in-
fluences on cord blood DNA methylation in new-borns”. In: Nature Commu-
nications 10.1 (2019), p. 2548. doi: 10.1038/s41467-019-10461-0.

[47] A. L. Teh et al. “The effect of genotype and in utero environment on interindi-
vidual variation in neonate DNA methylomes”. In: Genome Res 24.7 (2014),
pp. 1064–74. doi: 10.1101/gr.171439.113.

[48] A. L. Veenstra van Nieuwenhoven, M. J. Heineman, and M. M. Faas. “The
immunology of successful pregnancy”. In: Human Reproduction Update 9.4
(2003), pp. 347–357. doi: 10.1093/humupd/dmg026.

[49] Anastasia Georgountzou and Nikolaos G. Papadopoulos. “Postnatal Innate
Immune Development: From Birth to Adulthood”. In: Frontiers in Immunol-
ogy 8.957 (2017). doi: 10.3389/fimmu.2017.00957.

[50] Becky Adkins, Claude Leclerc, and Stuart Marshall-Clarke. “Neonatal adap-
tive immunity comes of age”. In: Nature Reviews Immunology 4.7 (2004),
pp. 553–564. doi: 10.1038/nri1394.



REFERENCES 69

[51] A. K. Simon, G. A. Hollander, and A. McMichael. “Evolution of the immune
system in humans from infancy to old age”. In: Proc Biol Sci 282.1821 (2015).
doi: 10.1098/rspb.2014.3085.

[52] Reid S. Alisch et al. “Age-associated DNA methylation in pediatric popula-
tions”. In: Genome Research 22.4 (2012), pp. 623–632. doi: 10.1101/gr.
125187.111.

[53] D. Martino et al. “Longitudinal, genome-scale analysis of DNA methylation in
twins from birth to 18 months of age reveals rapid epigenetic change in early
life and pair-specific effects of discordance”. In: Genome Biol 14.5 (2013). doi:
10.1186/gb-2013-14-5-r42.

[54] L. Gordon et al. “Neonatal DNA methylation profile in human twins is spec-
ified by a complex interplay between intrauterine environmental and genetic
factors, subject to tissue-specific influence”. In: Genome Res 22.8 (2012),
pp. 1395–406. doi: 10.1101/gr.136598.111.

[55] D. J. Martino et al. “Evidence for age-related and individual-specific changes
in DNA methylation profile of mononuclear cells during early immune develop-
ment in humans”. In: Epigenetics 6.9 (2011). doi: 10.4161/epi.6.9.16401.

[56] A. L. Turinsky et al. “Don’t brush off buccal data heterogeneity”. In: Epige-
netics 14.2 (2019), pp. 109–117. doi: 10.1080/15592294.2019.1581592.

[57] J. van Dongen et al. “Genome-wide analysis of DNA methylation in buccal
cells: a study of monozygotic twins and mQTLs”. In: Epigenetics Chromatin
11.1 (2018). doi: 10.1186/s13072-018-0225-x.

[58] M. Forest et al. “Agreement in DNA methylation levels from the Illumina
450K array across batches, tissues, and time”. In: Epigenetics 13.1 (2018),
pp. 19–32. doi: 10.1080/15592294.2017.1411443.

[59] S. Kim et al. “DNA methylation associated with healthy aging of elderly
twins”. In: Geroscience 50.5-6 (2018). doi: 10.1007/s11357-018-0040-0.

[60] J. L. McClay et al. “A methylome-wide study of aging using massively parallel
sequencing of the methyl-CpG-enriched genomic fraction from blood in over
700 subjects”. In: Hum Mol Genet 23.5 (2014). doi: 10.1093/hmg/ddt511.

[61] P. Salpea et al. “Postnatal development- and age-related changes in DNA-
methylation patterns in the human genome”. In: Nucleic Acids Res 40.14
(2012). doi: 10.1093/nar/gks312.

[62] M. Kayser and P. de Knijff. “Improving human forensics through advances
in genetics, genomics and molecular biology”. In: Nat Rev Genet 12.3 (2011).
doi: 10.1038/nrg2952.

[63] A. Vidaki and M. Kayser. “From forensic epigenetics to forensic epigenomics:
broadening DNA investigative intelligence”. In: Genome Biol 18.1 (2017). doi:
10.1186/s13059-017-1373-1.

[64] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. Vienna, Austria, 2021. url: https:
//www.R-project.org/.



70

[65] M. J. Aryee et al. “Minfi: a flexible and comprehensive Bioconductor package
for the analysis of Infinium DNA methylation microarrays”. In: Bioinformatics
30.10 (2014), pp. 1363–9. doi: 10.1093/bioinformatics/btu049.

[66] Z. Xu et al. “ENmix: a novel background correction method for Illumina Hu-
manMethylation450 BeadChip”. In: Nucleic Acids Res 44.3 (2016), e20. doi:
10.1093/nar/gkv907.

[67] R. Pidsley et al. “A data-driven approach to preprocessing Illumina 450K
methylation array data”. In: BMC Genomics 14 (2013). doi: 10.1186/1471-
2164-14-293.

[68] B. Phipson, J. Maksimovic, and A. Oshlack. “missMethyl: an R package for
analyzing data from Illumina’s HumanMethylation450 platform”. In: Bioin-
formatics 32.2 (2016). doi: 10.1093/bioinformatics/btv560.

[69] S. Davis and P. S. Meltzer. “GEOquery: a bridge between the Gene Expres-
sion Omnibus (GEO) and BioConductor”. In: Bioinformatics 23.14 (2007),
pp. 1846–7. doi: 10.1093/bioinformatics/btm254.

[70] Y. A. Chen et al. “Discovery of cross-reactive probes and polymorphic CpGs
in the Illumina Infinium HumanMethylation450 microarray”. In: Epigenetics
8.2 (2013), pp. 203–9. doi: 10.4161/epi.23470.

[71] M.E. Price et al. “Additional annotation enhances potential for biologically-
relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip
array”. In: Epigenetics Chromatin 6.1 (2013). doi: 10.1186/1756-8935-6-4.

[72] W. E. Johnson, C. Li, and A. Rabinovic. “Adjusting batch effects in microarray
expression data using empirical Bayes methods”. In: Biostatistics 8.1 (2007),
pp. 118–27. doi: 10.1093/biostatistics/kxj037.

[73] L. E. Reinius et al. “Differential DNA methylation in purified human blood
cells: implications for cell lineage and studies on disease susceptibility”. In:
PLoS One 7.7 (2012), e41361. doi: 10.1371/journal.pone.0041361.

[74] E. A. Houseman et al. “DNA methylation arrays as surrogate measures of
cell mixture distribution”. In: BMC Bioinformatics 13 (2012). doi: 10.1186/
1471-2105-13-86.

[75] K. K. Yuen. “The two-sample trimmed t for unequal population variances”.
In: Biometrika 61.1 (1974). doi: 10.1093/biomet/61.1.165.

[76] H. Li et al. “The Sequence Alignment/Map format and SAMtools”. In: Bioin-
formatics 25.16 (2009), pp. 2078–9. doi: 10.1093/bioinformatics/btp352.

[77] S. Heinz et al. “Simple combinations of lineage-determining transcription fac-
tors prime cis-regulatory elements required for macrophage and B cell identi-
ties”. In: Mol Cell 38.4 (2010), pp. 576–89. doi: 10.1016/j.molcel.2010.
05.004.



REFERENCES 71

[78] D. Charif and J. R. Lobry. “SeqinR 1.0-2: a contributed package to the R
project for statistical computing devoted to biological sequences retrieval and
analysis”. In: Structural approaches to sequence evolution: Molecules, networks,
populations. Ed. by U. Bastolla et al. Biological and Medical Physics, Biomed-
ical Engineering. In Bastolla: Springer Verlag, 2007, pp. 207–232. isbn: 978-3-
540-35305-8.

[79] E. Hannon et al. “Whole blood DNA methylation profiles in participants of the
Environmental Risk (E-Risk) Longitudinal Twin Study at age 18.” In: Gene
Expression Omnibus (2018). url: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE105018.

[80] Q. Tan, L. Christiansen, and M. Frost. “Comparing DNA methylation dif-
ference in birth-weight discordant twin pairs”. In: Gene Expression Omnibus
(2014). url: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE61496.

[81] N. Zhang et al. “Intra-MZ pair discordance and longitudinal variation of
whole-genome scale DNA methylation in adults”. In: Gene Expression Om-
nibus (2013). url: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE51388.

[82] Z. Wang and L. Shi. “Epigenome analysis of whole blood samples in Chinese
children”. In: Gene Expression Omnibus (2017). url: https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE104812.
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Abstract

Background
Illumina DNA methylation microarrays enable epigenome-wide analysis vastly
used for the discovery of novel DNA methylation variation in health and dis-
ease. However, the microarrays’ probe design cannot fully consider the vast
human genetic diversity, leading to genetic artifacts. Distinguishing genuine
from artifactual genetic influence is of particular relevance in the study of DNA
methylation heritability and methylation quantitative trait loci. But despite
its importance, current strategies to account for genetic artifacts are lagging
due to a limited mechanistic understanding on how such artifacts operate.
Results
To address this, we develop and benchmark UMtools, an R-package contain-
ing novel methods for the quantification and qualification of genetic artifacts
based on fluorescence intensity signals. With our approach, we model and val-
idate known SNPs/indels on a genetically controlled dataset of monozygotic
twins, and we estimate minor allele frequency from DNA methylation data
and empirically detect variants not included in dbSNP. Moreover, we identify
examples where genetic artifacts interact with each other or with imprinting,
X-inactivation, or tissue-specific regulation. Finally, we propose a novel strat-
egy based on co-methylation that can discern between genetic artifacts and
genuine genomic influence.
Conclusions
We provide an atlas to navigate through the huge diversity of genetic artifacts
encountered on DNA methylation microarrays. Overall, our study sets the
ground for a paradigm shift in the study of the genetic component of epige-
netic variation in DNA methylation microarrays.
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Background

DNA methylation is the most studied epigenetic biomarker. Particularly, 5-
methylcytosine (5m-C) embedded within CpG sites in mammalian genomes
has stricken epigeneticists for its abundance and core involvement in biolog-
ical processes such as X-inactivation, imprinting, aging, and disease. From
the wide range of methods that exist to detect CpG methylation, those re-
lying on bisulfite conversion are particularly popular [1]: under basic con-
ditions, unmethylated cytosines within single-stranded DNA molecules react
with bisulfite and are deaminated to uracils; in contrast, 5m-C deamination
is two orders of magnitude slower [2]. Bisulfite translates methylation infor-
mation into sequence changes, for which standard genomic analytical methods
can be deployed. In combination with next-generation sequencing, it yields
whole-genome bisulfite sequencing (WGBS). Albeit nowadays considered the
gold standard in methylomics, WGBS propagation has been hindered due to
its high time and budget costs. Consequently, DNA methylation microar-
rays have gain popularity since they provide a more affordable alternative
and hence are better suited for applications that require a large number of
samples, such as epigenome-wide association studies (EWAS). Four genera-
tions of products have established Illumina’s hybridization-based microarrays
as the leading platforms in human methylomics. We here focus on the pre-
vious Illumina Infinium HumanMethylation450 (450K) and current Illumina
HumanMethylationEPIC (850K), which cover over 450,000 and 850,000 CpG
sites, respectively [3, 4].

On these DNA methylation microarrays, hundreds of thousands of 50-
nucleotide-long probes cover 3 µm silica beads that randomly self-assemble
on a microarray’s substrate interspaced by 5.7 µm. The experimental proto-
col can be broken down to bisulfite conversion of the target genomic DNA,
whole-genome amplification, enzymatic fragmentation, hybridization to the
microarray, washing, staining, bead decoding, and fluorescence scanning. De-
tection is based on a single-base extension (SBE) step with labelled dideoxy-
nucleotides triphosphate (ddNTPs): ddATP and ddTTP labelled with dini-
trophenol (DNP) while ddCTP and ddGTP labelled with biotin, followed by
an incubation with Cy5-labelled anti-DNP and Cy3-labelled streptavidin [5].
Fluorescence acquisition occurs in two separate channels corresponding to flu-
orophores Cy5 (Red, A/T) and Cy3 (Green, C/G). Concerning detection,
three classes of probes simultaneously coexist on Illumina microarrays (Fig
1A). Infinium type II (T-II) target both epialleles with a single oligonucleotide
probe; the probe outstretches its 3’-end until one nucleotide before the tar-
geted cytosine. As a result, SBE occurs at the target cytosine position and is
informative in both fluorescence channels: green and red channels correspond
to methylated (M) and unmethylated (U) epialleles, respectively. Besides, In-
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Figure 1: Overview of Illumina DNA methylation microarray probe design and general principles of
UMtools. (A) Probe design and details on how DNA methylation ratios are quantified per Infinium
probe type (type IR, type IG, or type II). (B) Correspondence between DNA methylation ratio
(U/(U + M)), U/M plots, and CVlog T (≈ σlog(U+M)/µlog(U+M)) scales. DNA methylation ratio
distribution is plotted as a kernel density estimation (C) U/M plot for a representative example of
a 450K control probe targeting a high MAF bi-allelic SNP. Three clusters are formed corresponding
to heterozygotes and homozygotes for each allele. (D) U/M plot for representative examples of sex
chromosome-targeting probes. Males and females are highlighted in blue and pink, respectively.
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finium type I green (T-IG) and Infinium type I red (T-IR) target each epiallele
with two different oligonucleotides probes. The 3’-end of T-IG and T-IR probes
reaches the targeted cytosine and as a result, SBE occurs one nucleotide after
the targeted cytosine. In this case, SBE for T-IG or T-IR is informative either
on the green or the red channel, respectively. It is also important to note
that Illumina probes may target a cytosine either at the plus or minus strand
depending on the CpG site under consideration.

As with any probe-based approach, the inexorable abundance of genetic
diversity in human populations, such as single-nucleotide variants (SNPs) or
insertions and deletions (indels), poses a huge challenge in the design and in
the application of DNA methylation microarrays. To face the potential impact
of genetic artifacts in DNA methylation microarrays, early studies compiled
probe exclusion lists by cross-referencing genomic coordinates targeted by the
microarray probes and those of nearby genetic variants [6, 7, 8]. Nonethe-
less, these lists were crafted with limited mechanistic understanding of the
DNA methylation assay and close to no empirical validation. Also, generic
probe exclusion lists do not take into account population- or dataset-specific
differences in allele frequencies [9]. Finally, genetic databases are constantly
evolving and have limitations of their own, such as blind spots towards large
indels like copy-number variations (CNV) or structural variants (SV), aris-
ing from the limitations of variant calling with short reads [10]. As result,
probe exclusion lists are deemed to contain false positives and false negatives.
Despite these limitations, there are currently no alternatives for dealing with
genetic artifacts in the data preprocessing of DNA methylation microarrays
that can ensure artifact-free data for the subsequent outcomes.

Discerning meaningful DNA methylation measurements from genetic ar-
tifacts can become a real challenge when additionally considering the strong
influence that genetic variation can exert over the epigenome. This distinc-
tion is crucial in studies dedicated to the estimation of the heritability of DNA
methylation variation [11, 12] or the discovery of methylation quantitative trait
loci (meQTL) [13, 14]. In addition, DNA methylation microarrays are popu-
lar in cancer research—for example, employed for The Cancer Genome Atlas
(TCGA)—even though tumoral genetic alterations have been found to alter
the performance of the DNA methylation microarrays [15]. More recently, the
450K microarray has been repurposed in comparative genomic studies in apes
[16, 17]; for this application, other alternative microarray platforms exist such
as the novel Illumina HorvathMammalMethylChip40, able to target a wide
range of mammalian species. However, since the same microarray technol-
ogy is employed, it is equally susceptible to genetic artifacts [18]. Also, rare
epigenetic variation may be confused for rare genetic artifacts [19]. Addition-
ally, CpGs artifactually affected by underlying frequent genetic variants may
display high inter-individual variation, and hence interfere in the search for
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variably methylated CpGs [20, 21]. Finally, genetic artifacts can provide coun-
terfeit correlation between tissues; thus, they may interfere in the discovery
of saliva/blood-brain proxy CpGs in epigenetic psychiatry [22, 23], between-
tissue correlated CpGs [24, 25] and metastable epialleles [26] In summary,
understanding how genetic variants influence a popular DNA methylation as-
say affects a wide range of research fields and applications.

Last but not least, prior attempts to study genetic artifacts direct their
analysis on the resulting DNA methylation ratio (e.g., beta-value). However,
such analysis can well mask the effects of genetic artifacts; for example, probe
failure is indistinguishable from intermediate methylation in the methylation
ratio scale [15]. Also, prior attempts to understand and confirm the identity of
genetic artifacts relied on scarce datasets including matched DNA methylation
and genetic variant data [27]; this strategy can result in a large number of
uncontrolled genetic variants due to variant calling and imputation limitations,
largely depending on the chosen genotyping platform.

In this study, we aimed to contribute towards the increase in quality of
DNA methylation data interpretation by proposing a novel strategy to assess
genetic artifacts in methylomics. Our main objectives were (1) to develop
and benchmark tools towards the quantification and qualification of genetic
artifacts from fluorescence intensity signals, (2) to annotate the probes affected
by genetic artifacts using genetic databases, (3) to deploy these tools on DNA
methylation data on monozygotic (MZ) twins, acting as genetic controls, (4)
to build a working understanding on the interference of genetic artifacts on
the DNA methylation assay, (5) to challenge current practices that over-rely
on probe exclusion lists, and (6) to develop a novel data-driven strategy that
can discern between genetic artifacts and genuine genomic influence.

Results

UMtools: moving from DNA methylation ratios to raw fluores-
cence intensities

We consider that a genetic artifact in the Infinium assay has occurred when
the measured methylation status of a targeted genomic region is biased by
underlying genetic variants on the employed DNA template. This is counter-
point to genuine genetic effects in which genetic variants actually influence
the methylation status of a genomic locus. However, due to the many in-
tricacies involved in the assay (Fig 1A), and the lack of analytical tools to
validate hypotheses, our current understanding on how genetic artifacts op-
erate and how they can be distinguished from genuine genetic influence has
remained vague. Towards shedding light on this particularly elusive topic, we
created UMtools, an R-package containing several data-driven tools for the



Genetic artifacts on DNAm microarrays 79

analysis of raw fluorescence signals of Illumina DNA microarray data. Firstly,
we introduce U/M plots, where U (unmethylated signal) is plotted against M
(methylated signal), which are very suitable for exploratory purposes as they
provide a quick visualization of the behavior of Illumina microarray probes.
The analysis of DNA methylation microarray data on the original fluorescence
U/M plane cannot only be as intuitive as in the DNA methylation ratio scale
but can offer additional advantages in the study of genetic artifacts. Large
DNA methylation microarray datasets suffer from between-array variation in
the total fluorescence intensity, most likely introduced during the steps of
staining and washing. As a result, data points corresponding to fully methy-
lated or unmethylated samples for a given CpG tend to arrange as vertical
and horizontal lines in the U/M plane, respectively (Fig 1B). Intermediately
methylated data points on the other hand encompass blurring on both chan-
nels in a dependent way, forming diagonal lines (Fig 1B), only obscured by
background fluorescence (T-I and T-II probes), differences in probe properties
(T-I probes), or differences in fluorophores properties (T-II probes). Diversely,
probe failure, occurring when solely background fluorescence is acquired, is ev-
idenced as clumping of points near the origin (Fig 1B). Though such signals
are considered to be noise, if used to compute a methylation ratio typically
result in intermediate methylation, since fluorescence backgrounds tends to be
on similar ranges for both channels.

Secondly, to assign samples to clusters in a U/M plot, we adopted a bi-
variate Gaussian mixture model (bGMM) strategy. If the cluster-genotype
correspondence is known, or simply predicted by examining the probe design
and the alleles of genetic variants giving rise to artifacts, minor allele frequen-
cies (MAF) can additionally be estimated from cluster counts. We can include
a genetic control by taking into account in the computation only genotypes in
agreement between MZ twins.

Furthermore, to move from a targeted scale towards a more systematic
evaluation of probes at an epigenome-wide scale, we developed additional tools.
We first devised the coefficient of variation of the logarithm of the total signal
(CVlog T), a new parameter that estimates noise-to-signal ratio per CpG and
per sample (Fig 1B). Its computation is based on the standard deviation of
the intensity channels across beads (SDGreen and SDRed) stored on every raw
microarray file (e.g., IDAT), but to the best of our knowledge has never been
previously employed or discussed in the literature. While examining CVlog T

distributions across individuals, one can observe that bimodality arises when
a probe fails in some samples but not others; for example, a probe fails on a
homozygote for a genetic variant that deters SBE but not on heterozygotes or
homozygous for the other allele. Hence, the ambivalence in probe failure at
an epigenome-wide scale can be quantified with our third tool, the bimodality
coefficient of CVlog T, BC(CVlog T) [28]. We can also provide a genetic control
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to the ambivalence in probe failure, by computing the Pearson correlation
of CVlog T between monozygotic twins, corMZ(CVlog T). Finally, we developed
the K-caller, a computational approach that automatically assigns the number
of clusters encountered in a U/M plot from the aggregation of samples in the
U/M plane, based on density-based spatial clustering of applications with
noise (dbscan) algorithm [29]. Here, the K-caller was calibrated using an
independent set of markers (more details on section “Methods” and Fig S1).
Having a general-purpose K-caller at hand, it is now possible to systematically
detect genetic artifacts beyond probe failure.

To benchmark our developed tools, we chose the publicly available dataset
from the E-risk twin cohort that includes 450K-based DNA methylation data
derived from whole blood samples from 426 British MZ twins at age of 18
[11]. Using the E-risk dataset allows us to control for genetics via agreement
between MZ twin pairs, while minimizing aging-related methylation variation
since study participants are equally aged. In addition, for our benchmark-
ing, we targeted control SNP and sex chromosome-targeting probes, as their
behavior has been well documented at the DNA methylation scale [30] (Fig
1C-D). Extending this knowledge to the U/M plane, control SNP probes tar-
geting high MAF bi-allelic SNPs form three clusters corresponding to homozy-
gotes (AA, BB) and heterozygotes (AB). Secondly, probes targeting the Y-
chromosome (Y-probes) tend to form exclamation mark-like shapes as they fail
on females, while detecting either fully methylated or unmethylated in males
(Fig 1D). Thirdly, sex differences on probes targeting the X-chromosome (X-
probes) are often promoted via X-inactivation: to compensate for the doubling
dosage of genes in the X-chromosomes in females, one of the copies is randomly
inactivated via large-scale targeted methylation. As a result, X-probes are of-
ten intermediately methylated in females (XMXU ) and either 0 or 100 %
methylated in males (XU or XM ); hence, separating males and females in
two distinct V-shape clusters in the U/M plane (Fig 1D). In contraposition,
some regions are fully hypo- or hypermethylated in both females and males
(XUXU/XU or XMXM/XM ). However, despite the X-chromosome copy-
number difference, such regions do not present full separation between males
and females in the large E-risk cohort because of the spread caused by batch
effects (Fig 1D). Full separation though can be observed in smaller datasets,
which are less affected by batch effects (Fig S2). After excluding some known
problematic probes [7, 6], X-probes were segmented into X-inactivation, es-
capees, and hypermethylated categories with the help of the previously pub-
lished classification [30]. Small- and large-scale tools performed greatly on sex
chromosome and SNP-targeting probes, here summarized as a set of scores
(Table 1).

We also aimed to compare the performance of our newly developed tools
with previously published tools designed for DNA methylation microarray
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Table 1: Benchmarking of UMtools on sex chromosome- and SNP-targeting probes

UMtools
Tool Scale Purpose

U/M plot Targeted Cluster visualization

bGMM Targeted Cluster assignment for a target number of clusters

BC(CVlog T) Epigenome-wide Ambivalence in noise-to-signal ratio detection

corMZ(CVlog T) Epigenome-wide Genetic control for noise-to-signal ratio

K-caller Epigenome-wide Cluster counting

Benchmarking

Markers ChrY ChrXinact ChrXhypermeth+escape
SNP
probes

# probes 266 3,981 3,028 65

Expected K 2 2 1 (large n) 3

Probe failure
in females

Yes No No No

bGMM
(K = 2 or 3)

Twin cluster
assignment
agreement

0.994 0.991 0.479a 0.997

BC(CVlog T) and
corMZ(CVlog T)

Genetics-related
probe failure

0.951 0.001 0.001 0.000

K-calling
Correct #
clusters
predicted

0.977 0.902 0.999 1.000

a Full separation between males and females is not observed in a large cohort as E-risk (Fig 1D); it
can be seen though in smaller datasets (Fig S2A) that are not so strongly affected by batch effects.

data that employ the methylation ratio scale. On the one hand, we compared
BC(CVlog T) with the detection p value of negative control probes (pNC), the p
value with out-of-band array hybridization (pOOBAH) [15], and the p value with
non-specific fluorescence (pNSF) [31]; all of which are used to evaluate success-
ful probe performance. While detection p values allow to get a black-or-white
picture, BC(CVlog T) can quantitatively reflect noise fluctuations in fluores-
cence signals (Fig S3). On the other hand, we also compared K-caller with
the existing published tools. We first identified the MethylToSNP tool [32],
which uses tri-modality in beta-values as evidence for confounding by poly-
morphisms. However, we discarded this approach: not only does it not discern
from genuine methylation influence that often gives rise to tri-modality, but it
also ignores the vast majority of genetic artifacts which generate bimodal dis-
tributions. In addition, Gaphunter relies on gaps in DNA methylation profiles
as a signature for genetic variant confounding [27]. When testing Gaphunter
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using default parameters, it correctly predicted the number of clusters for 16.9
% of ChrY probes and 55.9 % of ChrX probes subject to X-inactivation, a sub-
stantially worse performance in comparison to the K-caller (Fig S4). Finally,
we aimed to also test the univariate Gaussian mixture model clustering [33],
but its source code was unavailable.

Annotating genetic variants for 450K probes using dbSNP151

Having a set of newly developed benchmarked tools ready, we firstly annotated
SNPs and indels associated to probes in the 450K and EPIC platforms based
on dbSNP151 in six groups: SNP or indels at CpG sites, at SBE sites (for
type I probes), and at other probe hybridizing positions (Fig S5A). As an
overview, we ran the epigenome-wide tools on all CpGs associated to genetic
variants in the E-risk cohort based on 450K data. Difference in distributions of
BC(CVlog T), corMZ(CVlog T), and number of clusters are evident at this stage,
concordant with the appearance of genetic artifacts (Fig S5B-C). From this
point onwards, we will dive deeper into the different subcategories.

SNPs at CpG/SBE sites offer a wide manifestation of genetic
artifacts

SNPs are the most frequent source of genetic artifacts on the 450K microarray
fluorescence intensity signals (Fig S5A). Particularly, SNPs at CpG/SBE sites
are highly predictable and manifest themselves in a plethora of ways depending
on the probe type (T-IR, T-IG, T-II), targeted strand (plus or minus), SNP po-
sition, and alleles [27]. Unlike T-II probes, for which SBE is performed on the
targeted cytosine, T-I probes prime SBE on the position following the targeted
cytosine. As a result, T-I probes are strongly susceptible to SNPs at three po-
sitions (CpG site and SBE positions) while T-II probes are only at two (CpG
site positions only). Based on their expected manifestation, we subclassified
450K probes targeting CpG/SBE sites with known SNPs (dbSNP151) into 16
different categories (Table 2). Our classification is in close concordance to
prior predictions [27], but greatly simplified. In summary, SNPs under a wide
range of categories can cause probe failure when homozygous (Fig 2A). In
addition, a SNP can disguise as the U or M epiallele (Fig 2B-C). In this case,
whether the SNP manifests as a genetic artifact or not depends on the DNA
methylation context of the genomic region: a CpG-SNP disguising as the U
epiallele will cause a genetic artifact if it lies within a methylated region, and
vice versa. Particularly for T-I probes, SNPs at SBE sites can also reverse the
detection fluorescence channel or simply neutral towards the methylation esti-
mation itself (Fig 2D-E). Although T-I probes subject to no channel change
display genuine detection, they are still included in EWAS probe exclusion
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lists, though some authors have offered strategies to rescue them [34]. Hav-

Table 2: Sixteen categories of CpG/SBE-SNPs. Reference allele is assumed to be the targeted allele
in Illumina’s probe annotation, which does not necessarily correspond to the major allele

                0123 (Position) 

(+) 5’-NCGN-3’ 

    |||| 

(–) 3’-NGCN-5’ 

Type II 

(+) 
SNP1 

C → A/T SNP is interpreted as U K = 1 or 3 

C → G SNP is interpreted as M K = 1 or 3 

SNP2 G → A/C/T Probe failure (3’-overhang) K = 2 

(–) 

SNP1 C → A/G/T Probe failure (3’-overhang) K = 2 

SNP2 
G → A/T SNP is interpreted as U K = 1 or 3 

G → C SNP is interpreted as M K = 1 or 3 

Type I 

(+) 

SNP0 
 

Detection in right channel 

No genetic artefact 
K = 1 

A/C/T ↔ G Detection in wrong channel K = 2 

SNP1 
C → A/G Probe failure (3’-overhang) K = 2 

C → T SNP is interpreted as U K = 1 or 3* 

SNP2 G → A/C/T Probe failure (mismatch**) K = 2 

(–) 

SNP1 C → A/G/T Probe failure (mismatch**) K = 2 

SNP2 
G → A SNP is interpreted as U K = 1 or 3* 

G → C/T Probe failure (3’-overhang) K = 2 

SNP3 
 

Detection in right channel. 

No genetic artefact 
K = 1 

A/G/T ↔ C Detection in wrong channel K = 2 

A

C↔T

A

G↔T

∗ If # internal CpGs ≫ 1 and locus is methylated, sometimes K = 2. ∗∗ Mismatch at position prior
to 3’-end of the probe.

ing manually confirmed the manifestation of genetic artifacts in a handful of
examples via SNP calling, MZ twin agreement, and MAF estimation in close
consensus with the 1000 Genomes Project (phase 3) for European ancestry,
we extended our analysis to the whole set of CpG/SBE-SNPs by using our
newly developed epigenome-wide tools. Our expectations for BC(CVlog T),
corMZ(CVlog T) and K-calling closely matched our observations with the ex-
ception of type I (+) SNP1: C↔ T and type I (−) SNP2: G↔ A (Fig 3A-B,
Fig S6-7). SNPs at the CpG/SBE sites of these probes were expected to
disguise as the unmethylated epiallele; hence, form one or three clusters in the
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Estimated 0.308 0.692 
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Figure 2: Manifestation of how SNPs at CpG/SBE sites can affect the Infinium assay. U/M plots,
MAF estimation, and probe design of a SNPs disguising as (A) U (SNP = U) or (B) M epiallele
(SNP = M), (C) of a SNP causing probe failure (SNP = PF) and (D) of a SNP at an SBE site of a
type I probe causing detection channel switch or (E) not. Cluster counts were estimated from U/M
plots via bivariate Gaussian mixture models; only concordant monozygotic twin pairs were taken
into account in the computation of MAF (genetic control); MZ twin-to-twin agreement matrices
are also available on the plots employing the same color coding as the clusters in the U/M plot.
Probe designs are highlighted in yellow boxes and SNPs are denoted in bold red. Reported MAFs
correspond to 1000 genomes (phase 3) of EUR ancestry (n = 1006).
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U/M plane, depending on whether the region was unmethylated or methy-
lated, respectively. Instead, we observed that these probes were enriched for
genetic artifacts forming two clusters and associated to probe failure, at a fre-
quency that was too high to be explained by simply misclassifications of the
K-caller. Interestingly, we also noticed that the failing type I probes were typ-
ically targeting methylated regions and contained a higher number of internal
CpGs compared to non-failing probes (linear model, interaction, p value =
3.73× 10−8, Fig S8). Using this information, we propose the following model
to explain the discrepancy: when the SNP is disguised as the unmethylated
epiallele, neighboring CpGs also targeted by the type I probe remain methy-
lated. As a result, neither type I probes targeting the fully methylated or fully
unmethylated haplotypes can bind to initiate SBE at the target locus, hence
resulting in probe failure (Fig S8D).

SNPs on the remaining probe binding sites can cause probe
failure

Unlike genetic variants at CpG/SBE sites, SNPs at the sites beyond the
CpG/SBE site may only manifest themselves as genetic artifacts via probe
failure. As expected, the closer a genetic variant is to the 3’-end of the probe,
the more likely it is to cause probe failure. However, Illumina microarrays
are based on rather long 50-nt-long probe; hence, the interference of SNPs is
quickly diluted the further it is located from the 3’-end of the probe [34]. With
our epigenome-wide tools at hand, we tested BC(CVlog T), corMZ(CVlog T) and
K-calling dependencies on the distance to the 3’-end of the probe, strand, and
SNP alleles (Fig 3C, Fig S9-10). In summary, SNP effects cannot be de-
tected any longer after 15 bp from the 3’-end. More notably, we noticed that
C/T and G/A SNPs did not cause probe failure at CpGs targeted in the plus
and minus strand respectively, independently of its position from the 3’-end.
Though it has not been reported before, it can be easily explained: bisulfite
conversion makes the SNP indistinguishable from its fully converted DNA,
except in the context of a methylated CpG site which remains non-converted.
Outstandingly, probes affected by such SNPs are also excluded by EWAS
studies, as this criterion was not considered when compiling existing probe
exclusion lists.

Indels can result in a wide range of genetic artifacts

During our annotation, we also discovered indels associated to CpG/SBE/probes
sites that are also expected to alter the 450K fluorescence intensity signals in
an artifactual manner. Unlike SNPs, however, not all probe exclusion lists used
in EWAS contain probes potentially affected by indels. Although additional
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Figure 3: Systematic evaluation of CpG/SBE–SNPs and probe-SNPs and examples of CpGs subject
to genetic artifacts with additional levels of complexity. (A) Ambivalence in noise-to-signal ratio,
BC(CVlog T ), distribution across CpG/SBE-SNP categories (SNPs with MAF < 0.1 were excluded
from this analysis). (B) Relative distributions of U/M plane cluster counts estimated by the K-
caller across CpG/SBE-SNP categories (SNPs with a MAF < 0.3 were excluded from this analysis).
(C) BC(CVlog T ) of bi-allelic probe-SNPs as a function of distance to the 3’-end of the probe and
targeted strand (SNPs with a MAF < 0.1 were excluded from this analysis). The obtained curves
have been smoothed via local regression (loess). (D) Genetic artifacts on a CpG site associated with
two contiguous SNPs and the estimation of haplotype frequencies from cluster counts in the U/M
plot via general-purpose optimization. Reported haplotype frequencies were obtained from LDhap.
(E) Genetic artifact caused by an indel that additionally interacts with imprinting. Amat and Apat

indicate maternal and paternal alleles, respectively. Reported MAFs correspond to 1000 genomes
(phase 3) of EUR ancestry (n = 1006). Allelic frequencies were estimated from cluster counts
estimated via bivariate Gaussian mixture models from U/M plots and only concordant monozygotic
twin pairs were taken into account in the computation. Twin-to-twin agreement matrices are also
available on the plots employing the same color coding as the clusters in the U/M plot. Probe designs
are highlighted in yellow boxes and SNPs/indels are denoted in bold red.
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complications are entailed by variable lengths and positions with respect to
the CpG site, CpG/SBE indels can manifest in the same ways as CpG/SBE-
SNPs. Typically, indels remove the whole CpG site and cause probe failure
when being in the homozygous state (Fig S11A), although we also identi-
fied insertions disguised as the U/M epialleles (Fig S11B-C), or insertions
that maintain or reverse the detection fluorescence channel in type I probes
(Fig S11D-E). Finally, given that our epigenome-wide tools allow to detect
probe failure without requiring genetic annotation, we explored putative un-
registered DNA variants in our data. Stunningly, we found an example of a
large unannotated indel affecting a total of six 450K probes (Fig S12), which
is possibly not registered in dbSNP yet due to the limitations of short-read
sequencing technologies to variant-call large genomic re-arrangements.

Higher-order genetic variants and joint interaction with genuine
biological variation

In the process of analyzing the 450K set of probes, we also identified exam-
ples subject to additional levels of complexity. Firstly, we report for the first
time the effect of triallelic SNPs on Illumina DNA methylation microarrays;
additional consideration must be taken when dealing with them as, under
the Infinium detection assay, two of the alleles are simply indistinguishable
(Fig S13). In addition, we found several instances of SNPs located at both
C and G within CpG sites; these cases manifest as SNPs confused for the
U/M epiallele over-imposed with probe failure, in total forming four clusters
(Fig 3D). To the best of our knowledge, these have never been reported be-
fore, probably because probe failure and intermediate DNA methylation are
indistinguishable at the methylation scale. We hypothesize that haplotypic
frequencies could be accurately estimated from the counts of samples at each
cluster called by a bGMM. We employed general-purpose optimization to find
parameters that minimize our theoretical expectations. This way, we obtained
haplotypic frequency estimates in high agreement with those reported at LD-
hap for European ancestry (Fig 3D) [35].

Genetic artifacts are particularly concealed when interacting with non-
artifactual biological variation. For example, we identified some examples
of genetic artifacts interacting with imprinting and X-inactivation (Fig 3E,
Fig 4A-B). Although straying from genetic artifacts per se, given the highly
intuitive results obtained with our tools, we also considered extending our
approach to other sets of troublesome probes in the 450K microarray. Par-
ticularly, cross-reactive (CR) or non-specific probes are promiscuous probes
predicted to hybridize at several loci in the human bisulfite-converted genome.
CR probes are hard to avoid in the design of the DNA methylation microar-
rays, not only given the high content in repetitive sequences of the human
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Figure 4: Genetic artifacts that interact with sex and probe cross-reactivity (cross-hybridizing at loci not
initially targeted by the design). (A) Allosomal probe associated to the SNP rs56157110 causing probe failure
(SNP=PF), additionally influenced by X-inactivation; U:M denotes that one epiallele is methylated randomly per
cell. Males and females are highlighted in blue and pink, respectively. (B) Allosomal probe associated to the
SNP rs7886395 that disguises as U (SNP=U), additionally interacting with X-hypermethylation. (C) Autosomal
probe, cross-reactive (CR) towards ChrY. (D) Autosomal probe, CR towards ChrX; parentheses denote the less
likely scenario. (E) Allosomal probe CR to both chrX/Y, additionally influenced by X-inactivation. (F) Allosomal
probe, CR to ChrX/Y, additionally influenced by X-inactivation escape. (G) Autosomal probe associated to the
SNP rs842416 that disguises U, additionally CR towards ChrY. (H) Allosomal probe, CR to ChrX/Y, associated
to an undetermined variant that causes probe failure at ChrX, additionally influenced by X-inactivation escape.
(I) Peripheral blood mononuclear cells (PBMC) and buccal cells tissue-specific genetic artifacts produced by SNPs
rs28780111 and rs12720020, and on first and second row, respectively. First and second column correspond to
methylation in PBMC and Buccal cells. Confusion matrices represent cluster correspondence between technical
replicates within each tissue. On the third column, PBMC and buccal patterns are overlayed with arrows that
connect matched PBMC-Buccal samples available on both tissues.
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genome, but also because of the reduced sequence complexity resulting from
bisulfite conversion. As expected, diagnosing cross-reactivity is subject to the
same issues as predicting genetic artifacts in silico and some recent work sheds
light into this [36]. We focused on autosomal probes cross-reactive towards
chromosome X or Y, as well as allosomal probes targeting both sex chromo-
somes and we observed and explained a huge diversity in U/M plots (Fig
4C–H).

Lastly, we hypothesize the existence of tissue-specific genetic artifacts: if
a SNP confused as U happens to be in a methylated region in tissue-A, but
is unmethylated in tissue-B, it will only cause a genetic artifact in tissue-A,
but no in B (and vice versa). To test this idea, we employed existing matched
data from both peripheral blood mononuclear cells (PBMC) and buccal ep-
ithelial cells (BEC) [24]. Conveniently, the employed dataset also includes
technical replicates in both tissues, which we used as genetic controls. As a
result, we successfully identified several examples of this hitherto unreported
phenomenon (Fig 4I).

False positive and negative genetic artifacts in probe exclusion
lists

We also aimed to examine the limitations of probe exclusion lists. However,
this would require the insurmountable task of examining the intrusion of ge-
netic artifacts and extrusion of healthy probes in the entire published epige-
nomic literature until now. Aiming to be as conservative as possible, we in-
stead examined the study from van Dongen et al, a significant milestone in
understanding the heritability of DNA methylation [12]. Though most studies
deploy out-of-the-shelf probe exclusion lists assuming absence of population
differences, the authors of this study alternatively implemented an improved
population-specific probe exclusion scheme based on the Dutch population
MAFs from the GoNL Project [37]. While we could confirm that the set of
excluded probes was highly enriched in probes associated to genetic artifacts,
we could still detect minor portions of genetic artifacts leaking into the heri-
tability ranking of van Dongen et al (Fig S14-15). Despite only a few, these
probes tend to be highly enriched at the top of the heritability ranking (Fig
S15B). For example, CpGs highlighted in Fig 3E and Fig S11A-C have
been wrongly ranked with very high heritability estimates (0.98, 0.78, 0.98,
and 0.97, respectively). Although the minor leaking of genetic artifacts does
not challenge their overall conclusions, researchers aiming to follow-up their
heritability outcomes would start from the top of the ranking and, hence, face
a low validation rate. Counterpoint to this problem, while intending to ex-
clude as many potentially artifactual probes as possible, a large number of
false positives have also been removed, disabling the chance for new biologi-
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cal discoveries (Fig S15E). With this lower bound in mind, we expect that
numerous studies whose data analysis was executed with a more rudimentary
approach may end up with a larger leakage of genetic artifacts.

Discerning real genetic influence from genetic artifacts—the ex-
ample of NINJ2 -intron meQTL

Detecting genetic variants that cause probe failure is possible with both de-
tection p values (standard practice) and our newly presented BC(CVlog T)
approach. However, DNA variants that camouflage as the U or M epiallele dis-
play seemingly healthy fluorescence intensities that without information about
underlying SNPs cannot be differentiated from a strong meQTL. To discrimi-
nate an meQTL from a genetic artifact, we propose the use of co-methylation,
namely the tendency of nearby CpGs to pose similar DNA methylation levels
in distance ranges of up to 1 kb [38]. More specifically, while a genetic artifact
that manifests as the U/M epiallele causes high DNA methylation variation,
this is not expected to be correlated with the surrounding genuine CpG sites
(Fig 5A). As a result, the presence of co-methylation with nearby CpGs can
be employed as evidence for true biological variation. To demonstrate this,
we focus our validation on an example localized on chromosome 12 at the first
intron of the ninjurin-2 (NINJ2 ) gene that had been previously included in
lists of discovered meQTL [13], but so far lacked any follow-up (Fig 5B). That
being said, ultimate confirmation of an meQTL requires functional studies, in
which in vivo genome editing is causally linked to DNA methylation changes
in the region. Nevertheless, plenty of additional evidence can be gathered to-
wards pinpointing a putative causal variant via an in silico approach. Both
co-methylation and tri-modality were observed in populations of European
(EUR) and African (AFR) ancestry, congruent with a cis-acting co-dominant
genetic variant controlling the methylation status of the region (Fig 5B-C,
Fig S16A). We estimated MAF across co-methylated sites of 0.48 and 0.31
for EUR and AFR ancestry, respectively (minor allele corresponding to the
methylated epiallele). To additionally pinpoint potential cis-causal variants,
we took advantage of the observed population-specific MAFs: only one vari-
ant within the co-methylation window, the C>G SNP rs34038797, displayed
agreement between measured and reported MAF for both populations (Fig
5D). The variant in question has been previously reported in GWAS to be
strongly associated to Platelet/Lymphocyte/Monocyte count [39]. To confirm
meQTL mapping observations and employing matched 450K and SNP array
data enhanced with SNP imputation, we observed consistency between the
DNA methylation status of the meQTL and the alleles of the putative causal
variant (Fig S17).

Additionally, given that meQTL mapping was performed on whole blood
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Figure 5: Distinguishing between genetic artifacts and genuine genetic influence on DNA methy-
lation by co-methylation: an extensive follow-up on the meQTL of the first intron of the NINJ2
gene. (A) Squared correlation between the DNA methylation ratio of monozygotic co-twins and
squared co-methylation across samples as a function of the genomic coordinate of a representative
genetic artifact, and (B) the NINJ2 meQTL. M-values were used instead of methylation ratios in
the computation of correlations. Plots are centered around the CpG highlighted in red. CpGs
highlighted in purple correspond to those assessed to be potentially artifactual probes. Distances
between CpGs targeted by contiguous probes (∆δ) are also highlighted in the co-methylation plot.
(C) Methylation ratio heatmap of the meQTL at an intron of NINJ2 in datasets of EUR and AFR
ancestry. Counts for each of the three clusters are included, obtained from the shown dendrogram.
For EUR ancestry, twin-to-twin agreement is represented as a matrix. For AFR, this is not shown as
the data consists of unrelated individuals. (D) Employing frequencies in EUR and AFR estimated
from U/M plot to map NINJ2 meQTL’s most likely cis-causal SNP (highlighted with an arrow).
Only SNPs in the region with MAF > 0.2 are shown. CpGs and SNPs are represented as circles
and rhombi, respectively. Red and blue CpGs correspond to those within or outside the expected
co-methylation window (average genomic position across co-methylation CpGs ± 1 kb, colored as
a brown rectangle). (E) Confirmation of meQTL co-methylation across the NINJ2 intronic region,
inter-individual variation, and co-twin similarity in DNA methylation using WGBS data of MZ twins
in whole blood. Twin pair numbering was kept as in the original dataset (E-MTAB-3549).
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(a complex mixture of cell types), we wondered how the meQTL would behave
in pure cell types. Indeed, isolated cell populations studied in whole blood and
cord blood displayed the distinctive three-level methylation status, consistent
across cell types of the same individual (Fig S16B-E). Notably, this meQTL
behavior was less clear in adipose tissue (Fig S16F-G). This could be explain-
able by cellular infiltration being the source of the methylation pattern rather
than local resident adipocytes or simply by methylation variation between
tissues. Moreover, we aimed to assess whether the NINJ2 meQTL appeared
upon differentiation or was already present in early blood progenitors. We
observed the same patterns of co-methylation in both early progenitors and
differentiated cell types, setting the time of DNA methylation establishment
prior to differentiation (Fig S18). Finally, we confirmed our observations on
the NINJ2 meQTL by employing WGBS data on MZ/DZ twins and unrelated
individuals in both whole blood and adipose tissue. Particularly, we verified
that (a) all MZ twin pairs always shared equivalent methylation status in the
meQTL in contrast to DZ twins, (b) inter-individual variation was apparent
at the co-methylation window, but not outside, and (c) the meQTL was less
striking in adipose tissue compared to whole blood (Fig 5E, Fig S19-20). On
another note, building upon our evidence for this locus, we aimed to shed light
on the putative mechanism of the NINJ2 -intron meQTL. We employed motif-
breakR [40] to predict the disruptiveness of the SNP on a potential transcrip-
tion factor binding site (TFBS) against the DNA motif databases HOMOCO,
HOMER, ENCODE, and FactorBook, together with the SNP2TFBS webtools
[41] (Fig S21, S22A-B). We also interrogated a large amount of chromatin
immunoprecipitation (ChIP)-seq data with the help of ChIPSummitDB [42]
and Unibind [43] (Fig S22C-D). Integrating all this information, we pre-
dicted that the putative causal variant could very likely act as a switch for an
Erythroblast Transformation Specific (ETS)-TFBS, granting rs34038797 the
status of a putative regulatory SNP (rSNP). Additionally, we discovered that
the putative meQTL-causal SNP was also a histone acetylation quantitative
trait locus (haQTL) [44], an expression quantitative trait locus (eQTL) [45], a
chromatin accessibility quantitative trait locus (caQTL) [46], and a transcript
usage quantitative trait locus (tuQTL) [47]. All this information is conve-
niently integrated at QTLbase webtool [48].

Based on these observations, we finally compiled a mechanistic model (Fig
S23). For rs34038797>C, the ETS-TFBS is operational allowing the recruit-
ment of an activating ETS-family TF that mediates the epigenetic activation of
the locus (hypomethylation, H3K27ac and increase in chromatin accessibility).
This coincides with the active transcription of an antisense long non-coding
RNA (lincRNA) NINJ2-AS1. For this allele, the main transcript variant ex-
pressed in blood is NINJ2-205. On the other hand, for rs34038797>G, the
ETS-TFBS has been disrupted and as a result the epigenetic state of the
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locus is inactive (hypermethylation, absence of H3K27ac, low chromatin ac-
cessibility). This coincides with the silencing of NINJ2-AS1 and an exon
inclusion event that replaces NINJ2-205 expression for the longer NINJ2-202
transcript. Exon inclusion correlating with hypermethylation has been previ-
ously described before [49]. For heterozygotes, co-dominance results from the
cis-acting nature of the biological mechanism.

Discussion

The Illumina 450K and subsequent EPIC platforms have allowed epigenome-
wide DNA methylation analysis, vastly used for the discovery of novel DNA
methylation variation in health and disease. But despite its huge popularity in
research studies and clinical applications, challenges remain towards account-
ing for potential genetic artifacts arising from the huge genetic diversity of
human populations that interfere with a probe-based hybridization methyla-
tion quantification approach. So far, the current strategy is to simply exclude
probes with high risk for genetic artifacts as judged from the proximity of
genetic variants to the microarray’s probes, disregarding any mechanistic in-
sight. In this study, almost a decade since 450K microarray’s commercial
distribution, we have revisited this topic once again but this time, by directly
examining fluorescence intensities and using MZ twins as genetic controls.
Though our characterization was based on 450K data, since there is no tech-
nological upgrade on the EPIC platform but simply an increase in the number
of targeted sites, we expect that our conclusions are valid on both arrays.

Illumina DNA methylation microarrays were inspired on the GoldenGate
platform, a two-channel fluorescence microarray initially developed for SNP
genotyping. Even though it is standard practice in SNP array analysis to
perform variant calling employing both fluorescence channels on the bivariate
plane, this has not been the case for calling genetic artifact in CpG methylation
microarrays. Given the analogy between both problems, our novel approach
seems like a natural extension of this strategy towards DNAmethylation. Mov-
ing from the one-dimensional DNA methylation ratio to the bi-dimensional
U/M plane has not only led to the differentiation of probe failure from in-
termediate DNA methylation but has also taken SNP- and K-calling from
DNA methylation data to yet unseen precisions. In addition, the use of MZ
twins as genetic controls helped us clear the need for matched genetic and
epigenetic data, resulting in large sample sizes, and enabling applications such
as MAF estimation. Such controls are valid on artifactual probes as fluores-
cence signals are determined by genetics. However, this is not applicable on
CpG sites under true epigenetic variation like meQTL since MZ twins can be
additionally influenced by environmental variables. Additionally and for the
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first time, we have described the use of DNA methylation microarray data to
estimate SNP and haplotype MAF, to understand the effect of unannotated
large indels and triallelic CpG-SNPs, to predict how internal CpGs can cause
probe failure in type I (+) SNP1: C ↔ T and type I (−) SNP2: G ↔ A or
how SNP alleles are relevant for probe binding sites as well as to characterize
the interaction between genetic artifacts with X-inactivation, imprinting and
tissue-specific methylation. Lastly, we also developed a novel strategy to dif-
ferentiate meQTL from genetic artifacts based on co-methylation. In definite,
we have provided an atlas to aid researchers navigate through the huge di-
versity of genetic artifacts encountered on Illumina methylation probe-based
microarrays.

These analyses were only possible based on the novel low- and high-throughput
data analysis tools we developed first as part of UMtools. Since a wide range of
R-packages have already been developed to analyze data from Illumina’s DNA
methylation microarray platforms (minfi [50], watermelon [51], RnBeads [52],
ChAMP [53], to name a few), UMtools focuses on the analysis of raw fluores-
cence intensities and may serve as a supplement to the standard libraries in
tasks associated to quality control, exploratory, and post hoc analysis (sug-
gested guidelines are provided in Supplementary Methods). We highlight
our significant efforts towards not only benchmarking our new methods by
contrasting the obtained predictions to real outcomes, but also by comparing
them with existing tools and by making them available. This is not always
the case for similar purpose tools in which either the source code is unavail-
able [33], or the benchmarking was performed over a handful of true positive
examples, with less effort towards quantifying false positives and negatives
[27]. Particularly, in our novel approach we highlight the potential of SDGreen

and SDRed matrices that are stored on every IDAT file but, to the best of our
knowledge, have never been used before in the literature. We believe that this
is due to the scarcity of information concerning Illumina’s proprietary IDAT
format and the current tendency of employing pre-normalized data for DNA
methylation analysis. For further information, we recommend the documen-
tation of the illuminaio R-package [54]. Also, we emphasize that there is no
substitute for raw data, as certain information is lost during preprocessing,
with the additional influence of preprocessing itself being considerable, but
this has already been discussed elsewhere [55]. Future applications pursuing
a better understanding of the microarray’s measurement error could greatly
profit from considering SDGreen and SDRed; for example, those involved in the
computation of detection p values.

Concerning the impact of genetic artifacts in the EWAS literature, ex-
cept for CpGs affected by indels which are not always excluded in standard
DNA methylation analysis, most CpGs under the influence of genetic artifacts
can be found in previously published probe exclusion lists [7, 6]. However,
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we particularly raise alert on CpG sites affected by variants that yet remain
unannotated in dbSNP, those influenced by several genetic artifacts or inter-
acting with real biological variation whose manifestation can be particularly
obscure. Overall, any in silico-predicted probe exclusion list will eventually
contain false negatives, and hence, relying on them will not guarantee the
complete exclusion of artifactual probes. This is particularly critical in stud-
ies dedicated to the interaction between genetics and epigenetics. At the same
time, these lists may also contain false positives and, hence, result in the sys-
tematic exclusion of otherwise “healthy” probes. Such lists were crafted with
limited mechanistic understanding and may never reach completeness due to
blind spots in genetic variant calling and population-specific MAFs; they are
constantly evolving with every new release of dbSNP (Fig S24). Given all the
above, we question why to use them at all; nowadays, the prolific availability
of DNA methylation microarray data presents a unique opportunity for data-
driven strategies. Interestingly, others have reached the same conclusion based
on different grounds [36]. The whole point of having a microarray is to sys-
tematize the set of CpGs to be assayed but the reality is that different authors
employ different probe exclusion schemes, resulting in substantial variation
in the analysis of DNA methylation microarray data, greatly worsened by
the long-lasting tendency for distributing only pre-processed data. Therefore,
our final recommendation is to avoid excluding probes from epigenome-wide
studies performed on Illumina DNA methylation microarrays, but instead to
flag and heavily verify post hoc with data-driven tools such as UMtools, in-
cluding raw data and annotations. Despite sacrificing statistical power due
to the raised multiple testing burden, we believe that no information should
be discarded when available, since it opens the door for unexpected discov-
eries. Also, including artifactual probes in EWAS can serve not only as a
negative control but also as a GWAS proxy: sometimes, a genetic artifact-
or meQTL-affected CpG may pop up as a hit in EWAS simply because the
responsible genetic variant is in linkage equilibrium with a variant that is gen-
uinely associated to the phenotype in question. For example, the methylation
of cg01097406 and the nearby SNP rs154657 have both been found to be sig-
nificantly associated with homocysteine levels via EWAS [56] and via GWAS
[57], respectively (Fig S25A). Subsequently, via meQTL mapping, these were
also found to be significantly associated to each other [13]. In this case, the
meQTL cg01097406 is likely acting as an allele-reporter for the putative cis-
acting causal SNP rs8059821 (the only variant with matching MAF in AFR
and EUR at chr16:89675000-89675250), which is in turn under linkage dise-
quilibrium with rs154657 (Fig S25B-E).

Additionally, we find important to discuss that none of the genetic variants
discussed that disrupt a CpG site and disguise as U should be considered as
genuine DNA methylation. It may be tempting to interpret that in these cases
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the Infinium assay measures a real outcome, since the targeted site cannot be
methylated if it does not exist. However, being unable to distinguish whether
a cytosine of interest is unmethylated or inexistent is of concern to any re-
searcher. To solve this conundrum, we advocate for a locus-centric point of
view: we define a genuine DNA methylation measurement when the methy-
lation read-out is faithful to the expected methylation status of the region
independently of the genetic template assayed. This way, if a CpG site is lost
to a SNP and disguises as the unmethylated epiallele, the measured methyla-
tion status may not agree with the true methylation status of the region and,
hence, can be considered as an artifact. Finally, we introduced a novel strategy
to differentiate meQTL from genetic artifacts based on co-methylation, which
has been a common and recurrent issue in the literature [32, 58]. Though, our
co-methylation strategy is based on two underlying assumptions: (i) nearby
CpGs are available in the microarray at a reasonable distance to encounter
co-methylation and (ii) nearby CpGs are not influenced by genetic artifacts
themselves. Regarding the first assumption, and even though co-methylation
drastically reduces after 1 kb, 70.8 % of the 450K probes and 64.2 % of the
850K probes have at least one neighbor within 500 bp (Fig S26A). On the
other hand, the second assumption is dramatically violated at regions enriched
for SNPs, such as human leukocyte antigen (HLA) genes. At these regions,
CpG/SBE-SNPs are so frequent that extensive networks of co-methylation are
apparent not because of real biological correlation between the methylation at
CpG sites, but in fact due to linkage disequilibrium between the SNPs causing
the artifacts (Fig S26B). In fact, we can observe this co-methylation between
genetic artifacts also on the meQTL co-methylation plot outside the bound-
aries of the co-methylation window (colored in purple, Fig 5B). Though we
only validated one example meQTL here, we aim to automate our validation
pipeline in a future meQTL-curating study.

Despite these limitations, our approach successfully in silico validated the
meQTL at the NINJ2 gene, for which we proposed a mechanistic model to
explain the behavior at this locus. Identifying the particular ETS-TF involved
would shed light to the biological mechanism, but this will be a hard task
given the similarity in TFBSs between the 12 subfamilies of ETS-TF [59].
More importantly, we wonder whether the meQTL cis-causal variant iden-
tified, SNP rs34038797, is also a causal variant for associations identified in
GWAS such as platelet/monocyte/lymphocyte counts. Fine-mapping results
via the CausalDB database [60] highlight its potential as a trait-causal vari-
ant (Fig S27). For the time being, we can only speculate about its potential
mechanism. Albeit not much is known about NINJ2, its paralog ninjurin 1
(NINJ1), with whom it shares more than 50 % identity, has important func-
tions in axon regeneration upon nerve injury. NINJ1 is a membrane receptor
with homophilic binding for which stable transfection results in the formation
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of large cellular aggregates [61]. We have shown that rs34038797 mediates
an exon inclusion event that results in the extension of the N-terminal. Via
transmembrane hidden Markov model (TMHMM) [62], we predicted that this
N-terminal is extracellular and, hence, may mediate part of homophilic bind-
ing activity (Fig S28). Thus, it is possible that the extension of NINJ2 ’s
N-terminal is aberrant and that this is the mechanism by which GWAS-
associated trait materialize. Particularly, NINJ2 transcripts are 4.3 times
more abundant in megakaryocytes than in erythroblasts [63]. Therefore, it is
not farfetched to hypothesize that NINJ2 may take a role in platelet func-
tion, explaining its association to decreased platelet characteristics observed
in GWAS. However, we cannot discard that NINJ2 may be involved in cellular
communication and that lower counts in platelets, monocytes, and lympho-
cytes arise via alterations in the differentiation process itself.

To sum up, we have provided detailed classifications and examples that
will aid researchers navigate through the huge diversity of genetic artifacts en-
countered on Illumina DNA methylation microarrays. Although aiming to un-
cover genetic artifacts, we have encountered a surprising amount of biological
knowledge throughout this study, including sex differences, X-inactivation, im-
printing, inter-tissue DNA methylation variation, co-methylation, and linkage
disequilibrium. Albeit the richness in biological information of such probes,
these are systematically excluded from current DNA methylation analysis.
Based on our observations, we aim to inspire other researchers to explore in-
novative ways of using these probes in future microarray analysis. Lastly,
we show that large-scale genetic variant calling from raw DNA methylation
data is possible, which has noteworthy ethical implications, especially when
combined with phenotypic/disease information; therefore, we invite close ex-
amination from bio-ethical experts.

Conclusions

Our objective in this study was to build and validate a mechanistic under-
standing on how genetic artifacts influence DNA methylation quantification
in Illumina DNA methylation microarrays as part of challenging current prac-
tices based on in silico-predicted probe exclusion lists. To achieve this, we
created new data analysis tools to fully assess and characterize the presence of
artifacts at the level of raw fluorescence data and we introduced monozygotic
twins as genetic controls in our analyses. With our approach, we have pro-
vided detailed classifications and examples that will aid researchers navigate
through the huge diversity of genetic artifacts encountered on Illumina DNA
methylation microarrays. We additionally proposed a novel strategy based
on co-methylation that can further discern between genetic artifacts and gen-
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uine genomic influence. Overall, our study sets the ground and proposes a
paradigm shift on how to account for artifactual or genuine genomic influence
on DNA methylation data; most notably, with implications for research dedi-
cated to the heritability of DNA methylation and meQTL mapping.

Methods

Datasets

In this study, the following datasets were employed:

• (E-risk) Environmental Risk (E-risk) Longitudinal Twin Study (British,
450K (IDAT), GSE105018 (GEO), 426 MZ twin pairs, whole blood, sam-
ples collected at age 18 y, 48.6 % females) [11, 64].

• (Small sample size dataset) Chinese children (Chinese, 450K (IDAT),
GSE104812 (GEO), 48 samples, whole blood, mean age 9.04 y, 39.6 %
females) [65, 66].

• (C3ARE & GECKO) Cleaning, Carrying, Changing, Attending, Reading
and Expressing (C3ARE) and Gene Expression Collaborative Kids Only
(GECKO) cohorts (Canadian, 450K (IDAT), GSE124366 (GEO), 215
samples in total, of which 105 PBMC and 110 buccal cells, mean age 7.1
y and 47.9 % females) [24, 67]. It includes 16 matched samples (same
individual for both tissues) and technical replicates: 11 and 7 individuals
were sampled in duplicates for buccal and PBMC, respectively.

• (ENID) Early Nutrition and Immune Development (ENID) Trial chil-
dren cohort (Gambian, 450K (IDAT), GSE99863 (GEO), 240 children
aged 2 years, whole blood, 48.6 % females) [68, 69].

• (Isolated blood cell types). We combined the FACS-sorted blood profiles
from 3 studies:

– FlowSorted.Blood.450k (Swedish, 450K (IDAT), GSE35069 (GEO)
60 samples derived from whole blood of 6 healthy individuals, mean
age 38 y, 100 % males) [70, 71].

– FlowSorted.CordBlood.450k (American, 450K (rgSet), not avail-
able on GEO (solely via the R-package), 104 samples derived from
cord blood of 17 individuals, 52.9 % female) [72].

– FlowSorted.CordBloodNorway.450K (Norwegian, 450K (rgSet), not
available on GEO (solely via the R-package), 77 samples derived
from cord blood of 11 individuals, 54.5 % females) [73].
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• (MZ-Adipose) MuTHER cohort (British, 450K (GenomeStudio, M/U/detP),
E-MTAB-1866 (ArrayExpress), 97 MZ twin pairs, subcutaneous adipose
tissue, mean age = NA, 100 % females) [74, 75].

• (Hematopoietic progenitors) Hematopoietic stem/progenitor cells (Amer-
ican, 450K (IDAT), GSE63409 (GEO), 74 samples derived from 20 indi-
viduals, variety of early hematopoietic progenitors in healthy and AML-
individuals, mean age = NA, 40 % females) [76, 77].

• (Matched SNP/450K/WGBS) Matched genetic-epigenetic dataset [78].

– SNP array data: GSE31438 [79], 14 samples

– 450K data (GenomeStudio, M/U/detP): GSE33233 [80] and GSE30870
[81], 59 samples

– WGBS data: GSE31263 [79], 3 samples. Same extra controls were
also extracted from 7 non-CLL B-lymphocyte samples from GSE113336
[82, 83].

• (Twins WGBS) MuTHER study (British, whole-genome bisulfite se-
quencing (bed file), E-MTAB-3549 (ArrayExpress), 52 whole blood and
adipose tissue samples belonging to 9 MZ and 8 DZ twin pairs, mean
age 57.3 y, 100 % female) [75, 84]. The distribution of samples is the
following: MZ-AT: MZ1-7; MZ-WB: MZ1-5, MZ8-9; DZ-AT: DZ1-6 and
DZ-WB: DZ1-4, DZ7-8. Singletons were discarded.

Data analysis

All data analysis was performed in R (https://www.r-project.org/) version
3.6.3 (“Holding the Windsock”) running on Ubuntu 18.04.4 LTS. Figures
were created with R-base, lattice, ggplot2, and plotly R-packages. HiC-like
co-methylation plots were generated by adapting scripts from the Sushi R-
package. Bimodality coefficients were computed with functions from the modes
R-package. The fitting of bivariate Gaussian mixture models was performed
with functions from the EMCluster R-package. K-calling was performed with
the dbscan algorithm implemented in the dbscan R-package. 450K and 850K
information on positions and probes were obtained from the IlluminaHuman-
Methylation450kanno.ilmn12.hg19 and IlluminaHumanMethylationEPICanno.
ilm10b4.hg19 R-packages. Cross-referencing of probes to dbSNP151 was per-
formed with bedtools (v 2.29.2); more details can be found at Supplementary
Methods. Phenotypic information was parsed from GEO with the GEOquery
R-package. Raw intensity means and standard deviations were extracted from
IDAT files with functions from the minfi and illuminaio R-packages.
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UMtools

The UMtools R-package containing all tools developed in this study and se-
ries of functions to ease the analysis of Illumina DNA methylation microarray
raw fluorescence intensities will be available at Github and installable via
devtools::install github("BenjaminPlanterose/UMtools") together
with a tutorial (https://github.com/BenjaminPlanterose/UMtools).
Details on the definition and implementations on the employed tools can be
found at Supplementary Methods. Briefly, U/M plots were simply the
result of plotting the unmethylated against the methylated fluorescence inten-
sity. Assignment of samples to clusters in the U/M plane (when the number
of formed clusters is known) was performed with Gaussian mixture models
via bGMM. CVlog T is measure of noise-to-signal ratio that was derived from
the standard deviation of fluorescence across beads stored in the IDAT raw
fluorescence intensity files as in:

CVlog T ≡ 1

log(µT)/R−R/2
; R =

σU + σM + 100

U +M + 100

A bimodality coefficient was quantified from the sample skewness and kur-
tosis of CVlog T across samples for a given CpG. As a rule of thumb, BCs higher
than 5/9 (the expected value of BC in a uniform distribution) point towards a
bimodal or a multimodal distribution [28]. For genetic control, we also quan-
tified CVlog T correlation between MZ twins for a given CpG. We established
a conservative threshold of corMZ(CVlog T) = 0.8 for epigenome-wide genetic
control purposes. Finally, K-calling was employed to automatically count the
number of clusters in the U/M plane. This was performed via preprocess-
ing of the signal and using the non-parametric clustering algorithm dbscan.
However, dbscan requires calibration of two parameters: minPts and eps. To
find the parameters eps and minPts that display the best performance at the
E-risk cohort’s sample size, we calibrated dbscan in an independent training
set composed of a total of 943 CpGs, forming one (n = 516), two (n = 205),
three (n = 212), or four (n = 10) clusters. This set of markers was built
by manually curating U/M plots from random CpGs. We then selected pa-
rameters to optimize K-calling, written as a multi-class classification machine
learning task scored by a macro F1-score using categories K = {1,2,3}. The
final parameters employed were minPts = 12 and eps = 0.035.

UMtools benchmarking

In the benchmarking of UMtools, we aimed to include probes targeting the
Y-chromosome (n = 416), the X-chromosome (n = 11,232), and control probes
targeting SNPs (n = 65). We excluded, however, known cross-reactive probes
[7, 6], probes containing SNPs at the CpG/SBE site, and probe-SNPs with
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MAF > 0.01, based on the SNP.147CommonSingle annotation file available
at the IlluminaHumanMethylation450kanno.ilmn12.hg19 R-package. Also, to
quantify the performance of UMtools, we employed the following set of conser-
vative scores: correct assignment coefficient: 1

n

∑n
i=1 cor

2(MZL,MZR)
assigned cluster
i ,

genetics-related probe failure: 1
n

∑n
i=1 1BCi(CVlog T)>5/9 ·1coriMZ(CVlog T)>0.8 and

correct cluster number prediction: 1
n

∑n
i=1 1kobsi =kexpi

, where 1condition is the in-
dicator function, equal to one when condition is met. The logic of each score is
further discussed in detail at Supplementary Methods. In the comparison
with existing tools, we computed detection p values with minfi::detectionP,
EWAStools::detectionP and sesame::pOOBAH. Also, we deployed gaphunter
with minfi::gaphunter using default parameters: threshold = 0.05, keepOut-
liers = FALSE and oneCutoff = 0.01.

450K microarray and WGBS data preprocessing

Throughout analysis, we deliberately kept the preprocessing to the minimum
to showcase that raw data of Illumina DNA methylation microarrays can be as
interpretable as highly processed data. To this end, U/M plots, CVlog T and
BC(CVlog T) computations, K-calling, and MAF estimation were performed
with unnormalized fluorescence signals, as registered in the IDAT files. How-
ever, at some stages, preprocessing was necessary. For R2

MZ vs genomic coor-
dinate and co-methylation plots, we first computed M-values as in log2(

M+1
U+1 );

we preferred M-values to methylation ratio as they are unbounded and, hence,
better equipped for correlation computation. Subsequently, we used prepro-
cessCore::normalize.quantiles to perform quantile normalization (QN) on the
M-value matrix, as MZ twin pairs in the E-risk cohort were placed on the same
chip. Without QN, spurious correlations generated by batch effects raised the
background R2MZ substantially; this effect is well known, and it actually mo-
tivated the adaptation of QN in microarray analysis [85]. For methylation
heatmaps, we computed methylation ration as in β = M

M+U+100 , which we
also pre-processed with QN. In the case of the NINJ2 meQTL confirmation
via WGBS data on MZ twins, we followed the same minimum-preprocessing
logic. We displayed the DNAmethylation status of all positions at the windows
chr12:673461-772946 and chr12:739280-740338, regardless of the coverage.

Statistical analysis of genetic artifacts

The identification of examples and the computation of MAF is described in
great detail on Supplementary Methods. For the epigenome-wide statis-
tical analysis of CpG/SBE-SNPs, we began from the .vcf files outputted by
bedtools; filtering out indels, the following CpG (n = 16,724) and SBE sites
(n = 562) remained. We filtered variants with MAF < 0.05, excluded trial-
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lelic SNPs and classified a total of 7722 CpGs into the 16 categories registered
at Table 2. Additionally, to reduce the noise of other sources of variation,
we removed CpGs in these lists that were also associated to CpG/SBE/probe-
indels, probe-SNPs at a distance of ≤ 5 bp from the 3’-end, CpGs with multiple
CpG/SBE-SNPs, CpGs mapping to chromosome X or Y, and probes known
to be cross-reactive. Finally, given that our epigenome-wide assessment tools
have different detection sensitivities and that these also depend on sample
size, we limited the analysis to variants with MAF > 0.1 for BC(CVlog T)
and corMZ(CVlog T) resulting in 4102 probes, or with MAF > 0.3 for the K-
caller resulting in 1433 probes. Differences in BC(CVlog T) and corMZ(CVlog T)
between groups were assessed with linear models. K-calling differences were
assessed via ternary plots.

For the epigenome-wide statistical analysis of probe-SNPs, we began from
the .vcf file outputted by bedtools for probe-genetic variants (n = 103,728). We
removed CpGs associated to indels, associated to triallelic SNPs or SNPs with
MAF < 0.01. Additionally, to reduce the noise of other sources of variation,
we removed CpGs in these lists that were also associated to CpG/SBE/probe-
indels, CpG/SBE-SNPs, CpGs associated to multiple probe-SNPs, those map-
ping to chromosome X or Y, and probes known to be cross-reactive. Again,
we also limited the analysis to variant with MAF >0.1 for BC(CVlog T) and
corMZ(CVlog T), resulting in 48,656 probes, or with MAF > 0.3 for the K-caller,
resulting in 8640 probes. BC(CVlog T) and corMZ(CVlog T) as a function of the
distance to the 3’-end was assessed with a generalized linear model of the
gamma family with a log link function. To quantify potential bleed through
of artifactual probes in the published literature, we had to build an artifac-
tual set of probes via a pipeline as highlighted in Fig S14, aiming to be as
conservative as possible.

Verification of the NINJ2 meQTL

Co-methylation was computed with the cor function with method = “pearson”
and visualized with the plotHic function from the Sushi R-package. To com-
pute the MAF of the meQTL, we employed all CpGs within the meQTL. To do
so, we performed hierarchical clustering on the matrix of Euclidean distances
with the hclust and dist functions and cut the dendrogram with the function
cutree with k = 3. Also, in the analysis of matched 450K and SNP data, given
that our target SNP was not included in the SNP array design, we had to im-
pute it from nearby SNPs, by making use of Impute2 v2.3.2 [86]. Finally, TFBS
discovery was performed with the motifbreakR R-package [40]. We ran motif-
breakR for rs34038797 against DNA motif databases HOMOCO, ENCODE,
HOMER, FactorBook, with arguments filterp = T, threshold = 1e-4, method
= “ic” and bkg = c(A = 0.25, C = 0.25, G = 0.25, T = 0.25). The motifbreakR
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output was visualized with plotMB, with arguments rsid = “rs34038797” and
effect = “strong”. Additionally, we consulted the SNP2TFBS (SNPviewer)
[41], ChIPSummitDB [42], QTLbase [48], CausalDB [60], and TMHMM [62]
web services.

Availability of data and materials

All datasets employed in this study are publicly available. Accession identifiers are
listed here: E-risk (GSE105018, GEO) [11], Small sample size (GSE104812; GEO)
[65], C3ARE & GECKO (GSE124366; GEO) [67], ENID (GSE99863; GEO) [69], Iso-
lated blood cell types (FlowSorted.Blood.450k [70], FlowSorted.CordBlood.450k [72],
FlowSorted.CordBloodNorway.450K [73]; R-packages), Adipose tissue in MZ twins
(E-MTAB-1866; ArrayExpress) [74], hematopoietic progenitors (GSE63409; GEO)
[76], Matched SNP/450K/WGBS and additional controls (GSE31438, GSE33233,
GSE30870, GSE31263, GSE113336; GEO) [78, 82] and Twins WGBS (E-MTAB-
3549; ArrayExpress) [84]. The UMtools R-package is available under an MIT license
together with a tutorial at GitHub (https://github.com/BenjaminPlanterose/UM
tools) [87]. A current release has also been deposited at the Zenodo digital object
identifier-assigning repository (https://doi.org/10.5281/zenodo.5055529) [88].
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General discussion

The aim of this thesis was to explore human epigenetic inter-individual varia-
tion and to mitigate some of the many challenges towards its application in the
biomedical, clinical, anthropological or forensic fields. In the form of a general
discussion, I summarize the main findings, methodological considerations and
outlook of this thesis.

1. Main findings

1.1 Environmental component of epigenetic inter-individual vari-
ation

For statistical genetics, environment is a mixed bag term that includes any-
thing other than genetics. Its definition includes lifestyle factors (e.g. BMI,
diet, exposure to chemical agents or pathogens), physical variables (e.g. tem-
perature, altitude), developmental, circadian, longitudinal, ageing, parent-of-
origin, sex, tissue or even non-genetic disease-associated variation. Given the
impossibility to control for every environmental factor separately, it is some-
times pragmatic to aggregate uncontrolled variables as stochastic variation.
For example, Chapter 2 covers the discovery and characterisation of hun-
dreds of variably methylated CpGs in the blood of adolescent monozygotic
(MZ) twins showing equivalent variation among co-twins and unrelated indi-
viduals (evCpGs). Critically, evCpGs were capable of clustering technical and
longitudinal replicates while differentiating young MZ twins. Together with
the lack of evidence for epigenetic drift during late childhood and adolescence,
it lead to the conclusion that the methylation at evCpGs was under stochas-
tic control during embryonic development and/or early life. Additionally, our
analyses highlighted the clustered protocadherin gene regions (cPCDH ). These
are three combinatorial gene clusters (respectively, α, β, and γ), coding for ho-
mophilic membrane receptors whose promoter choice is established in neurons
during early embryonic development via stochastic methylation. Its emerging
combinatorial richness gives rise to neuronal identity, for instance, relevant in
self-recognition and self-avoidance in the formation of neuronal circuits with-
out short-circuits. Since cPCDH are neuron-specific genes, it remains unlikely
that the observed stochastic variation at these loci is functional in whole blood.
Ever since, a study aiming to map tissue- and ethnicity-independent hyper-
variable CpGs recently reported that their discovered set was enriched for
evCpGs, which independently validates our approach [1]. Additionally, the
cPCDH loci was intriguingly highlighted for differential methylation between
MZ and DZ twins (i.e. carrying a persistent MZ epigenetic signature) [2].
Many questions remain to be answered for cPCDH and hopefully future stud-
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ies will address them.

Beyond evCpGs, the environment made its come back in Chapter 4,
which covers an approach to map inter-individual, inter-cell and inter-allele
variation from pooled whole genome bisulfite sequencing (WGBS) data. To do
so, it required the development of binomial likelihood function-based bootstrap
hypothesis test for co-methylation within reads (Binokulars), a randomization
test that can identify jointly-regulated CpGs (JRCs). As a proof-of-principle,
Binokulars was applied on WGBS data from pooled whole blood, pooled sperm
and pooled whole blood+sperm and compared our outcomes with pooled
epigenome-wide association study (EWAS) and pooled allele-specific methyla-
tion (ASM). This method identified regions in the genome whose DNA methy-
lation variation was associated to parent-of-origin (imprinting), cell type- and
tissue-specific regulation, polymorphic imprinting of environmental-origin or
ageing, all of which are considered part of the environmental component of
epigenetic variation.

1.2 Genetic component of epigenetic inter-individual variation

Most of the genetic variants discovered via genome-wide association studies
(GWAS) map on the non-coding genome, and thus have the tendency to resist
interpretation via mechanistic models. At the same time, genetic variation
can influence DNA methylation. Thus, understanding the genetics of DNA
methylation may help provide mechanisms of action for GWAS associations
that mediate their effect via the methylome. Methylation quantitative trait
loci (mQTL) are regions whose methylation is associated with the genotypes of
specific genetic variants. Studies mapping mQTL epigenome-wide are mostly
carried out via DNA methylation microarrays. However, the microarray’s
design inherently assumes that the genome assayed is identical to the refer-
ence genome, leading to genetic artifacts whenever this assumption is violated.
Thus, it is possible that false positive mQTL associations arise from genetic
artifacts in DNA methylation microarrays. Typically, microarray probes pre-
dicted to be affected by underlying genetic variants are removed prior down-
stream analysis based on lists compiled in early studies. Such lists, however,
do not take into account all the ins and outs of the methylation quantification
assay; but more importantly, they remain empirically unvalidated: their false
positive/negative rates have not been determined. Chapter 3 revisits this
problem. In particular, it covers the development and benchmarking of UM-
tools, an R-package which implements novel methods for the quantification
and qualification of genetic artifacts on DNA methylation microarrays based
on the unprocessed fluorescence intensity signals. This approach was used to
classify the huge diversity of genetic artifacts encountered on DNAmethylation
microarrays, including interactions between artifacts or with X-inactivation,
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imprinting and tissue-specific regulation. Additionally, to distinguish artifacts
from genuine epigenetic variation, a co-methylation-based approach was pro-
posed. Overall, this study reveals that genetic artifact management is an
overlooked challenge that results in a constant influx of false reports in the
literature. Ever since and recognizing the need for disseminating our outcomes
to the epigenomics community, I was involved in the organization of seminars
for consortia such as Pregnancy And Childhood Epigenetics (PACE), The Co-
horts for Heart and Aging Research in Genomic Epidemiology (CHARGE)
and Alzheimer’s Disease Sequencing Project (ADSP) that routinely use DNA
methylation microarrays. In these seminars, information was provided on how
genetic artifacts can filter through in their analyses and what researchers can
do to avoid it. As evidence on the progress for this topic, a recent review was
published in which the problem of genetic artifacts was finally recognized and
highlighted [3].

Beyond UMtools, genetic influence on DNA methylation was also patent in
Chapter 4, since Binokulars could also detect mQTL. However, the pooled
WGBS nature of the experiment meant that inter-individual, inter-cell and
inter-allele variation was confounded. Thus, WGBS data that has not been
pooled was required to properly identify the subset of JRCs that corresponded
to mQTL. Towards this end, JRC sorter was developed; this is a software
tool that can classify JRCs into five epigenotype models based on non-pooled
WGBS data. Precisely, model 5 corresponded to the archetypical bi-allelic
cis-acting co-dominant mQTL. Several examples of M5-behaving loci were
validated in cord blood but also examples of polymorphic imprinting of genetic
origin.

1.3 Applications based on epigenetic inter-individual variation

Additionally, solutions were provided to current methodological challenges
faced for the future valorisation of epigenomics. In this front, particularly
the environmental component of epigenetic inter-individual variation provides
biomarkers for accurate, robust and interpretable phenotypic prediction on
traits that are not predictable from classical genetic-based models. For in-
stance, in Chapter 2, our discovered evCpGs can be considered a first proto-
type for a universal epigenetic fingerprint, relevant in the differentiation of MZ
twins in a forensic setting. The importance of such was recently highlighted by
the Dutch media in the context of a rape case [4]. In this instance, since stan-
dard forensic genetic profiling fails to differentiate MZ twins, the Netherlands
Forensic Institute had to identify the twin who committed the crime via rare
somatic mutation events occurring post-twinning, discovered with ultra-deep
next-generation whole genome sequencing [5]. However, scalability constraints
for this approach follow from its high running costs. It is specially so given the
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need to perform marker discovery on reference material for every new crime
case before interrogating the trace material from the crime scene. In con-
trast, a universal DNA methylation fingerprint would circumvent the need for
new markers, potentially resulting in a more affordable cost; this is relevant
in the light of the increasing police budget deficit. Nonetheless, more work
is still necessary to reduce DNA methylation measurement error, to account
for longitudinal variation or to discover potential confounders. Moreover, it
is critical to develop a robust statistical model to account for the uncertainty
of MZ twin epigenetic identification, such as the one employed for somatic
mutation events [6]. Only then may such kind of evidence be admissible in
court.

Chapter 5 covers the development of combinatorial linear models (cmb-
lm), an imputation-free statistical method for linear regression prediction on
datasets with missing values that is CPU/RAM-efficient and privacy-preserving.
Cmb-lm can provide prediction errors that take into account the pattern of
missing values in the incomplete data, even at extreme missingness. As a
proof-of-concept, our novel method was tested in the context of epigenetic age-
ing clocks. Overall, cmb-lm offer a simple and flexible methodology with a wide
range of applications that can provide a smooth transition towards the valori-
sation of linear models in the real world, where missing data is omnipresent.
This is useful, for instance, in chronological age prediction for forensics, to ac-
count for typical marker drop-out at low-quality/quantity DNA trace samples:
being able to provide confidence intervals on chronological age predictions may
allow law enforcement to put the proper amount of trust on the forensic phe-
notyping intelligence evidence and thus, avoid biasing the investigation. In
the context of biomedical and clinical sciences where missing predictors result
in failed diagnosis, cmb-lm can rescue incomplete data while respecting the
privacy of the individuals in the reference dataset. This is particularly relevant
when sample material is obtained via invasive (e.g. a solid biopsy) or costly
methodologies (e.g. next-generation sequencing). Other applications include:
developing polygenic risk scores that tolerate missing predictors in the context
of genomics; or improving fairness in models based on digital medical records
whose degree of missingness tends to be higher for minority groups (typically
more reluctant to give up information) [7].

Lastly, Chapter 6 was dedicated to the prediction of smoking status from
DNA methylation in whole blood via a targeted massively-parallel sequencing
(MPS) lab tool based on 13 CpG biomarkers. Such tool exploits the persistent-
nature of DNA methylation as a smoking biomarker, useful in the accounting
for self-reporting bias in public health studies (as oppose to the acute signa-
ture of cotinine levels), but also for epigenetic phenotyping at investigative
intelligence in forensics. However, many challenges remain towards making
this a reality; for instance, further improvements are necessary to improve
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sensitivity, the inference model does not currently account for putative covari-
ates that might interfere in the interpretation of its outcome (e.g. cell type
composition, chronological age) or the longitudinal long-term stability of the
methylation levels and predictions remains to be assessed.

2. Methodological considerations in epigenomics

This thesis, or more generally the field of epigenomics, encompasses a wide
range of topics and methodologies. Thus, to fully comprehend its implications
and limitations, several considerations must be taken into account. These shall
be addressed below.

2.1 Epigenomics or methylomics?

Throughout this thesis, though its title refers to “epigenetic inter-individual
variation”, data availability at the time biased this research exclusively to-
wards DNA methylation. Nonetheless, the inter-individual variation of so
many other epigenetic marks remain in the dark such as DNA hydroxymethy-
lation, chromatin accessibility, histone variants and post-translational modifi-
cations, non-coding RNA expression, epitranscriptomics and chromatin con-
formation. These other dimensions hold great promise and hopefully will be
covered by others in future work. In the follow-up discussion, I focus solely
on DNA methylation.

2.2 Bisulfite conversion, the common denominator

A wide range of methods are available to profile DNA methylation. They
can be classified in bisulfite-free (e.g. MeDIP, MBD-seq, MRE-seq, MeD-seq)
and bisulfite-dependent methods (e.g. DNA methylation microarrays, WGBS,
RRBS). This thesis solely explored the latter. Bisulfite conversion relies on
the bisulfite-mediated differential deamination of cytosine, but two order of
magnitude slower for 5-methylcytosine (5mC) [8]. In a nutshell, cytosine in
the context of DNA forms an adduct with bisulfite under acidic conditions;
this adduct freely deaminates into a uracil bisulfite adduct, which can then
be desulfonated to uracil under basic conditions. Uracils are later converted
to thymines as part of a subsequent polymerase chain reaction (PCR) am-
plification step. Since bisulfite reacts with single-stranded DNA, an initial
denaturation is required, typically induced via basic conditions [9]. However,
like any analytical method, it has several limitations:

Firstly, upon reaction completion, it results in the formation of cytosine-
poor strands with loss of full complementarity. This drastic reduction in DNA
sequence complexity causes complications in the design of probes and primers
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with appropriate specificity or melting temperature or in the alignment of
bisulfite-converted reads. This is the reason why probes in the Illumina DNA
methylation microarrays are 50 nucleotide-long [10] as oppose to the ∼25
nucleotide-long probes in SNP arrays [11]. Moreover, translating methyla-
tion differences into sequence variation seems like a bad idea in the light of
genetically-diverse templates, heavily discussed on Chapter 3 in the context
of DNA methylation microarrays [12].

Secondly, bisulfite conversion causes DNA degradation (i.e. loss in effi-
ciency for subsequent quantitative PCRs (qPCR)). The classical explanation
is that the acidic conditions (pH = 5) experimented during bisulfite conver-
sion induce DNA de-pyrimidination to generate abasic sites; these sites are
prone to single-strand breaks via intra-molecular rearrangements [9]. On gel
electrophoresis, converted DNA fragmentation can be observed as a lower
molecular weight smear after incubating with ice; cooling is required to in-
duce formation of double-stranded DNA for its visualization under UV-light
with an intercalating agent such as ethidium bromide or equivalent [13]. But,
under closer inspection, it is hard to separate the effects of DNA fragmenta-
tion from those of DNA damage since both can result in a reduction of qPCR
efficiency [8]. In any case, DNA degradation supposes a challenge especially
in applications with the need for low sensitivity, such as forensics.

Thirdly, 5-hydroxymethylcytosine (5hmC) displays similar reaction kinet-
ics as 5mC; as a result, 5hmC and 5mC are indistinguishable via bisulfite
conversion-dependent methods [14]. Because of this, every time DNA methy-
lation is mentioned in this PhD thesis, it actually refers to the aggregate
methylation and hydroxymethylation. For most tissues, hydroxymethylation
is negligible and thus, referring to it as simply DNA methylation is approxi-
mately correct [15].

2.3 DNA methylation microarrays

The most abundant DNA methylation data corresponds to that from DNA
methylation microarrays. Most datasets are cross-sectional; though recently,
the number of longitudinal studies has increased [16, 17, 18]. Data on technical
replicates is extremely rare (paradoxically, much rarer than data on MZ and
DZ twins). The most profiled healthy tissues are venous and cord blood,
though placenta, buccal cells and saliva are increasing their presence at public
repositories [19]. Though this technology faces many challenges, it made its
appearance on Chapters 2, 3, 4, 5 and 6. I here summarize some of the
issues and propose solutions towards overcoming them.
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2.3.1 Microarray probe design

Four generations of products have established Illumina’s hybridization-based
microarrays as the leading platforms in human methylomics. I here focus on
the prior Illumina Infinium HumanMethylation450 (450K) and current plat-
form at the time of writing, Illumina HumanMethylationEPIC (EPIC), which
cover over 450,000 and 850,000 CpG sites, respectively [20, 21]. To begin with,
they solely target 1.5 and 3 % of the methylome, respectively. Measurement
sparsity across the genomic coordinate is typically resolved by analysing each
CpG independently, searching for differentially methylated positions (DMPs)
as oppose to differentially methylated regions (DMRs) [22]. The latter is, how-
ever, still possible on the microarray for well-represented regions. In any case,
since manufacturers tend to be opaque about product development stages for
intellectual property safety reasons, little information is available on how Illu-
mina’s team decided which CpGs to target from the over 30 million CpG sites
in the human genome. This is important since probe design choices determine
whether an association study discovers biomarkers or not. In general, the ef-
fects of microarray design are particularly challenging to study. For instance,
probe representation in the 450K is typically biased towards genic regions and
CpG islands [20]. In the EPIC array, they supplemented the representation
of intergenic regions by increasing number of probes that target enhancer re-
gions [21]. Moreover, accounting for genetic variation and repetitive regions
is a real challenge; these give rise to genetic artifacts and cross-hybridizing
probes, respectively [23, 24], which were heavily discussed in Chapter 3.

2.3.2 Solely unprocessed data is real

Microarray data additionally suffers from background fluorescence, probe type
bias or batch effects [25]. Because of this, it is widely believed that ro-
bust methylation analysis on DNA methylation microarray data is only pos-
sible with proper data normalization techniques. In line with this current of
thought, several normalizations were tested in Chapter 2, defining evCpGs as
those sites that were significant across normalizations. However, the propaga-
tion of this normalization-centric attitude in the literature has promoted the
emergence of hundreds of different approaches, eluding consensus and stan-
dardization [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. Furthermore, bench-
marking all approaches has become beyond reason at this point and the few
studies attempting to do so tend to judge “performance” based on dubious
metrics (for example, similarity in methylation distribution or DMP calling
agreement against a RRBS ground truth [27]).

The normalization Kafkaesque landscape inspired my explorations on the
possibilities that unprocessed data had to offer, giving rise to Chapter 3. In
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the case of DNA methylation microarrays, unprocessed data consists of the
mean and standard deviation of the green and red fluorescence intensities ob-
tained from the microarray scanner (i.e. iScan) and the number of beads per
probe from which the fluorescence intensities were averaged out. All this infor-
mation is available at the IDAT file (proprietary format of Illumina) and can
be easily extracted with publicly available software tools (i.e. the illuminaio
R-package). However, instead of directly taking all the available information
into account in the downstream analysis, what current software tools imple-
ment is to summarize some of the data into a single metric (beta or M-value),
to then over-process it in an attempt to remove putative biases, typically
with some sub-variant of quantile normalization [38]. This logic is inherited
without questioning from the analysis of RNA expression microarrays, where
normalization strategies found their popularity in the light of spike-in exper-
iments; to the best of my knowledge, this kind of experiments have not been
done for DNA methylation microarrays. However, the data analysis challenges
that methylomics face are entirely different to that of transcriptomics and we
should not assume that the same argument applies. I believe that the unpro-
cessed data paradigm could find more value in epigenetic epidemiology. To
give an example, it is possible to implement an EWAS that integrates all of
the raw data with the following weighted multi-output linear model by testing
for association via multivariate analysis of covariance (MANCOVA) for each
CpG j:

Y = X · θ + E

θ̂wls = argmin
θ

(||W 1/2 · (Y −X · θ)||22) = (X⊤ ·W ·X)−1 ·X⊤ ·W · Y

where Y ∈ Rn×2 is a matrix whose columns correspond to the mean methy-
lated and unmethylated fluorescence intensities across beads for a total of n
individuals, X ∈ Rn×(m+1) is a design matrix containing and intercept and m
covariates (e.g. batch, sex, age, methylation for CpG j), θ, θ̂wls ∈ R(m+1)×2

are the unobserved linear coefficient matrix and its weighted least squares es-
timate, respectively, E ∈ Rn×2 is the residual matrix and W ∈ Rn×n is a
diagonal matrix of weights that penalizes samples with low signal-to-noise ra-
tio; for example, it could be defined to be:

Wi,i =
(µ̂Mi + µ̂Ui)

2

σ̂2Mi
/[nbeadsMi

− 1]+ + σ̂2Ui
/[nbeadsUi

− 1]+
; Wi,j ̸=i = 0

where [·]+ denotes the ramp function and µ̂Mi , µ̂Ui , σ̂Mi , σ̂Mi , n
beads
Mi

and

nbeadsUi
correspond to the mean, standard deviation and number of beads for

the methylated and unmethylated fluorescence intensities for individual i. It
remains to be seen whether some added value can be achieved from this or any
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other alternative formulation of EWAS that accounts for all of the microarray’s
data.

2.3.3 Microarray calibration

On another note, DNA methylation ratio estimates obtained via microarrays
should be considered as rather approximate proxies heavily influenced by back-
ground fluorescence, since no efforts as of yet have been made towards its
proper calibration. In Chapter 6, PCR amplification bias was examined via
artificially methylated DNA standards at known ratios. A similar strategy,
this time genome-wide, could be envisioned for DNA methylation microarrays
by exploiting artificially fully-methylated and unmethylated human genomic
DNA, mixed at different ratios. Such a standard curve would allow to flag
unreliable probes or to improve our knowledge on background fluorescence
and whole-genome amplification bias. In fact, with enough data, it would be
possible to calibrate target datasets, a significant step towards improving the
translation of findings between platforms. Hopefully, future studies will ex-
plore this idea further.

2.3.4 Measurement error, an ignored problem

In any case, having visualized thousands of U/M plots at Chapter 3, it is un-
certain to what extent the physicochemical properties of the microarray probes
have been thoroughly validated. In my opinion, epigenetic epidemiology has
systematically underestimated measurement error on DNA methylation mi-
croarrays. This overconfidence derives from studies that compute the Pearson
correlation on the estimated methylation ratios between technical replicates
across all CpGs in the microarray (typically more than 0.95) [20, 21, 39, 40];
also included in Illumina’s own information sheet. To convince the reader how
this metric offers barely no evidence on the reliability of the assay, I propose
the following thought experiment.

For the sake of this argument, let us assume that solely three types of
CpGs are targeted by the microarray: fully methylated, fully unmethylated
and randomly methylated. Fully methylated and unmethylated states are as-
sumed to have a standard deviation of zero (deterministic), and in agreement
between technical replicates. I additionally assume that the methylation of
randomly methylated CpGs follows a uniform distribution that is indepen-
dent between technical replicates. Moreover, let us define the proportion of
randomly methylated CpGs as ϕ, whilst the proportions of fully methylated
and unmethylated CpGs is (1− ϕ)/2 for each. The Pearson correlation func-
tion of CpG methylation across sites between technical replicate pairs, indexed
left and right, βL and βR, can be theoretically derived to be:
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cor(βL, βR) = f(ϕ) =
1− ϕ

1− 2/3 · ϕ
For example, cor(ϕ = 0) = 1 (no random CpGs) and cor(ϕ = 1) = 0 (only

random CpGs). This is visualized in Fig 1. What this thought experiment

Figure 1: Expected and simulated Pearson correlation across 450,000 CpGs between
a pair of technical replicates. Three types of CpGs are included in the calculation:
fully (un)methylated (in agreement between technical replicates; proportion of (1 −
ϕ)/2 each) and randomly methylated following a uniform distribution (independent
between technical replicates; proportion of ϕ).

reveals is that the presence of fully methylated and unmethylated CpGs, which
have no measurement error in our model (but very small measurement error in
reality), strongly biases the correlation statistic between technical replicates.
Since only a fraction of CpGs included in the microarray are actually variably
methylated CpGs, even if their quantification follows a uniform distribution
(maximum entropy), the chosen metric will still give rise to close-to-one cor-
relations. For example, a correlation of 0.95 can be achieved in this model for
a fraction of ϕ = 3/22 ≈ 0.136 (Fig 1); this is ∼14 % of randomly methylated
CpGs. As a replacement, a better metric for measurement reliability can be
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achieved by computing correlation per CpG across many technical replicate
pairs or as an intra-class correlation coefficient (ICC) [41]. Studies doing so
reveal a very different landscape for the reproducibility of the microarray mea-
surements. This is relevant for instance in the fitting of ACE models to assess
DNA methylation heritability. Specifically, some authors use ACE models to
conclude that the methylome is shaped by the environment when in reality
what they are actually observing is systematic measurement error on CpGs de-
pleted from inter-individual variation, included counter-intuitively within the
non-shared environmental component, E [42, 43, 44]. This limitation could be
relieved by fitting an extended ACE model (i.e. ACEϵ, where ϵ corresponds
to measurement error) that, in addition to MZ and DZ twins, also includes
technical replicates (TR) with the following covariance matrices:

ΣMZ =

(
σ2P σ2A + σ2C

σ2A + σ2C σ2P

)

ΣDZ =

(
σ2P σ2A + σ2C/2

σ2A + σ2C/2 σ2P

)

ΣTR =

(
σ2P σ2A + σ2C + σ2E

σ2A + σ2C + σ2E σ2P

)
.

where σ2P = σ2A + σ2C + σ2E + σ2ϵ and σ2ϵ the measurement error variance
component. This is relatively straightforward to implement as a structural
equation model and would serve as a more suitable representation of the DNA
methylation landscape that takes into account measurement error.

2.4 Beyond DNA methylation microarrays

The most abundant human DNA methylation data corresponds to that from
DNA methylation microarrays. But, given its limitations, there are oppor-
tunities for alternative technologies. Recently, EWAS and mQTL mapping
studies have been implemented on WGBS data [45, 46], that are considered
the gold standard of genome-wide methylomics, but with high cost and input
requirements [47]. On this note, pooling approaches have emerged as a more
economical experimental design that can increase effective sample size with-
out dramatically increasing associated sequencing costs whilst preserving the
privacy of the individuals at the pool [48]. In Chapter 4, the potential of this
kind of data is shown towards the mapping of epigenomic regions of interest.
When the loci to study are known, a better accuracy and sensitivity can be
achieved by reducing the genomic scope of the assay via targeted approaches.
Because of this, In Chapter 6, to predict smoking habits, we quantified the
methylation status of 13 CpGs across the genome with bisulfite amplicon se-
quencing.
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3. General considerations in epigenomics

3.1 Mind the gap in (epi)genomic research

On the one hand, (epi)genetic epidemiological research is dedicated to the
identification of relevant biomarkers via high-throughput association testing,
typically via standardized technologies and methodologies. On the other
hand, functional experimental research validates a handful of the most promis-
ing findings via highly customised and target-dependent assays. The latter,
though expensive and low-throughput, is considered the gold standard. How-
ever, the prior provides more findings than what can be processed by the latter,
generating a research bottleneck. Thus, there is a gap for research displaying
medium-throughput to polish findings obtained via (epi)genetic epidemiology
prior functional validation. In this PhD thesis, there are several examples on
how this might look like; for example, the validation of the cPCDH stochas-
tic variation (Chapter 2), the NINJ2 intronic mQTL (Chapter 3) or the
WDR27 intronic polymorphic imprinting locus (Chapter 4). I believe that
there is plenty of more evidence that can be harvested in silico beyond tradi-
tional (epi)genetic epidemiology by thinking out-of-the-box and repurposing
publicly available resources. Maybe this way we can ensure that experimen-
talists receive the most promising findings to end, for once and for all, the
functional validation bottleneck.

3.2 Restricting science with restricted access

This PhD thesis was almost entirely based on publicly available data. Nonethe-
less, a huge wealth of data remains under the domain of cohorts which are
generally only accessible via data sharing agreements [49]. The reasoning be-
hind such firewalls is to protect the privacy of the individuals recruited by such
organizations. There is no doubt that it supposes an obstacle towards science
reproducibility and data repurposing. Parties that may in principle have in-
terest to compromise genetic data include insurance companies as part of their
predictive analytics or law enforcement via long-range familial search to solve
high-profile cases. To what extent the risk of privacy breaches justifies the
inflicted societal cost remains a highly controversial topic. Proof-of-concept
studies demonstrate the feasibility of privacy breaches via genetic data [50, 51].
However, looking closely, it can be realised that the attempts to do so rely on
resources that store data in an identified fashion as the gateway towards pri-
vacy breaches, since research resources (publicly available or with restricted
access) are almost always de-identified. An honourable mention goes to the
infamous public genetic genealogy databases that store most of the worldwide
genetic data in an identified way. As part of their services, they find distant
genetic relatives to extend family trees, especially pertinent in the case of
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adoptees or the descendants of anonymous sperm donors [52]. In general, the
industry of consumer genomics and epigenomics is booming. To what extent
such companies provide a net benefit to society is up for debate. To give two
alarming examples:

“The Premium DNA Kit from ANDTRO® allows you to access your ge-
netic information related to personality. While our environment and work
influence the way we are, genetics also plays a fundamental role in our person-
ality. Looking at your DNA, can learn a lot about your personality” (https:
//adntro.com/en/dna-test-genetic-report-personality/).

“myDNAge® test, the most accurate biological age test, is based on Dr.
Horvath’s epigenetic age clock” (https://www.mydnage.com/).

I wonder: are “genetic astrology” companies that handle data in an iden-
tified way to provide “genetic horoscopes” not the real threat to privacy?
Moreover, the strictness in our data sharing policy is in high discordance with
the widespread public discourse and attitude to openly share highly privacy-
sensitive data on social media or to systematically transfer it to companies
via smart devices as part of the internet-of-things in the era of surveillance
capitalism. In my view, the research community should reconsider their poli-
cies on cohort data access; paraphrasing the words of Y. Erlich et al, one
of the first studies demonstrating the identification of individuals from 1000
Genomes using genetic genealogy databases via surname inference:

“However, in our view, the appropriate response to genetic privacy chal-
lenges is not for the public to stop donating samples or for data sharing to
stop. These would be devastating reactions that could substantially hamper
scientific progress. Rather, we believe that establishing clear policies for data
sharing, educating participants about the benefits and risks of genetic studies,
and the legislation of proper usage of genetic information are pivotal ingredi-
ents to support the genomic endeavour”[50].

In the light of this debate, I personally thank the generosity of all re-
searchers that made their data available by submitting it to public repositories
(in an unidentified fashion), without whom this PhD thesis would not have
been possible.

4. Outlook

4.1 Bisulfite-free conversion

The limitations of bisulfite-conversion in the analysis of DNA methylation have
been discussed at Section 2.2. Recently, new alternatives are gaining inertia.
Enzymatic conversion resolves the problem of DNA degradation by replacing
the harsh bisulfite treatment conditions by sequential enzymatic treatment
at mild conditions (TET2, T4-BGT and APOBEC3A) [53]. Additionally,
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TET-assisted pyridine borane (TAP) solves low sequence complexity issue by
converting 5-mC to thymines, instead of unmethylated cytosine; thus, leaving
the vast majority of cytosines that are not embedded at CpG sites untouched.
To do so, it combines TET2-oxidation and deamination with pyridine borane,
that results in inappreciable fragmentation [13]. Both methods offer unique
advantages to bisulfite conversion and may have leading roles in the methy-
lomics of the future.

4.2 Joint (epi)genomic profiling with third generation sequenc-
ing

It is also possible to profile DNA methylation without having to translate DNA
methylation differences into genetic variation. Third generation sequencing
now allows joint (epi)genomic profiling at CpG-resolution without any type
of conversion. For instance, Pacbio’s single-molecule, real-time (SMRT) se-
quencing enables the direct detection of DNA base modifications in a DNA
template from polymerase kinetics; this is arrival time and duration of base
additions. And so does Oxford Nanopore technology (ONT) by employing
small biases in current across the nanopore sensor during the translocation
of single-stranded DNA. Base modification calling in both technologies typi-
cally relies on deep learning. Particularly for 5mC, its current performance is
at the level of proof-of-concept but is expected to steadily improve with ev-
ery new technological and software upgrade [54, 55]. Most importantly, both
these approaches are compatible with long-reads, an invaluable asset in the
study of repetitive DNA, structural variants, with generalized increase in read
mapping quality. An honourable mention goes to PacBio’s HiFi sequencing
that allows long reads without compromising on base calling quality; this is
done by re-sequencing the same circularized read (i.e. rolling circle amplifica-
tion) by exploiting DNA polymerases with strand-displacement capabilities.
Historically, the study of methylation at repetitive regions has been system-
atically neglected and only now, thanks to these technological advancements,
we are starting to explore its value. For instance, a new reference genome
(CHM13) was assembled using long-reads (PacBio+ONT) by the Telomere-
to-telomere consortium (T2T) from the near-complete homozygous cell line,
CHM13hTERT. By mapping ONT reads from this cell line to CHM13, the
first genome-wide profile of DNA methylation was obtained that included hu-
man centromeric regions, sub-telomeres, and acrocentric short arms [56].

4.3 DNA methylation-preserving PCR

Targeted DNA methylation analysis can be performed with a large variety
of technologies. To name a few: MethyLight [57] (based on real time-PCR),
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SNaPshot [58] (based on capillary electrophoresis), EpiTYPER [59] (based on
matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-
TOF) mass spectrometry) or bisulfite amplicon sequencing (both based on
next-generation sequencing; the prior employed in Chapter 6). All of the
aforementioned enrich for loci of interest via PCR but performed over bisulfite
converted DNA in order to conserve DNA methylation information. However,
DNA degradation upon bisulfite treatment strongly hinders the sensitivity
of the assay, thus requiring prohibitive DNA inputs for certain applications
such as forensics. For the sake of completeness, targeting approaches that do
not require PCR also exist such as DNA hybridization capture or even third
generation sequencing, for example, via targeted ONT adapter ligation upon
genomic DNA cleavage with CRISPR-associated endonuclease 9 (Cas9) [60];
nonetheless, such methods do not benefit from the exponential signal amplifi-
cation that PCR provides and thus, also suffer from low sensitivity. Ultimately,
the core challenge at hand is that current PCR implementations loose DNA
methylation information as the reaction progresses. Yet, this is clearly not the
case in vivo since DNA methylation benefits from mitotic-stability in the cell
[61]. Thus, in theory, a DNA methylation-preserving PCR can be achieved
by incorporating a maintenance DNMT into the PCR mix. This is not as
straightforward as it sounds since human DNMTs are not thermostable and
thus, would need to be replenished at every PCR cycle; this would resem-
ble the first prototypes of PCR that initially used the DNA polymerase from
Escherichia coli instead of a thermophilic organism (e.g. Thermus aquaticus
(Taq)). Thus, an analytical revolution would follow from the discovery of a
thermostable DNMT that acts on hemi-methylated CpGs without sequence
specificity and with similar kinetics to that of DNA polymerase.

Does nature already offer such enzyme? Though DNA methylation has a
long evolutionary history, it has evolved extremely rapidly across eukaryotes;
for example, Saccharomyces cerevisiae almost completely lacks DNA methy-
lation [62]. In Bacteria and Archaea, DNA methylation is mostly used as
part of the restriction-modification system where the host DNA is methy-
lated at specific sequences (typically palindromic) to avoid degradation by
methylation-sensitive restriction enzymes; elsewise, foreign DNA (e.g. bacte-
riophage DNA), that lacks DNA methylation, can thus be targeted for degra-
dation. Since most thermophilic organisms are Bacteria and Archaea, the
bioprospective search for an unspecific thermostable hemi-methylated CpG
DNMT has granted no results as of yet. The answer to this endeavour may
ultimately come from the field of protein thermostability engineering [63]; the
huge advances in protein folding and artificial intelligence may be the prece-
dent to this revolution [64].
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4.4 Single-cell DNA methylation: the next frontier

On another note, all methylation quantification methods employed in this
thesis relied on bulk quantification. However, averaging methylation ratios
across cells discards valuable information on inter-cell heterogeneity. Single-
cell CpG DNAmethylation behaves very familiarly to biallelic genetic variants.
It may be homozygous for one epiallele (MM), the other (UU), or heterozygous
(MU). For a collection of N ∈ N diploid cells with a bulk methylation for single
CpG of β ∈ [0, 1], we can write:

β =
1

N
(NMM + 1/2 ·NMU); N = NMM +NMU +NUU

For example, for a collection of 10 cells, a β = 0.8 can be obtained from
NUU = 2, NMU = 0, NMM = 8; or NUU = 1, NMU = 2, NMM = 7; or NUU =
0, NMU = 4, NMM = 6. The number of possibilities is equal to min([β ·N ], [(1−
β) ·N ]) + 1, where [·] indicates the floor function, all of which are confounded
in a bulk experiment. But, more importantly, the inter-cell covariance matrix,
Σcells, is completely lost in bulk experiments. Given m CpGs, we can write
this as:

β⃗bulk =
1

N
B⊤

cells · ⃗1N ; Σcells =
1

N
(B⊤

cells ·Bcells −N · β⃗bulk · β⃗⊤bulk)

where β⃗bulk ∈ [0, 1]m, Bcells ∈ [0, 1]N×m and ⃗1N ∈ {1}n. We are currently
living a revolution in the study of single-cell (sc) or single-nucleus (sn) as-
says, especially in transcriptomics (scRNA-seq) (Haque et al. 2017) and more
recently in chromatin accessibility (scATAC-seq) [65]. Methods to study sc-
and sn-methylomics are currently under development, but have barely been
explored in the context of human epigenomics as of yet. For example, snmC-
seq2 [66] was used to assemble an atlas of DNA methylation in neuronal and
non-neuronal cells across 45 different regions of the mouse brain [67]. Single-
cell targeted approaches are also on the way [68]. However, until now, these
methods are still very limited in terms of coverage and sparsity, which causes
significant issues for its downstream analysis and interpretation. In any case,
such technologies hold great promise towards the study of epigenomics, par-
ticularly in the field of epigenetic ageing [69].

4.5 Beyond proxy tissues

The tissue-specific nature of DNA methylation complicates its study in hu-
mans since convenient proxies (buccal cells, venous blood, cord blood) are
often poor surrogates in the study of certain diseases, phenotypic traits or
mQTL, and since the sampling of most human tissues is only possible post-
mortem. Developments in molecular biology offer some relief towards giving
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access to the most insightful tissues for epigenomics. For example, it is cur-
rently possible to: i) obtain patient-specific differentiated cells from convenient
tissues, ii) transfect ex vivo with the Yamanaka cocktail to de-differentiate into
induced pluripotent stem cells (iPSC), iii) expand and re-differentiate to the
tissue of interest, iv) perform epigenome-profiling and v) carry out EWAS on
this artificial proxy. Though much more work is required, initial studies are
beginning to assess the viability and validity of this approach [70, 71, 72].

4.6 Multi-omics and systems biology

Omics are defined as “comprehensive, or global, assessments of a set of molecules”
[73]. We distinguish phenome, genome, epigenome, transcriptome, proteome,
metabolome, glycome, microbiome and many more. Since different omics of-
fer complementary views to the same system, the full picture may solely be
stitched together via a multi-omics approach in which multiple types of omics
data are integrated [73, 74]. However, many challenges remain. Firstly, it
inherits the technical and technological biases from all its individual omics
components, requiring huge efforts towards data harmonization on the com-
plete dataset. Secondly, statistical inference is hard on a system with such
a huge number of components. Thus, the only way to proceed is to gather
large amounts of data, with its corresponding requirements on computational
resources and storage space, and to use highly sophisticated statistical and
mathematical tools (e.g. non-negative tensor factorization, sparse partial least
squares, differential geometry). Moreover, there is great excitement surround-
ing the emerging single-cell multi-omics reference datasets. Elsewise, I define
systems biology as “the study of the emergent properties of a complex biological
system that arise from the interaction between components via a holistic (as
oppose to reductionist) approach”. Unlike typical genome-wide surveys aim-
ing to discover the relevant components of a biological system, this discipline
instead focuses on emergent behaviours that arise from a set of known com-
ponents and interactions in a hypothesis-driven fashion (Chuang et al. 2010).
For example, it includes the simulation of how cellular biochemical networks
with reduced number of components evolve in space and/or time; this is typi-
cally modelled via systems of ordinary differential equations (ODEs) in bulk,
systems of stochastic differential equations (SDE) at the single-cell level or sys-
tems of partial differential equations (PDEs) when variation in space is also
considered. For larger systems, variation in space/time is typically ignored
and instead, systems biology consists of the study of network topology via
graph theory. In my view, though many challenges remain to be addressed,
multi-omics and systems biology will have a leading role in the future of hu-
man molecular and cell biology in health and disease.
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5. Conclusions

Before beginning this thesis, epigenetic variation across a wide range of tissues
and cell types had been mapped by the IHEC consortium and a several EWAS
and mQTL mapping studies were available connecting CpG methylation to
different phenotypes or genetic variants. Also, imprinting and X-inactivation
were part of common knowledge and so were concepts such as metastable epi-
alleles, epigenetic clocks or epigenetic drift. All of these bodies of research
were largely distinct, employing different technologies and data analysis tech-
niques.

Throughout this thesis, a common theme has been to connect the dots
and blend information across fields even if distantly-related. For example, in
Chapter 3, to understand how genetic variants interfered with DNA methyla-
tion microarrays, I combined knowledge on the biochemistry and bioinformat-
ics of the probe design and methylation quantification assay, the engineering
and manufacture of the microarray, software development in the revision of
current pipelines, machine learning in the benchmarking of novel data-driven
methods, statistical genetics in the accounting for genetic inter-individual vari-
ation and epigenetic epidemiology in the understanding of how end users ulti-
mately perform EWAS and mQTL mapping studies. Moreover, most chapters
begin with fundamental statistical insights; i.e. to address new questions, new
statistical approaches are required. Particularly, Chapter 2 was only possible
with the understanding of equivalence testing (which had never been used be-
fore in epigenetic epidemiology). Chapter 4 required understanding on hidden
Markov models and randomization tests. Chapter 5 required expertise on
multivariate statistics, linear algebra and mathematical statistics.

In perspective, a wide range of data, topics, problems and disciplines have
shaped this thesis. Being a biochemist by training, I now look back and reflect
on how far I have strayed from my original academic formation. As such, I
believe that the work here presented serves as an epitome on how profitable,
enriching and challenging interdisciplinary research can be. As final words,
I truly hope this thesis brings epigenetic inter-individual variation and its
applications one small step closer to reality.
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Appendix 1: Supplementary material for Chapter 2

Supplementary Methods

1. Datasets

The following datasets were employed for this study:

• (dataset-A) Environmental Risk (E-risk) Longitudinal Twin Study (British,
raw 450K, GSE105018 (GEO), 426 MZ twin pairs, whole blood, samples
collected at age 18, 48.6% females) [1].

• (dataset-B) Danish Twin Registry (Danish, raw 450K, GSE61496 (GEO),
146 MZ twin pairs, whole blood, mean age = 48.4 years, s.d. = 15.5
years, 47.9% females) [2]. Additionally, three of the twin pairs had tech-
nical replicates for both twins (duplicates for two and tetrads for one
twin pair). In total, 16 possible combinations of technical duplicates
could be computed:

∑nR
n=1

(
ni
2

)
= 4 ·

(
2
2

)
+ 2 ·

(
4
2

)
= 16; nR: number of

twins with replicates; ni: number of replicates for individual i.

• (dataset-C1 ) Zhang et al dataset in blood, group A (Chinese, pre-processed
450K, GSE51388 (GEO), 10 pairs of MZ twins (1 twin individual with
5 technical replicates), whole blood, mean age = 41.3 years, s.d. = 14.7
years, 40% females) [3].

• (dataset-C2 ) Zhang et al dataset in blood, group B (Chinese, pre-processed
450K, GSE51388 (GEO), 1 pair of MZ twins and 6 unrelated individu-
als (one individual with 6 technical replicates at one time point), whole
blood, mean age = 29.3 years, s.d. = 5.8 years, 37.5% females) [3]. The
individuals here included differ from group A (dataset C-1) and encom-
passes time points 0, 3, 6 and 9 months.

• (dataset-D) Cross-sectional children dataset (Chinese, raw 450K, GSE104812
(GEO), 48 individuals, whole blood, mean age = 9.04 years, s.d. = 1.73
years. 39.6% females) [4].

• (dataset-E ) The Northern Sweden Population Health Study (NSPHS)
dataset with a wide age interval (Swedish, raw 450K, GSE87571 (GEO),
727 individuals, whole blood, mean age = 47.4 years, s.d. = 20.9 years,
53% females) [5].
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• (dataset-F ) TwinsUK (British, raw 450K, 328 MZ twin pairs, whole
blood, mean age = 57.9 years, s.d. = 10.3 years, 100% females) [6]. The
data is partially available in GSE121633 and in at GSE62992 (GEO).

• (dataset-G) Early Nutrition and Immune Development (ENID) Trial
children cohort (Gambian, raw 450K, GSE99863 (GEO), 240 children
aged 2 years, whole blood, 48.6% females) [7].

• (dataset-H ) Cross-tissue variation dataset (Estonian, pre-processed 450K,
GSE50192 (GEO), 4 individuals, wide variety of post-mortem tissues,
mean age = 51.8 years, s.d. = 8.4 years, 25% females) [8]. A total of 17
different somatic tissues are included in the panel: abdominal and sub-
cutaneous adipose tissue, bone, joint cartilage, yellow and red bone mar-
row, coronary and splenic artery, abdominal and thoracic aorta, gastric
mucosa, lymph node, tonsils, bladder, gall bladder, medulla oblongata
and sciatic nerve.

• (dataset-I ) TwinsUK cross-tissue replication dataset (British, prepro-
cessed 450K, E-MTAB-1866 (ArrayExpress), 97 MZ twin pairs, subcu-
taneous adipose tissue, mean age = NA years, s.d. = NA years, 100%
females) [9].

• (dataset-J ) Longitudinal dataset in fat (Finnish, raw 450K, GSE103768
(GEO), 19 individuals at time points 0, 5 and 12 months, subcutaneous
adipose tissue, mean age = 35.2 years, s.d. = 1.8 years, 63.1% females)
[10].

• (dataset-K1 ) TwinsUK study (British, whole-genome bisulfite sequenc-
ing, E-MTAB-3549 (ArrayExpress), 7 MZ twin pairs, whole blood, mean
age = 59.1 years, s.d. = 8.9 years, 100% females) [11]. 5 twin pairs are
common with dataset-K2. We employ the same labels as the authors:
Twins 1, 2, 3, 4, 5, 8 and 9.

• (dataset-K2 ) TwinsUK cohort (British, whole-genome bisulfite sequenc-
ing, E-MTAB-3549 (ArrayExpress), 7 MZ twin pairs, adipose tissue,
mean age = 60.7 years, s.d. = 10.4 years, 100% females) [11]. 5 twin
pairs are common with dataset-K1. We employ the same labels as the
authors: Twins 1, 2, 3, 4, 5, 6 and 7.

2. 450K data processing

All data analysis was performed in R 3.4.4 (“Someone to Lean on”) [12]. We
employed the libraries minfi [13], ENmix [14], wateRmelon [15], missMethyl
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[16] for reading IDAT files and for performing normalization and quality con-
trol for all 450K data. For publicly available data derived from the GEO
database, phenotypes were parsed with the help of GEOquery [17].

2.1 Thorough quality control for datasets including IDATs

The following approach could only be performed for datasets with IDAT files
available (datasets A-E and J). Low-quality probes and samples were assessed
with ENmix::QCinfo with parameters detPthre = 10−6, nbthre = 3, sam-
plethre = 0.05, CpGthre = 0.05 and outlier = TRUE (Fig S1). For all
datasets, we predicted sex with minfi::getSex and compared it to phenotypic
sex in order to avoid mix-ups (Fig S2). Discarded samples are reported be-
low:

• (dataset-A) From the 1658 samples in GSE105018 (GEO), 852 samples
were used as they corresponded to MZ samples (612 corresponded to
dizygotic and 194 have NA as zygosity).

• (dataset-B) From the 312 samples in GSE61496 (GEO), 302 samples
were used (including technical replicates). The eliminated files (GSM150
6315, GSM1506430, GSM1506317, GSM1506529, GSM1506321, GSM150
6535, GSM1506323, GSM1506543, GSM1506424 and GSM1506549) ei-
ther had bad quality, missing values in the phenotype or were a co-twin
of an eliminated sample.

• (dataset-D) No samples out of the 48 were discarded due to low-quality
or predicted sex discordancy.

• (dataset-E ) From the 732 samples in GSE87571 (GEO), 727 samples
were used. The eliminated files (GSM2334328, GSM2334261 GSM2334015,
GSM2334619 and GSM2334342) either had bad quality or missing phe-
notype (age or sex).

• (dataset-F ) From the 660 samples that we obtained by applying to Twin-
sUK cohort data access (https://twinsuk.ac.uk/resources-for-
researchers/access-our-data/), 656 samples were used. The elimi-
nated files (6929793057 R06C02, 6929793137 R01C02, 6929793137 R01C01
and 6929793137 R05C02) either had bad quality or were a co-twin of an
eliminated sample.

• (dataset-G) From the 257 samples in GSE99863 (GEO), 240 samples
were used. The eliminated files (GSM2656366, GSM2656358, GSM2656
200, GSM2656251, GSM2656253, GSM2656264, GSM2656266, GSM2656317,
GSM2656368, GSM2656 357, GSM2656427, GSM2656378, GSM2656393,
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GSM2656193, GSM2656202, GSM2656223 and GSM2656295) either had
bad quality, consisted of technical replicates or presented sex that was
discordant with the predicted sex.

• (dataset-J ) No samples out of the 57 were discarded due to low-quality
or predicted sex discordance.

With respect to discarded probes: We excluded all low-quality probes and
CpGs associated to X- (n = 11,232) and Y-chromosomes (n = 416) based
on IlluminaHumanMethylation450kmanifest R-package. The number of ex-
cluded low-quality probes per dataset are the following: dataset-A (n = 2,561),
dataset-B (n = 4,545), dataset-D (n = 1,509), dataset-E (n = 2,843), dataset-F
(n = 2,800), dataset-G (n = 3,807) and dataset-J (n = 2,382). With respect to
our SNP policy, we employed the SNPs.147CommonSingle file from R-package
IlluminaHumanMethylation450kanno.ilmn12.hg19 which is based on dbSNP
v.147. We excluded all probes containing SNPs at the CpG or in the single
base extension site (the latter solely for type I probes) and probes containing
SNPs with minor allele frequency > 0.01 within the probe (n = 99,337). With
respect to cross-reactive probes, we excluded all CpGs predicted in silico to
be cross-hybridizing as reported by Chen et al and Price et al (n = 41,993)
[18, 19]. We should mention that there is a considerable intersection between
the different sets of excluded probes.

2.2 Limited quality control for pre-processed datasets

Limited 450K quality control was performed on pre-processed datasets (datasets
G-I). Pre-processed data was preferred only when no similar publicly available
dataset had been deposited in raw IDAT form and never for core results in
the manuscript. The quality control that can be performed on pre-processed
data is inferior, as the information regarding internal 450K control probes
(SNP, out-of-band, bisulfite conversion probes, etc) has been discarded. Also,
but in an irregular fashion depending on the choice of authors for depositing
the dataset, additional information is often unavailable, such as detection p
value and beads-per-probe matrices, separate intensity channels, CpG-SNPs
or even sex chromosome CpGs, the latter required for checking for sex mis-
matches. Finally, the use of different normalization methodology injects ad-
ditional variation that makes it hard to establish direct comparisons across
datasets. No samples were discarded from these datasets, resulting in the fol-
lowing total number per dataset: dataset-C1 : 24, dataset-C2 : 36, dataset-H :
70 and dataset-I : 194.
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2.3 Whole blood data preprocessing from IDATs

Prior to normalization, we extracted the Reinius et al [20] isolated cell type ref-
erence raw data in the form of an RGChannelSet via the FlowSorted.Blood.450k
R-package. An equivalent RGChannelSet object was obtained for the dataset-
to-analyze (DTA) with the function minfi::read.metharray.exp (for datasets-A,
B, D, E, F and G). They were both merged with the functionminfi::combineArrays.
We then normalized all together with three different methods: dasen, strat-
ified quantile normalization and oob RELIC QN BMIQ. The functions em-
ployed were (i) waterRmelon::dasen (modified to skip Sentrix position back-
ground linear gradient model), (ii) minfi::preprocessQuantile and (iii) EN-
mix::preprocessENmix with parameters bgParaEst = “oob” and dyeCorr =
“RELIC”, ENmix::norm.quantile with parameter method = “quantile1” and
ENmix::bmiq.mc. Employing several normalization methods is not a standard
routine in epigenome-wide studies, but in our study it was initially included
as another quality control step. We did notice strong differences between the
methods (Fig S3-4, Fig S6); thus, in order to avoid normalization method-
specific outcomes, we decided to search for significant results across multiple
normalization strategies. There are dozens of normalization methods for 450K
data. We considered only popular methods and with different orders of com-
putational complexity. Briefly:

• Dasen [15]: first equalizes backgrounds for type I and type II, then
performs quantile normalization on the M/U intensity stratifying by
probe type.

• SQN [13]: first fixes outliers in the U/M intensities, then performs quan-
tile normalization on the M/U intensities stratifying by CpG-island re-
lationship (CpG Island/shore/shelf/open sea).

• Oob RELIC QN BMIQ [14]: first corrects the background by modelling
it as an exponential-normal mixture distribution from type I-green in
the red channel or type I-red in the green channel, e.g. out-of-band
probes (oob). It then performs dye bias correction with Regression on
Logarithm of Internal Control probes (RELIC), then performs quantile
normalization on the M/U intensity stratifying by probe type and finally,
performs Beta mixture quantile dilation (BMIQ) to correct bias between
type I and type II probes.

For all methods, beta values were computed via:

β =
M

M + U + α
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where β is the beta-value or methylation level,M is the fluorescence inten-
sity for methylated epiallele, U is the fluorescence intensity for unmethylated
epiallele and α an offset for numerical stability (hereby set at 100). For nor-
malization (ii), given that the function minfi::getBeta did not seem to accept
an offset argument for GenomicRatioSet objects (minfi 1.25.1), we had to ap-
ply the offset via:

βα=100 =
βα=0 · 2CN

2CN + α

where interpunct symbolizes element-wise matrix multiplication, βα=0 and
βα=100 are the methylation matrices with offset of 0 and 100 (CpGs as rows
and samples as columns), CN is the copy number matrix (CpGs as rows and
samples as columns) easily extractable via minfi::getCN which computes:

CN = log2 (U +M)

Since the array design is confounded for the isolated cell type references, we
could not correct their chip batch effects. We did correct chip batch effects on
the DTA with sva::ComBat which was supplied with the available covariates:
dataset-A (sex), dataset-B (sex, age), dataset-E (sex, age), dataset-F (age,
BMI, smoking) and dataset-G (sex). We did not correct for batch effects on
the dataset of Chinese children (dataset-D), as chip array was not supplied by
the authors. Finally, we corrected cell composition differences via a modified
Houseman method [21] as implemented in minfi [13] (Fig S5); we performed a
discovery of cell composition sensitive probes based onminfi:::pickCompProbes
(modified to accept a beta-value matrix from any normalisation) and we esti-
mated the cell counts with minfi:::projectCellType. We defined the reference
composition as the average cell composition across the dataset. We then ad-
justed probes towards the reference composition with the following linear al-
gebra expression:

Bcorrected = Buncorrected −R ·∆α

where · indicates matrix multiplication in this instance, Bcorrected and
Buncorrected are beta-value matrices prior and after correction (CpGs as rows
and samples as columns), R is a matrix containing the average CpG methyla-
tion for the isolated cell type references (CpGs as rows and number of isolated
cell types as columns) and ∆α is a matrix of the differences in cell composition
for every sample with respect to the average reference composition (number of
isolated cell types as rows and samples as columns). Only CpGs with p value
(F-test) < 10−8 were adjusted for cell composition, by setting the rows of R
to zero for CpGs with p value > 10−8.
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2.4 Adipose tissue data preprocessing from IDATs

For dataset-J, we read the raw IDAT files with the functionminfi::read.metharray.exp.
We then normalized stratified quantile normalization withminfi::preprocessQuantile.
Beta values were computed via:

β =
M

M + U + α

with an offset α of 100. Again, given that the function minfi::getBeta did
not seem to accept an offset argument for GenomicRatioSet objects (minfi
1.25.1), we had to apply the offset via:

βα=100 =
βα=0 · 2CN

2CN + α

where interpunct symbolizes element-wise matrix multiplication, βα=0 and
βα=100 are the methylation matrices with offset of 0 and 100 (CpGs as rows
and samples as columns), CN is the copy number matrix (CpGs as rows and
samples as columns) easily extractable via minfi::getCN which computes:

CN = log2 (U +M)

We did not correct chip batch effects with sva::ComBat this time given
that the chip array design has not been shared. We did not correct for cell
composition differences given that no method has been described in the litera-
ture to estimate and correct for cell composition differences in adipose tissue.

2.5 Data extraction and preparation for pre-processed datasets

For dataset-C1/C2, the authors had made their final processed data avail-
able in GEO. We extracted normalized values via the GEOquery R-package.
The authors extracted the information from the IDATs with Genome studio
without background correction and performed color bias correction + QN +
BMIQ + batch effect corrections employing the R-package lumi. For dataset-
H, the authors did not provide either raw IDAT files or their final processed
dataset. Instead, they shared the separate M/U intensity channels and the
raw beta values extracted by GenomeStudio (e.g. partially processed data).
On this note, on the one hand, we could not perform normalization with minfi
or ENmix as these strictly require IDAT files. On the other hand, although
wateRmelon::dasen can be deployed on the separate M/U intensity channels,
these were named after the individual (instead of individuals and tissue) so
there was no way to match tissues to samples. In the end, we extracted the
raw beta values (properly named after individual and tissue) via the GEO-
query R-package. We excluded probes for which 5% of the samples had a
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detection p value > 10−6 and performed quantile normalization with prepro-
cessCore::normalize.quantiles. No batch effect correction could be performed
given that the microarray chip design was not shared either. For dataset-I, we
downloaded the final pre-processed data from ArrayExpress E-MTAB-1866
(MuTHER Fat 450K norm AE 030913.txt). The authors had extracted the
information from the IDATs with Genome studio and performed QN on sep-
arate channels and probe type (similar to wateRmelon::dasen).

3. evCpG discovery

3.1 Statistical approach

We firstly excluded non-variable CpGs. The intra-class correlation coefficient
(ICC) measures the proportion of non-technical variance compared to the
total variance. An ICC of zero indicates that 100% of the variance could
be explained by technical variance. In the 450K array, probes displaying ICC
close to zero are common. We made use of the ICC coefficients derived from
the Atherosclerosis Risk in Communities Study, which was computed based on
265 technical replicates. We decided to exclude CpGs that displayed less than
the suggested ICC empirical cut-off of 0.37 [22]. We additionally excluded
CpGs that displayed an inter-quantile range (IQR) of less than 0.07 in at least
one normalization. Such IQR empirical threshold value was devised based on
the rounded expected IQR derived from a beta distribution with mean µ equal
to 0.5 (conservative as it corresponds to the maximum variance) and standard
deviation σ equal to 0.05 (which corresponds to the technical error that some
authors report in the literature for targeted methods). In order to simulate it,
we had to compute the beta distribution’s shape parameters as a function of
µ and σ. The following expressions were employed:

α =

(
1− µ

σ2
− 1

µ

)
· µ2; β = α ·

(
1

µ
− 1

)

For a total of 4,652 CpGs, absolute difference in methylation were com-
puted for E-risk twin pairs (n = 426) and on all combination of unrelated pairs.
The latter can be computed as ntotal − ntwin.pairs =

(
426·2
2

)
− 426 = 362, 100

unrelated pairs.

We tested for equivalence of the distribution of the beta values between
MZ pairs and unrelated pairs under the paradigm of equivalence testing with
two one-sided tests (TOST). We used a robust TOST which does not require
normality of the data. It is based on Yuen t-test, which evades non-normality
by employing winsorized variance and trimmed mean [23]. We employed the
wrappers supplied by equivalence::rtost with parameters Trim = 0.2. The pa-
rameter epsilon (ϵ), which characterizes the resolution at which the difference
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in two means can be defined as equivalent, was established per normalization;
we justify this choice as the |∆β| distribution in twin/unrelated pairs highly
differed between normalizations (especially between oob RELIC QN BMIQ
compared to SQN or dasen). We based the selection of epsilon solely on the
distribution of the trimmed mean of |∆β|twin across all tested CpGs. The
criterion selected was the following:

ϵ = Mediani(Trimj(|∆β|MZ.twins
i,j ))

where |∆β|MZ.twins
i,k is the matrix of absolute difference of methylation (i

CpGs as rows and j twin pairs as columns), Trimj is the trimmed mean
operator across j twin pairs and Mediani is the median operator across i CpGs.
The epsilon parameters that were finally chosen were ϵdasen = 0.02706526,
ϵStrQN = 0.02739861 ϵoob RELIC QN BMIQ = 0.03566612.

We defined evCpGs as CpGs that are significant across all three normaliza-
tions (α = 0.05/4, 652 = 1.07 · 10−5; Bonferroni-corrected) which is equivalent
to:

p value(CpGi) = max
normk

(p valuenormk
(CpGj))

However, a limitation in our statistical approach is that we artificially
enhance our dataset by exploring all combinations of unrelated pairs in the
computation of |∆β|unrelated, sacrificing non-independence of observations and
possibly inflating the statistic. In order to make sure that this strategy has
not jeopardized the discovery phase, we performed additional analyses on the
evCpG set. In order to do so, we firstly devised an algorithm to access all
possible pairing or matchings of unrelated individuals which obey the following
restrictions: i) twin pairs are not allowed (hence, only unrelated individuals) ii)
every individual may appear once (hence, avoiding violation of independence
of observations). To begin with, a twin matching may be arranged as:

where Twini,j corresponds to Twin pair i with twin ID j. 1) Firstly, we
shuffle the rows:
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2) Secondly, we randomly exchange columns per pair:

3) Finally, we shift the second whole column one position:

Such algorithm can access all possible arrangements of non-twin matchings
that fulfil our restrictions. Equivalence testing was executed again for the total
333 evCpGs and 333 randomly selected non-significant CpGs (controlCpGs)
for 100 unrelated matching combinations (B). Similar to the discovery, the
same three normalizations were employed and combined via the maximum
function, deployed for each B-CpG pairs. The same significance threshold
used in the discovery was applied at the re-testing stage (α = 0.05/4, 652 ≈
1.07 · 10−5, Fig S7). Summary statistics for the discovery and validation are
reported on the file S1.

3.2 Visualisation

Manhattan plots were plotted by repurposing the code from qqman::manhattan
initially designed for GWAS studies rather than epigenome-wide studies. In
order to assess the agreement between MZ twins, we decided not use correla-
tion as: i) it does not directly assess the agreement of the data towards the
unit line (i.e. y = x) but to the best fitting linear model, ii) it depends on
how twin pairs A and B are assigned to the x- and y-axis and iii) its variance
grows as it gets closer to zero. For this reason, we choose a more appropri-
ate measure to evaluate concordance between MZ twins. We first defined the
mean methylation value estimate for a given CpG in twin pair i, (β̂i), as:
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β̂i =
β̂y,i + β̂x,i

2

where β̂x,i and β̂y,i are the methylation values for a given CpG for twin
pair i to the x- and y-axis, respectively (Diagram 1). The mean absolute
error (MAE) can be computed as:

MAE(β̂y,i, β̂i) =
1

n

n∑

i=1

|β̂y,i − β̂i| =
1

n

n∑

i=1

β̂y,i − β̂x,i
2

= MAE(β̂x,i, β̂i)

This is:

MAE(β̂y,i, β̂i) =
1

2 · n
n∑

i=1

|∆βi|

where |∆βi| is the absolute difference in methylation for a given CpG in
twin pair i. Such computed MAE can be interpreted geometrically as half the
average Manhattan distance to the unit line across twin pairs points.

The maximum MAE that can be achieved is 0.5 which corresponds to
twin pairs at (βx1 = 0, βy1 = 1) or (βx1 = 1, βy1= 0). In order to ease
interpretation, it is desirable that the designed measure for agreement between
twins is bounded between 0 and 1. We propose concordance, c, defined as:

c = 1− MAEobs

MAEmax
; c ∈ [0, 1]

where MAEobs is the observed MAE for a given CpG in a twin pair set
and MAEmax is the maximum observable MAE. Although the case where twins
show opposite methylation is the true maximum, it is unreasonable to employ
it as a reference given its unrealistic nature. Instead we defined our reference
as the more down-to-earth scenario where each twin’s methylation for a given
CpG follows independent uniform distributions:

βy ∼ U(0, 1); βx ∼ U(0, 1)

We can then rewrite concordance as c = 1− MAEobs
MAEunif

= 1− E[|∆βobs|]
E[|∆βunif|] . This

is:

(∆βi)unif ∼ Tr(−1, 1, 0); |∆βi|unif ∼ Tr(0, 1, 0)

where Tr corresponds to a triangular distribution with coefficients lower
limit, upper limit and mode. For |∆β|, we can write the following probability
density function:
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Diagram 1: Methylation for a given CpG across three twin pairs. Manhattan distances to the unit
line (d1, d2 and d3) are highlighted as dashed lines. MAE is defined as the mean of these distances
divided by two.

|∆βi|unif =





0 x < 0
2− 2x 0 ≤ x ≤ 1
0 x > 0

It is possible to analytically compute the expected value:

E[|∆βi|unif ] =
∫ 1

0
x · (2− 2x) dx = x2 − 2/3 · x3|10 =

1

3

and hence:

c = 1− E[|∆βobs|]
E[|∆βunif|]

= 1− 3 · E[|∆βobs|]

Although in theory, given that we do no longer normalize by the maximum
MAE, the concordance coefficient is no longer restricted to the interval between
[0, 1], in practice, no CpG approaches this limit as the case where MZ twins
display opposite methylation values is completely unrealistic. For every CpG,
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concordance was computed as described above while range was obtained as
range = max(β̂) − min(β̂). Concordance-range plots were created with the
hexbin R-package (Fig 1D, Fig S8).

4. Assessing evCpGs’ measurement error in blood

We here refer to measurement error as the variance between technical repli-
cates. The technical variance in 450K signals can derive from many sources:
DNA quantity and quality, bisulfite conversion, batch effects, data pre-processing,
etc. all of which are expected to promote divergence between technical repli-
cates. In order to assess measurement error, we initially checked for similarity
in technical 450K measure in order to make sure that the pipeline had not de-
liberately enriched for low performance probes (Fig S9). We then extended
the analysis to technical and longitudinal replicates.

4.1 450K technical measures

4.1.1 Number of beads

In the 450K array, there are three types of probes:
• Type II (targeted cytosine is not included in the probe; one sole oligonu-
cleotide targets both epialleles; single-base extension fluorescence is in-
formative on both red and green channels),

• Type I Green (targeted cytosine is included in the probe; there are two
different oligonucleotides for the methylated and unmethylated allele;
single-base extension fluorescence is informative in the green channel)
and

• Type I Red (targeted cytosine is included in the probe; two different
oligonucleotides for the methylated and unmethylated allele; single-base
extension fluorescence is informative in the red channel).

Hundreds of thousands of such probe oligonucleotides cover 3 µm silica
beads that self-assemble on a substrate interspaced by 5.7 µm. There are
normally several beads representing each oligonucleotide pool (referred to as
bead type), but the number is variable depending on the manufacture of the
microarray itself. It has previously been noted that oligos represented by
smaller number of beads give rise to higher measurement error (fluorescence
is averaged over a smaller number of beads, hence larger variability) [24]. For
example, a well-known 450K quality control function ENmix::QCinfo sets the
default threshold of inappropriate number of beads per probe to 3: probes are
flagged when at least 5% of the total samples display less than 3 beads. For
type I probes concretely, ENmix::QCinfo takes into account only the probe
with the smallest number of beads from the two probes per site. In summary,
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CpGs displaying low number of beads are expected to display higher measure-
ment error.

4.1.2 Detection p value

The detection p value derives from inference testing under the following hy-
potheses contrast:

{
H0 : Signal = Background
H1 : Signal ̸= Background

This is the same as weighing the degree of evidence on how different the
fluorescence intensity signal is, compared to that of the background. A p value
> α indicates that we cannot rejected that the signal is equal to the background
(e.g. probe failure). It has been shown before that probes that frequently
display probe failure across different samples tend to show greater technical
variability. Again, ENmix::QCinfo sets the default threshold of detection p
value to 0.000001: probes are flagged when at least 5% of the samples display
detection p values higher than 0.000001.

4.1.3 Intra-class correlation coefficient

As mentioned above, ICC measures the proportion of non-technical variance
compared to the total variance. An ICC of zero indicates that 100% of the
variance could be explained by technical variance. In the 450K array, probes
displaying ICC close to zero are common. This is often driven by very limited
inter-individual variation rather than displaying larger measurement error: in
the absence of biological variation, 100% of the variance is measurement error
[22, 25].

4.2 Technical replicates and short-term longitudinal stability

To begin with we visualized the differences between MZ twins and technical
replicates in two different ways in the Danish twin cohort. Firstly, we rep-
resented the data as arrows pointing from technical replicates to MZ twins
represented as coordinates in the concordance-range plane (described in 3.2,
Fig S10A-B). In case that the observed variation is beyond measurement er-
ror, the methylation range is expected to increase (∆x = ∆range > 0), while
the concordance is expected to decrease (∆y = ∆c < 0). Secondly, we visual-
ized how the combination of all evCpGs is able to separate monozygotic twins
via a heatmap performed with gplots::heatmap.2. We compared the resolving
power of evCpGs with a set of negative control CpGs previously reported for
strong genetic effects, which were not expected to resolve MZ twins. These
derive via ranking reported blood mQTL CpGs by significance in adolescents
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from the ARIES cohort [26] and selecting a number equal to that of avail-
able evCpGs. We also performed this analysis on Group A from Zhang et al
data (dataset-C1 ), as it also included technical replicates of MZ twins (Fig
S11A). Finally, we performed statistical inference to assess whether the dif-
ferences observed were larger in MZ twins than in technical replicates with
a Kolmogorov-Smirnov test (Fig S10C). Once proven that the differences
that were observed are superior to measurement error, we asked whether such
differences were stable in time or simply erratic. For that, we used the data
from group B of Zhang et al (dataset-C2 ). Again, with a heatmap and the
use of mQTL-derived negative control CpGs we show that in spite of time of
collection, individuals sampled at different time points cluster together. We
also provide the temporal ICC distribution in the form of a violin plot, whose
estimates had been previously published by Flanagan et al in [27] (Fig S11B).

5. evCpGs’ epigenetic clock/drift in blood

Like in a standard epigenome-wide association study (EWAS), we performed
regression association testing for age. We employed the cpg.assoc function
from the CpGassoc R-package [28] which, per CpG, fits a linear model where
the dependent variable is the beta-value and the independent variable is age;
we also included sex as a covariate. The input evCpG beta-value matrix
employed was derived from dataset-D (Fig S12A) or from dataset-E (Fig
3C-D). Obtained age-regression coefficient p values were corrected for multi-
ple testing with Bonferroni correction (α/n = 0.05/331). Also, per CpG, we
assessed whether heteroscedasticity with respect to age was present by car-
rying out White tests based on the lmtest::bptest function. Briefly, it first
creates a linear model identical to the one employed for age association (sex
included as a covariate). It then extracts the squared residuals and builds a
second linear model or auxiliary model, also supplied with the gender covari-
ate. From the R2 of the auxiliary model it is possible to compute a p value
for heteroscedasticity. We preferred this option to an ordinary Breusch-Pagan
test, as it additionally includes a quadratic term for age in the auxiliary linear
model. Heteroscedasticity p values were also corrected for multiple testing via
Bonferroni correction (α/n = 0.05/331).

6. Behavior of evCpGs in other tissues

6.1 Post-mortem tissues

To assess whether evCpG methylation is subject to between tissue variation,
we made use of a large panel of post-mortem tissues (dataset-H ); this way
we can obtain a high number of tissues per individuals. We performed multi-
dimensional scaling (MDS) plots with the minfi::mdsPlot function for the 65
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450K SNP probes, available evCpGs and equal number of control CpGs known
to display strong genetic effects extracted from mQTL from adolescents of the
ARIES study [26] (Fig S13). To extract the percentage of variance explained,
identically to what minfi::mdsPlot performs, we made use of the function cm-
scale on the matrix of Euclidean distances obtained from the evCpG/control
CpG methylation data across individuals but this time with parameter eig =
TRUE in order to obtain the eigenvalues of the distance matrix. The percent-
age of variance is simply equal to the highest eigenvalue (PC1) or the second
highest eigenvalue (PC2) divided by the sum of all eigenvalues.

6.2 Replication of evCpGs in adipose tissue

We replicated the discovery of evCpGs in dataset-I. However, there are some
cohort biases to be considered:

• The sample size is much smaller than the dataset employed for discovery
in blood.

• Although the authors that made the dataset publicly available did not
share age, we know that individuals within this cohort are generally quite
old in contrast to 18 years old employed in whole blood. Hence, epige-
netic drift effects are expected to be more predominant in this dataset

• Only female MZ twins are included in this dataset.

Having identified possible biases and given that the data was already pre-
processed, we had to re-establish an equivalence range for this normalization.
For that, we excluded CpGs associated to X- and Y-chromosomes based on Il-
luminaHumanMethylation450kmanifest R-package. With respect to our SNP
policy, we employed the SNPs.147CommonSingle file from R-package Illumi-
naHumanMethylation450kanno.ilmn12.hg19 which is based on dbSNP v.147.
We excluded all probes containing SNPs at the CpG or in the single base ex-
tension site (the latter solely for type I probes) and probes containing SNPs
with MAF > 0.01 within the probe. With respect to cross-reactive probes,
we excluded all CpGs predicted in silico to be cross-hybridizing as reported
by Chen et al and Price et al [18, 19]. We also excluded CpGs that displayed
less than the suggested ICC empirical cut-off of 0.37 in blood [22]. Optimally,
it would have been better to employ ICCs computed in adipose tissue, but
no study addressed this question to this date to the best of our knowledge.
We additionally excluded CpGs that displayed an inter-quantile range (IQR)
of less than 0.07. IQRs were computed with the whole adipose tissue dataset
(n = 648) to avoid selection biases. We used the remaining 8,142 CpGs to
define the parameter epsilon (ϵ), which characterizes the resolution at which
the difference in two means can be defined as equivalent employing:
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ϵ = Mediani(Trimj(|∆β|MZ.twins
i,j ))

where |∆β|MZ.twins
i,j is the matrix of absolute difference of methylation (i

CpGs as rows and j samples as columns), Trimj is the trimmed mean opera-
tor across j samples and Mediani is the median operator across i CpGs. The
epsilon parameter that was finally chosen was ϵadipose = 0.04196169. We then
tested the evCpGs available in this dataset (332 out of the 333) for equiv-
alence under the paradigm of equivalence testing with a two one-sided tests
(TOST). As before, we based the TOST on Yuen t-test [23], employing the
wrappers supplied by equivalence::rtost with parameters Trim = 0.2. Addi-
tionally, we tested short-term longitudinal stability in adipose tissue. As for
longitudinal analysis in blood (section 4.2), we wondered whether such differ-
ences were stable in time for adipose tissue. For that, we used the data from
[10]. Similarly to blood, we used a heatmap and the use of negative control
CpGs. Additionally, we estimated temporal ICC’s employing the ICC::ICCest
function (Fig S14). For this, we excluded the individual “WeightRegainers3”
given that the sample was an outlier for both evCpGs and control CpGs. We
finally represented the distribution of ICC in evCpGs and control CpGs with
a violin plot.

7. Functional annotation of evCpGs

7.1 Enrichment analysis

We defined the following sets:

T ≡ Target CpG set; Bg0 ≡ Background CpG set

Bg ≡ {x ∈ Bg0|x /∈ T}
where T consisted of evCpGs while Bg0 consisted of all 450K probes ex-

cept for low-quality, X- and Y-chromosome, SNP-containing and cross-reactive
probes; probes with little to no variation (ICC < 0.37 and IQR < 0.07) were
included. Bg is defined as the set that contains the background and excludes
T . As a result, T and Bg are mutually exclusive (required for Fisher’s exact
test).

7.1.1 Imprinted genes, metastable epialleles, EWAS traits and mQTL

Known and predicted imprinted human genes were extracted from the Geneim-
print database (http://www.geneimprint.com/site/genes-by-species),
human metastable epiallele-like CpGs were extracted from [29], while EWAS-
associated trait CpG annotation was obtained from [30]. We counted the
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number of instances belonging to a given category (imprinted gene/metastable
epiallele/a given EWAS trait) in Bg and in T and built a 2×2 contingency ta-
ble. Enrichment was performed via Fisher’s exact test. For EWAS traits
(Fig S20), we only tested those traits that were present in T (Bonferroni
multiple testing correction was applied for a total number of 81 traits). Also,
we extracted mQTL discovered in blood of adolescents [26] from the mQTL
database file, 15up.ALL.M.tab, a filter to only those that displayed p values
less than 1 · 10−14 (as per recommendation from the authors). We counted
the number of CpGs with associated mQTL in T (n = 333) and in a back-
ground, this time consisting of all non-significant variably methylated (n =
4,319) CpGs and built a 2×2 contingency table for which we examined for
enrichment via Fisher’s exact test.

7.1.2 Functional and CpG island status

Based on the IlluminaHumanMethylation450kanno.ilmn12.hg19 file, we anno-
tated CpGs. We counted the number of instances belonging to a given category
(island status/ functional status) in Bg and in T and built a m×2 contingency
table (m = 7 for functional status and m = 6 for island status). Significance
for all categories was investigated on the m×2 contingency tables via Fisher’s
exact test with Monte Carlo simulation for 100,000 permutations. Significance
per category was tested by collapsing the absolute table of counts into 2×2
contingency table (belonging to a given category or not, for Bg and T ) and by
performing a Fisher’s exact test on it (Fig S17). Bonferroni multiple testing
correction was applied for the total number of categories tested for significance
(respectively, 6 and 7 for CpG island and functional status). Specifically for
functional status, CpGs were commonly associated to several classes; for this
reason, we decided to employ the following hierarchical order to assign the
highest priority class to a given CpG: 5’-UTR > TSS200 > TSS1500 > 1st
Exon > Body > 3’-UTR > Not gene associated.

7.1.3 PBMC 15-states ChromHMM

As part of Roadmap Epigenomics mapping consortium [31], a hidden markov
model (HMM) was built based on data derived from primary mononuclear
cells (PBMC) from peripheral blood by which the whole genome was seg-
mented into 15 categories or states (ChromHMM): (1) TssA: active TSS pro-
moter; (2) TssAFlnk: flanking active TSS promoter; (3) TxFlnk: transcribed
state at the 5’ or 3’ end of genes with promoter and enhancer signatures; (4)
Tx: actively transcribed; (5) TxWk: weakly transcribed; (6) EnhG: genic
enhancer; (7) Enh: enhancer states; (8) ZNF/Rpts: associated with zinc
finger genes; (9) Het: constitutive heterochromatin; (10) TssBiv: bivalen-
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t/poised TSS; (11) BivFlnk: flanking bivalent TSS/Enhancer; (12) EnhBiv:
bivalent enhancer; (13) ReprPC: repressed polycomb; (14) ReprPCWk: weak
repressed Polycomb; (15) Quies: quiescent. The data was obtained from EN-
CODE (accession: ENCSR550VPH) in bigBed format which was converted
to a Bed format file with the BigBedToBed tool obtained from UCSC server
(http://hgdownload.soe.ucsc.edu/admin/exe/). We subsequently anno-
tated all probes in the 450K with its respective category. We then counted
the number of instances belonging to a given ChromHMM state in Bg and
in T and built a 15×2 contingency table. Significance for all categories was
investigated via Fisher’s exact test with Monte Carlo simulation for 100,000
permutations. Significance per category was tested by collapsing the absolute
table of counts into 2×2 contingency table (belonging to a given category or
not, for Bg and T ) and by performing a Fisher’s exact test on it (Fig S18).
Bonferroni multiple testing correction was applied for the total number of cat-
egories tested for significance (α/15).

7.1.4 Gene ontology terms

Gene Ontology (GO) term enrichment was performed with themissMethyl::gometh
function which was supplied with T and Bg0, with arguments collection =
“GO”, array.type = “450K” and prior.prob = T. The last argument ensured
that the probability of false discovery due to a high number of probes per gene
was taken into account.

7.1.5 DNA motif and [G+C] content

We extracted 500 bp up- and down-stream the CpG sites for T and the Bg0
by feeding a file with the coordinates of choice (evCpGs500 and bg500) into
samtools (v1.9) [32]. The following calls were employed:

1 #!/bin/bash

2 samtools faidx hg19.fasta.gz -r evCpGs500 > evCpGs500.fa

3 samtools faidx hg19.fasta.gz -r bg500 > bg500.fa

We validated the number of entries with:

1 #!/bin/bash

2 tr -cd ">" < evCpGs500.fa | wc -c

3 tr -cd ">" < bg500.fa | wc -c

We finally run Homer (v4.10) [33] for known and de novo motif enrichment
analysis with the following parameters (Fig S15, Fig S16A):

1 #!/bin/bash

2 findMotifs.pl evCpGs500.fa fasta . -fasta bg500.fa -p 4 -humanGO

> log.txt
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On another note, T and the Bg0 fasta files were input into R with the
help of the seqinr R-package [34] for which we computed [G+C] content for
all sequences. Finally, we tested whether the [G+C] content in the target was
diminished compared to background via a Mann-Whitney U-test (Fig S16B).

7.1.6 Genomic Position

Positional enrichment analysis allows to check whether probes are nearby,
while taking into account that some genomic regions are better covered by the
450K design than others. For every element of T , a window of window length
l was centered around the CpG of interest. Then, the number of CpGs that
fall within and outside the window was counted for the T and Bg. Finally, a
2x2 contingency table was built and a Fisher’s exact test was deployed to test
for enrichment. Obtained p values were corrected for multiple testing with
Bonferroni correction (α/n = 0.05/333).

7.2 RNA expression of evCpG-associated genes

Median expression levels for 247 out of the 264 evCpG-associated genes were
extracted from the Genotype Tissue Expression (GTEx) portal (https://gt
exportal.org/home/datasets) by the name: GTEx Analysis 2016-01-15 v
7 RNASeQCv1.1.8 gene median tpm.gct and visualized in a heatmap (Fig
S19).

8. Whole-genome bisulfite sequencing analysis

Unfiltered processed whole-genome bisulfite sequencing (WGBS) data derived
from whole blood belonging to MZ twins were obtained from the ArrayExpress
database with accession E-MTAB-3549 (datasets-K1,K2). Similar to [11], we
excluded sites with more than 20% methylation differences between strands
or that fell within the Duke Excluded Regions (https://www.encodeproj
ect.org/annotations/ENCSR797MUY/) or the DAC Blacklisted Regions
(https://www.encodeproject.org/annotations/ENCSR636HFF/), known
to yield artefactual high coverage. We additionally applied both high- and
low-end coverage filters. We excluded: i) sites with coverage less or equal to
10 reads and ii) larger than the per-sample 99.9% quantile. Altogether, this
procedure improves the accuracy of the methylation estimates per site and
filters out possible PCR artifacts at the high end of the coverage. Per twin pair,
we then selected only those sites that were common. As we wanted to compare
WGBS data with 450K data, we were interested on relying on positions rather
than regions. However, in order to separate real variation from technical one,
depth per site must be considered in the analysis as twin differences may arise
simply by sampling error. We ran some simulations to choose a threshold
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for (absolute value of delta beta) above which twin methylation differences
can be considered improbable to have been arisen via random sampling. We
simulated a CpG with beta-value of 0.5 (maximum variance), for which we
sampled, as our low coverage filter, 10 read values (either methylated, 1, or
unmethylated, 0) using a Bin(10,0.5) distribution for 10,000 times obtaining
the sampling β distribution. We then obtain the sampling |∆β| distribution
by computing all possible combinations of absolute value differences from this
set (a total of 49,995,000 combinations). We established our threshold criteria
to be the 95% quantile of the sampling |∆β| distribution which corresponded
to 0.4. Differences higher or equal to this threshold are very unlikely to have
arisen from random sampling only. Finally, positional enrichment analysis
was performed on the cPCDH region (chr5:140165876:140892546 for genome
assembly hg19). Per twin, we computed the number of sites with |∆β|twin ≥
0.4 and |∆β|twin < 0.4 within and outside this region and performed a Fisher’s
exact test to obtain an enrichment p value (Fig S21-23).
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Fig S1. Sample quality control across 450K datasets after exclusion of low-quality samples. Under default parameters 
ENmix::Qcinfo flags any sample with percent of low-quality data higher than 0.05 and average bisulfite conversion 
intensity of mean - 3 × standard deviations. The correspondance between the names employed and the datasets is the 
following: E-risk (dataset-A), Danish (dataset-B), population (dataset-E), TwinsUK (dataset-F), Gambia (dataset-G), 
adipose longitudinal (dataset-J) and children population (dataset-D). 
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Fig S2A. Sex quality control across 450K datasets after exclusion of samples with wrongly assigned sex. The 
correspondance between the names employed and the datasets is the following: E-risk (dataset-A), Danish 
(dataset-B), population (dataset-E), TwinsUK (dataset-F) and Gambia (dataset-G). 
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Fig S2B. Sex quality control across 450K datasets after exclusion of samples with wrongly assigned sex. The 
correspondance between the names employed and the datasets is the following: adipose longitudinal (dataset-J) 
and children population (dataset-D). 
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Fig S3. Beta-value distribution across all non-filtered CpGs at each stage of the pipeline for three different normalization 
methods on the discovery cohort.  
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Fig S4. Absolute differences of beta-value distribution between MZ twin pairs across all non-filtered CpGs at each stage 
of the pipeline for three different normalization methods on the discovery cohort.  
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Fig S5. Correction of batch effects and cell composition differences in the discovery cohort. a. MDS plot on the 5,000 
most variably methylated CpGs for StrQN and StrQN+ComBat, coloured by batch (left) or by sex (right).  b. Predicted 
cell counts density distribution across individuals on StrQN+comBat with (right) and without (left) cell composition 
correction.  
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Fig S6. Individual Manhattan plots for each normalization method. Significance is displayed across chromosomes for all 
CpGs tested for equivalence (odds and even chromosomes represented either in blue or orange). Employed 
normalization methods include: a. StrQN. b. Dasen. c. oob_RELIC_QN_BMIQ. evCpGs are highlighted in green. 
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Fig S7. Addtional verification on the evCpG discovery. a. Log10-transformed p-values heatmap (combined across 
normalisations with maxi) over B = 100 unrelated matchings for the total 333 evCpGs and 333 randomly selected non-
significant CpGs (control CpGs). b. Binary heatmap indicating whether a given p-value was significant based on the 
significance threshold employed at the discovery stage (α = 0.05/4,652). 
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Fig S8. Agreement between MZ twins measured as concordance plotted against methylation range (See Supplementary 
methods for details) for a. Danish Twin Registry and b. TwinsUK. evCpGs are highlighted in blue.  
 
 

A 

B 

Twin-average CpG Methylation range 

C
o
n
c
o
rd

a
n
c
e
 (

1
–

 M
A

E
/M

A
E

m
a

x)
 

Twin-average CpG Methylation range 

C
o
n
c
o
rd

a
n
c
e
 (

1
–

 M
A

E
/M

A
E

m
a

x)
 

TwinsUK (n = 328 twin pairs) 

Danish Twin Registry (n = 146 twin pairs) 

Appendix 1 263



Fig S9. Additional technical control of evCpGs in the E-risk discovery cohort (dataset-A). a. Distribution of number of 
beads among significant (evCpGs) and non-significant hits. b. Proportion of low-quality samples per CpG among 
significant (evCpGs) and non-significant hits. c. Intra-class correlation coefficient distribution (extracted from the ARIC 
study) among significant (evCpGs), non-significant hits and excluded probes. 
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Fig S10. Superior evCpG variation between MZ twins compared to technical replicates in the Danish Twin Registry. a. 
Concordance against methylation range for MZ twin pairs (red) and technical replicates (blue) for 329/333 evCpGs 
showing high-quality. Arrows link technical replicate to twin pair nodes. In case that the observed variation is beyond 
technical noise, it is expected that the methylation range will increase (Δx = Δrange > 0), while the concordance will 
decrease (Δy = Δconcordance < 0). b. Number of evCpGs per category mentioned in (a). c. Empirical cumulative 
distribution function of |Δβ| in evCpGs in MZ twins and technical replicates.  
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Fig S11. a. Heatmap with unsupervised hierarchical clustering based on 299 out of 333 evCpGs and equal number of 
control probes in group A from Zhang et al. b. Flanagan temporal ICC distribution of the set of control CpGs, evCpGs 
and non-significant hits out of the variably methylated CpGs. 
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IQR 

Fig S12. Additional results on the relation between evCpGs and aging. a. Identified infancy-to-adolescence epigenetic 
drift changes. b. Inter-quantile range (IQR) distribution across cohorts. c. Empirical cumulative distribution of the 
absolute differences in evCpG methylation in monozygotic twins belonging to E-risk and TwinsUK. 
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B 

Fig S13. Post-mortem inter-tissue evCpG variation. MDS plots were performed on a. 65 SNPs in the 450K, b. 
Genetically influenced control CpGs and c. evCpGs. Colours highlight which individual corpse (left) or embryonic layer 
(right) the sample derives from. 
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B 

Fig S14. Longitudinal stability in adipose tissue a. Heatmap with unsupervised hierarchical clustering based on evCpGs 
and a set of genetically influenced control CpGs derived from previously reported mQTLs in blood b. Distribution of 
temporal ICC excluding one outlier in both evCpGs and control CpGs. 
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Fig S15. De novo motif enrichment analysis. a. Homer’s de novo motif enrichment analysis output. 
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Fig S16. [G+C] content and known motif enrichment analysis. a. Homer’s known motif enrichment analysis output. b.
[G+C] content distribution in sequences ± 500 bp around evCpGs and the background CpGs. 
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Fig S17. Functional and island status enrichment analysis of evCpGs a. CpG functional  status and  b. CpG island 
status enrichment analysis, where odds ratios and significance are represented on the left while relative counts are 
represented on the right (absolute counts are highlighted in red).  ns: non-significant; *: 0.01 ≤ p-valBonferroni < 0.05; **: 
0.001 ≤ p-valBonferroni < 0.01; ***: p-valBonferroni < 0.001. 
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Fig S18. PBMC 15-state HMM status enrichment analysis of evCpGs a. Chromatin functional state enrichment analysis, 
where log2 transformed odds ratios and significance are represented on the left while relative counts are represented on 
the right (absolute counts are highlighted in red).  ns: non-significant; *: 0.01 ≤ p-valBonferroni < 0.05; **: 0.001 ≤ p-
valBonferroni < 0.01; ***: p-valBonferroni < 0.001. 
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Fig S19. GTEX RNA expression of evCpG-associated genes in several tissues.  
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Fig S20. EWAS trait enrichment of evCpGs based on the EWAS atlas database and focusing on the traits that were 
associated to evCpGs. a. Fisher’s exact test significance. b. Enrichment odds ratios. 
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Global sequencing coverage 

N
u
m

n
b
e
r 

o
f 
s
it
e
s
 c

o
v
e
re

d
 a

ft
e
r 

fi
lt
e
rs

 A 

N
u
m

n
b
e
r 

o
f 
s
it
e
s
 c

o
v
e
re

d
 a

ft
e
r 

fi
lt
e
rs

 

T
w

in
 1

.1
 

T
w

in
 1

.2
 

T
w

in
 2

.1
 

T
w

in
 2

.2
 

T
w

in
 3

.1
 

T
w

in
 3

.2
 

T
w

in
 4

.1
 

T
w

in
 4

.2
 

T
w

in
 5

.1
 

T
w

in
 5

.2
 

T
w

in
 8

.1
 

T
w

in
 8

.2
 

T
w

in
 9

.1
 

T
w

in
 9

.2
 

B 

Fig S21. WGBS data visualization in a. whole blood and b. adipose tissue, in terms of number of methylation sites 
covered per MZ twin (colour-coded per pair) after preprocessing and this same number plotted against sequencing 
coverage. 
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Twin pair PCDH Not PCDH 

1 

|Δβ| ≥ 0.4 1 36 

|Δβ| < 0.4 1,201 198,335 

Enrichment p-value = 0.2003 

2 

|Δβ| ≥ 0.4 28 6,687 

|Δβ| < 0.4 11,172 17,049,974 

Enrichment p-value = 4.785e-14 

3 

|Δβ| ≥ 0.4 46 4,628 

|Δβ| < 0.4 17,928 13,763,879 

Enrichment p-value = p-value < 2.2e-16 

4 

|Δβ| ≥ 0.4 7 107 

|Δβ| < 0.4 2,669 462,192 

Enrichment p-value = 4.993e-06 

5 

|Δβ| ≥ 0.4 0 153 

|Δβ| < 0.4 3,557 606,724 

Enrichment p-value = 1 

8 

|Δβ| ≥ 0.4 NA NA 

|Δβ| < 0.4 NA NA 

Enrichment p-value = NA; no sites were common between twins 

9 

|Δβ| ≥ 0.4 0 73 

|Δβ| < 0.4 1,219 349,424 

Enrichment p-value = 1 

Whole blood; αBonfer = 0.05/13 

Fig S22. Enrichment analysis in whole blood WGBS data. Relative counts for methylation sites showing differences ≥ 
0.4 and < 0.4 in the cPCDH loci or outside. Absolute counts are highlighted in red. 
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Enrichment p-value = 0.001143 
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|Δβ| ≥ 0.4 0 14 

|Δβ| < 0.4 917 123,718 

Enrichment p-value = 1 

Adipose tissue; αBonfer = 0.05/13 

Fig S23. Enrichment analysis in adipose tissue WGBS data. Relative counts for methylation sites showing differences ≥ 
0.4 and < 0.4 in the cPCDH loci or outside. Absolute counts are highlighted in red. 

278 Chapter 8



Appendix 2 279

Appendix 2: Supplementary material for Chapter 3

Supplementary Methods

1. Technical details on the Illumina 450K DNA methylation
assay

The main DNA methylation microarray platforms have been developed by Illu-
mina; in chronological order of development: Golden Gate Assay for methyla-
tion, Infinium HumanMethylation27 BeadChip (27K), Infinium HumanMethy-
lation450 BeadChip (450K) and Infinium MethylationEPIC array BeadChip
(850K). Though EPIC is the newest platform, 450K is still the platform with
most data available. Also, there is no technological leap involved between
450K and 850K, simply addition-elimination of markers.

A) BeadChip technology

Initially developed for genotyping arrays, a BeadChip microarray consists of
a silicon substrate with regularly interspaced micro-wells. Silicon micro-beads
randomly self-assemble in the wells. Each bead is covered by hundreds of
thousands of copies of the same 50-nucleotide long probe. During the man-
ufacture, beads are pooled in equal ratio and then deposited on the array.
As a result, the exact number of copies of each beadType is not controlled
(varies from chip to chip). To assign the correspondence between microwells
and bead types, decoding is required. This is done during manufacture via
consecutive hybridizations with other sets of probes that target the address, a
23 nucleotide-long oligonucleotide handle (address) that links the bead to the
probe in the form of a DMAP file [1].

B) Methylation assay protocol on the chip

The experimental protocol can be broken down to genomic DNA (gDNA)
extraction, gDNA bisulfite conversion (unmethylated cytosines are converted
uracils), whole-genome amplification, enzymatic DNA fragmentation, hybridiza-
tion to the microarray, washing and staining via single-base extension (SBE).
This last step is initialized via incubation with DNA polymerase and labelled
dideoxynucleotides-triphosphate (ddNTPs): ddATP and ddTTP labelled with
biotin, ddCTP and ddGTP labelled with dinitrophenol (DNP); upon SBE,
elongation interrupts due to the dideoxy nature of the incorporated nucleotide.
Staining is finally carried out by incubating with red-fluorescing Cy5-labelled
anti-DNP (targeting ddA/T) and green-fluorescing Cy3-labelled streptavidin
(targeting ddC/G). Fluorescence is acquired in two separate channels (Green
and Red) with iScan/HiScan confocal laser microarray scanner and stored in
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two files (one per fluorescence channel). The .IDAT (Intensity Data) extension
is Illumina’s proprietary format for storage of microarray scanners’ raw fluo-
rescence output and is encrypted and non-human readable. After decrypting
the two output files, it is possible to extract the number of beads per bead-
Type (nBeads), the mean and SD in fluorescence intensity of each beadType
across bead replicates in the green and the red channel (G, R, SDG and SDR)
plus technical metadata [1, 2].

C) Infinium assays

Three distinct assays coexist simultaneously on the same chip. Infinium type
II (TII) probes target both epialleles with one oligonucleotide probe; the
probe outstretches its 3’-end until one nucleotide before the targeted cytosine
and as a result, SBE occurs at the target cytosine position and is informative
in both fluorescence channels: green and red channel correspond to methy-
lated (M) and unmethylated (U) epialleles, respectively. Infinium type I green
(TIGreen) and Infinium type I red (TIRed) target each epiallele with two dif-
ferent oligonucleotides. The 3’-end of TIGreen and TIRed probes reaches the
targeted cytosine and as a result, SBE occurs one nucleotide after the tar-
geted cytosine. In this case, SBE for TIGreen or TIRed is informative either
on the green or the red channel, respectively. Also note that, although TIRed

and TIGreen are informative on one sole channel, the fluorescence intensities
of both channels can be found in the IDAT files. Finally, it is very important
to note that Illumina probes target cytosines either at the plus or the minus
strand depending on the site under consideration.

D) Methylation quantification per probe type

For each probe type, the methylation ratio (β) is computed as:

β =
M

M + U + α

where M is the mean fluorescence intensity corresponding to the methy-
lated epiallele, U is the mean fluorescence intensity corresponding to the un-
methylated epiallele and α is a small constant for numerical stability. But the
fluorescence intensities M and U depend on the bead type in question:

βTII =
GM

GM +RU + α
; βTIGreen =

GM

GM +GU + α
; βTIRed =

RM

RM +RU + α

where G is the mean green fluorescence intensity across beads and R is the
red mean fluorescence intensity across beads. Also note that for TII probes,
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the number of beads for each channel is the same. This is not necessarily the
case for TIRed and TIGreen.

E) Probes included in the 450K

In the 450K, the methylation status of a total of 485,512 predefined cytosines
are interrogated by 622,399 beadTypes. This excess in beadTypes is due to
the presence of control beadTypes and the existence of type-I probes that
consume two beadTypes per cytosine assayed. The exact count of BeadTypes
is the following:

• Type I (n = 135,476 x 2)

– Type-I Green (n = 46,289 x 2)

– Type-I Red (n = 89,187 x 2)

• Type-II (n = 350,036)

• Control probes (n = 848)

– Staining (n = 4)

– Extension (n = 4)

– Hybridization (n = 3)

– Target removal (n = 2)

– Bisulfite conversion I and II (n = 12 and 4, respectively)

– Non-polymorphic (n = 4)

– Negative control (n = 613)

– Restoration (n = 1)

– Normalization (n = 186)

• SNP-targeting probes (n = 90)

– SnpI (n = 25 x 2) – SNP genotyping via Infinium I assay

– SnpII (n = 40) – SNP genotyping via Infinium II assay

• Orphan probes (n = 473) - placed on the array for an unknown purpose
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2. U/M plot: slopes and methylation ratios

In the presence of batch effects, U/M fluorescence signals are spread in the
U/M plane forming rod-like structures. Assuming i) an absence of background
fluorescence and ii) a linear dependence between U and M for each rod, we
can write the slope, S, as:

S =
dU

dM
=ii) ∆U

∆M
=

∆U − U0

∆M −M0
=i) U

M

The slope S is related to the beta-value or methylation ratio as:

β =
M

M + U
=

1

U/M + 1
=

1

S + 1

And as a result, we intuitively obtain the following results:

lim
S→∞

β(S) = 0; β(S = 0) = 1; β(S = 1) = 1/2

Defining the angle of the slope, α, the beta-value is related to alpha as:

α = arctan

(
U

M

)
; β =

1

tan(α) + 1

Counterintuitively, although 0, 50 and 100% methylation levels coincide
with 0, π/4 and π/2 radians, the beta-value does not change linearly with α:

dβ

dα
=

−1/ cos2(α)

tan2(α) + 1 + 2 · tan(α) =
−1

sin2(α) + cos2(α) + 2 · sin(α) · cos(α) =
−1

1 + sin(2α)
̸= 0
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3. Detection p values and the definition of CVlogT, BC(CVlogT)
and corMZ(CVlogT)

In any fluorescence-based assay, it is very important to test whether a given
fluorescence signal is simply background fluorescence. In the case of a DNA
methylation ratio, we can express it as the following hypothesis contrast:

{
H0 : U + M = µBg

H1 : U + M ̸= µBg

As standard practice in epigenomics, we make the following strong assump-
tions:

(U +M)H0 ∼ N(µBg, σBg)

As a result, detection p values can be estimated as:

detPi,j = 1− ϕ

(
Ui,j +Mi,j − µ̂Bg

σ̂Bg

)

where ϕ is the standard normal cumulative density function. To estimate
background fluorescence mean and standard deviation, we expand per probe
type as:

As a result, detection p values can be estimated as:

µTII = BgG + BgR; σTII =
√
σ2G + σ2R + 2 · Cov(G,R) ≤ σG + σR

µTIR = 2BgR; σTIR =
√
σ2R + σ2R + 2 · Cov(G,R) ≤ 2σR

µTIG = 2BgG; σTIG =
√
σ2G + σ2G + 2 · Cov(G,R) ≤ 2σG

For the estimation of BgG and BgR, several approaches exist:

• minfi::detectionP : it uses negative control probes on each fluorescence
channel to estimate the backgrounds.

• EWAStools::detection: it uses the unmethylated intensities for com-
pletely methylated probes and vice versa on each channel to model the
backgrounds.

• sesame::pOOBAH : it uses out-of-band fluorescence (the red channel of
TIG or the green channel of TIR) to estimate the backgrounds.
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In any of the cases, using the ENmix::QCinfo criterion as an example, if for
a given CpG 5 % of the samples show detection p values larger than 0.000001,
then the CpG is excluded from analysis. Similarly, if 5 % of the CpGs in a given
sample exceed a detection p value of 0.000001, then the sample is excluded.
Instead of trying to decide what is signal and what is noise, another strategy
could consist in quantifying the signal-to-noise ratio. For that, we can use
SDred and SDgreen (standard deviation across beads), stored on every IDAT
file but never used or cited in the literature, probably due to the scarcity of
information concerning Illumina’s proprietary .IDAT format and the current
preference in large cohorts to employ pre-normalized data. Also, to account
with the huge diversity in fluorescence dynamic ranges in the array, we will
be log-transforming fluorescence intensities. We define the natural logarithm
of the total signal of a given individual and a given CpG, log(T ), as:

log(T ) = log(U +M)

We define the coefficient of variation of the logarithm of the total signal
as:

CVlog T =
σlog T
µlog T

where σlog T is the standard deviation of log(T ) across beads for a given
CpG and individual. To approximate CVlog T , it is necessary to make assump-
tions about the dependency relationships between U and M across beads:

σ2T = σ2U + σ2M + 2 · Cov(U,M)

This covariance term cannot be manually examined as only sample means
and standard deviations across beads are stored in the .IDAT raw file. For
type-I probes, it is expected to be independent (M and U probes lie in different
beads) while for type-II probes, positive dependence is expected as probes lie
on the same bead. Hence, ρ ≥ 0:

σT ∈ [
√
σ2U + σ2M , σU + σM ]

We define CVlog T as the most pessimistic scenario, in which the maximum
variance is obtained.

CVlog T ≡ max(CVlog T |U,M, σM , σU ); σT = σU + σM

To estimate CVlog T , we also need to understand how the logarithm affects
the mean and variance statistics. If T is a strictly positive random variable
with mean µT and variance σ2T , we can estimate µlog(T ) and σ

2
log(T ) employing

Taylor series expansion of the moments of a random variable:
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E[g(X)] = g(µX) +
g′′(µX)

2
σ2X (2nddegree)

E[g(X)] = g′(µX)2σ2X (1stdegree)

Giving rise to the following expressions:

µlog T ≈ log(µT )−
σ2T

2 · µ2T
; σ2log T ≈ σ2T

µ2T

To examine how good this approximation is, we performed a simple simu-
lation. We generated gamma distributions with µ = 5000 (typical fluorescence
intensity in the microarray) and σ · µ, R varying from 0.01 to 1.01. We com-
pared the true estimates for E[log(X)] and Var(log(X)) with the Taylor ap-
proximation in the range of σ/µ between 0 and 1. Though it generally seems
to be a reasonable estimate, as we approach σ/µ = 1, the approximation sys-
tematically underestimates CVlog T .

Accepting this approximation, we thus can write:

CVlog T ≡ max

(
σlog T

µlog T
|U,M, σU , σM

)
≈ σT /µT

log(µT )− σ2
T

2·µ2
T

=
1

log(µT )/R−R/2
; R = σT /µT

We can add small constants for numerical stability:

R̂ =
σ̂M + σ̂U + α

Û + M̂ + α
; ̂log(µT ) = log(Û + M̂ + α); α = 100
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CVlog T greatly increases when a probe retrieves solely background fluo-
rescence (e.g. large noise-to-signal ratio). For probes where a genetic variant
on the template DNA leads to probe failure, an ambivalence in signal-to-
noise ratio is observed (high CVlog T for aa and low CVlog T for aA and AA).
This translates into a highly bimodal empirical probability density distribu-
tion of CVlog T across samples for a given CpG, which can be quantified with
a bimodality coefficient (BC). The sample bimodality coefficient estimator is
computed as:

BC(CVlog T ) =
γ̂2CVlog T

+ 1

κ̂CVlog T
+ 3 · (n−1)2

(n−2)(n−3)

where γ and κ are the sample skewness and excess kurtosis of a given
CpG across individuals, respectively. As a rule of thumb, BCs higher than
5/9 (the expected value of BC in a uniform distribution), point towards a
bimodal or a multimodal distribution [3]. Finally, probes may fail for other
reasons rather than genetic artefacts. For this reason, it is important to have
a genetic control. One way is to compute the Spearman/Pearson correlation
of CVlog T between MZ twins. High correlation would be strong evidence that
probe failure has a genetic basis.

4. K-calling

In the heart of the K-caller lies density-based spatial clustering of applications
with noise (dbscan) algorithm [4]. Unlike bGMM, dbscan is an incredibly
powerful non-parametric clustering algorithm robust to outliers that does not
require the number of clusters beforehand. Dbscan localizes points associated
to highly dense areas in sample space (core points) and performs subsequent
sample aggregation towards these points. Dbscan employs two parameters:
eps, maximum distance between two samples to be considered as in the same
neighbourhood, and minPts, minimum number of samples in a neighbourhood
to be considered as a core point. Dbscan also requires a function to compute
distance between points; in our case, Euclidean distance was employed. To
benefit from this algorithm, pre-processing is key. For example, in the presence
of highly elliptical clusters, dbscan may detect regions of low density and hence,
treat a long cluster as two distinct clusters oriented towards its poles. Hence,
reducing the ellipticity of clusters can help improve the performance of dbscan.
We first compute:

β =
M

M + U + 100
; R = log2(M + U + 100)
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Then, R is transformed as:

Rtrans =
R−min(R)

max(R)

Please note that this is not a standard min-max normalisation as the de-
nominator is simply max(R) instead of max(R) − min(R). The purpose of
this transformation is to give importance to the R-dimension only when large
variation is present in R across samples; like for example, in presence of probe
failure. Finally, dbscan is deployed on the (β,Rtrans) plane. In order to find
the parameters eps and minPts that show the best performance for the num-
ber of samples given at the E-risk cohort, we calibrated dbscan in a training
set (943 CpGs forming from one to four clusters). This independent set of
markers was built by manually curating U/M plots from random CpGs. We
selected parameters to optimize K-calling, written as a multi-class classifica-
tion machine learning task scored by a macro F1-score.

5. Scoring benchmark performance

Evaluation of bGMM

In our benchmarking, we employed bGMM with a target cluster number of 2
for sex-chromosomes, which is the expected number of clusters if segregating
by sex in the U/M plane and 3 for SNP-targeting probes, the expected number
of genotypes. bGMM assigns samples to each cluster; the numbering of the
clusters is arbitrary and random (but will be the same between twins if these
are classified perfectly by genetics). The following properties are expected
from a proper scoring system under the above conditions: i) Approaching zero
when the confusion matrix tends to uniformity; ii) Equal to one when the
confusion matrix is diagonal; iii) N/A when all predictions end up in the same
cluster.

With all the above properties, we defined the twin assignment agreement
as:

1

n

n∑

i=1

ρ2i,MZ assigned cluster

where ρ2 is the Pearson correlation coefficient squared between assigned
clusters between MZ twins.

Evaluation of BC(CVlog T ) and corMZ(CVlog T )

The bimodality coefficient of a uniform distribution is of 5/9. Bimodality co-
efficients above 5/9 can serve as evidence for bimodality. However, bimodality



288 Chapter 8

in CVlog T can surge from spontaneous probe failure unrelated to genetic arte-
facts. In order to control for genetics, we also set-up a conservative threshold
for corMZ(CVlog T ) of 0.8. Hence, we defined proportion of genetics-related
probe failure as:

1

n

n∑

i=1

1BCi(CVlog T )>5/9 · 1corMZ
i (CVlog T )>0.8

where 1condition is the indicator function, equal to one when condition is
met and equal to zero, elsewise.

Evaluation of the K-caller

Here, we simply defined the proportion of correct cluster number prediction
as:

1

n

n∑

i=1

1kobs=kexp

where 1condition is the indicator function, equal to one when condition is
met and equal to zero, elsewise and kobs and kexp are the observed and expected
number of clusters.

6. Annotation of 450K/850K probes dbSNP151

As for genetic variant annotation, we used the 00-common all.vcf file contained
at the National Center for Biotechnology and Information (NCBI) File Trans-
fer Protocol (FTP) site ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/hum

an 9606 b151 GRCh37p13/VCF/. This file contains single-nucleotide variants
and insertions and deletions of a germline origin with a minor allele frequency
higher or equal to 1 % in at least one major population, with at least two
unrelated individuals having the minor allele. Bed files containing the loca-
tions of probes in the 450K and 850K were parsed in R from annotation R-
packages IlluminaHumanMethylation450kanno.ilmn12.hg19 and IlluminaHu-
manMethylationEPICanno.ilm10b2.hg19, respectively. Three coordinate files
were created: CpG sites, type I probe SBE sites and probe binding sites ex-
cluding the CpG site (see scheme below for more details). Probe Coordinates
were intersected employing bedtools (v2.29.2) with subcommand intersect as
in:

1 #!/bin/bash

2 bedtools intersect -wa -wb -a 00- common_all.vcf -b coords.bed >

intersect.bed

As bedtools uses intervals of the form (a, b], careful delimitation of the
coordinates is required (more details below).
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Defining p as the position of the targeted cytosine in the CpG and L, as
the probe length we obtain the following coordinates:
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To verify coordinates of genetic variants in the output file, we additionally
computed the distance between the variant and CpG coordinate. Expected
results were:

7. Variant calling and minor allele frequency estimation from
methylation data

K = 2

Probe failure only occurs when both alleles are the probe-failing allele. Hence,
two clusters are formed: aa and Aa/AA (dominance). To estimate allelic fre-
quencies, we need to assume Hardy-Weinberg equilibrium (HWE), and hence:

q =
√
f(aa); p = 1− q

K = 3

When alleles are codominant, we can estimate allelic frequencies without as-
suming HWE as:

p = f(AA) + 1/2 · f(Aa); q = 1− p

K = 4

When two variants artefactually dominate the measured methylation state and
these are dominant (A>a; A: active, a: inactive) and codominant (M/U; M:
methylated, U: unmethylated), respectively, and with epistasis (aU = 0, aM
= 0), we can write the following haplotypes:
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Defining haplotype frequencies as α = f(AM);β = f(AU); γ = f(aM); δ =
f(aI), we get:

We can write the following equations:

α+ β + γ + δ = 1

f(k1) = γ2 + δ2 + 2γδ = (γ + δ)2; γ + δ =
√
f(k1)

f(k2) = β2 + 2βγ + 2βδ = β2 + 2β(γ + δ)

f(k3) = α2 + 2αγ + 2αδ = α2 + 2α(γ + δ)

f(k4) = 2αβ

Although f(k1) + f(k2) + f(k3) + f(k4) = 1 could be thought of another
equation, it can be derived from the five prior equations.

It is to be noted that γ = f(aB) and δ = f(aC) always appear as (γ + δ)
(hence, confounded): both haplotypes give rise to probe failure and cannot be
differentiated. Although the system of equations can be solved analytically,
we rather deployed the Nelder-Mead gradient-free method. This option is of-
ten preferred in statistics for parameters estimation problems where functions
are subject to noise. As a result, there are two variables two optimize; for
example, (α, β) ((γ + δ) is determined to be equal to 1− α− β), given inputs
(f(k1), f(k2), f(k3), f(k4)). We can write the following cost function:

CostA = [β2 + 2β
√
f(k1)− f(k2)]

2
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CostB = [α2 + 2α
√
f(k1)− f(k3)]

2

CostC = [2αβ − f(k4)]
2

CostD = [α+ β + γ + δ − 1]2

Cost(α, β|k1, k2, k3, k4) = CostA +CostB +CostC +CostD

We finally deployed the Nelder-Mead algorithm with initial conditions

α0 = β0 =
1−
√

f(k1)

2 , with a cost function Cost(α, β|k1, k2, k3, k4) to opti-
mize parameters (α, β) such that the cost function is minimized.

K = 2, variant = M’, with imprinting

Interaction with imprinting gives rise to similar patterns to X-inactivation
but whose clusters are not correlated with sex: no probe failure, apparent
codominance but with a missing genotype that cannot be simply explained by
a low minor allele frequency given the large excess of heterozygotes.

α = f(M ′M) = f(M ′U); f(M ′M ′) = β; f(MU) = γ

f(k1) = f(M ′M) + f(M ′M ′) = α+ β

f(k2) = f(MU) + f(M ′U) = γ + α

f(M ′) = f(M ′M)+1/2f(M ′M)+1/2f(M ′U) = β+α/2+α/2 = α+β = f(k1)
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K = 2, variant = U’, with imprinting

α = f(U ′U) = f(U ′M); f(U ′U ′) = β; f(MU) = γ

f(k1) = f(U ′U ′) + f(U ′U) = α+ β

f(k2) = f(U ′M) + f(UM) = α+ γ

f(U ′) = f(U ′U ′)+1/2f(U ′M)+1/2f(U ′U) = β+α/2+α/2 = α+β = f(k1)

8. Identification of representative examples

Sex chromosomes and SNP controls probes

U/M plots for random sex-chromosome targeting probes were visualized. After
looking at hundreds of U/M plots, representative examples were chosen. For
the 65 SNP-targeting control probes, their aspect was very consistent; so,
choosing a representative example was trivial.

CpG/SBE-SNPs

From the bedtools output, we annotated biallelic variants into 16 categories of
CpG/SBE-SNPs. We ranked by MAF and selected the top markers for each
category as those were easier to verify. Some logic applies to the highlighted
example of type-I (+) SNP C↔T, type-I (−) SNP G↔A.

CpG/SBE/probe-indels

From the bedtools output, we restricted our analysis to indels. We ranked by
MAF and scanned through hundreds of U/M plots to identify all patterns.

CpG/SBE/probe-indels

We searched for probes displaying BC(CVlog T ) > 5/9, corMZ(CVlog T ) > 0.8
and kpred = 2, that were not included in any of our genetic artefact annotation.
By examining probe localization, we found instances of several contiguous
probe failure happened on the same samples for several probes, in agreement
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between MZ twins. This corresponded to unannotated large-indels, CNVs and
SVs.

CpGs sites with two CpG/SBE-SNPs

From the 16-category classification of CpG/SBE-SNPs, we selected CpGs with
more than one associated SNP. For the example, we scanned for CpGs whose
both variants had high MAF.

Tri-allelic CpG/SBE-SNPs

In the making of the 16-category classification of CpG/SBE-SNPs, we had to
previously localize tri-allelic SNPs for exclusion. At this stage, we focused on
this list and search for variants whose three alleles had allelic frequencies high
enough to be observed in E-risk.

Genetic artefacts interacting with imprinting

We firstly theorized how imprinting could impact a U/M plot. With knowledge
at hand, we extracted a list of all CpGs associated to imprinted genes and
examined one-by-one.

Genetic artefacts interacting with ChrX methylation biology

We focused on the X-probes within the 16-category classification of CpG/SBE-
SNPs. By making U/M plots highlighting sex by colour we identified a set of
unexpected patterns (clustering patterns different from X-inactivation/hyper
methylation/escape). Post-hoc, we tried to explain how the U/M plot was
formed in these cases.

Cross-reactive probes

We plotted hundreds of U/M plots of known cross-reactive probes [5, 6] and
identified outlier patterns. We attempted to model the behaviour of these sites
post-hoc.

Tissue-specific genetic artefacts

With a dataset of matched saliva-blood samples, we searched for sites with
high IQR in one tissue but not on the other. By visualizing U/M plots in both
tissues, a set of examples could be easily located. Post-hoc and to exclude
potential tissue-specific meQTLs, we identified the causal underlying genetic
variant that explained the artefactual U/M plot.
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Identification of a true-positive meQTL

With the help of the heritability ranking, we visualized co-methylation plots in
decreasing order of heritability. The meQTL at NINJ2 intron was chosen for
its availability of neighbour probes at a close distance and the strong presence
of co-methylation across 4 probes. A posteriori, we searched whether these
CpGs had been reported as meQTLs.

9. SNP imputation

In the validation of the NINJ2 meQTL, we had to impute our putative cis-
causal SNP as it was not available in the SNP array. To do so, we transformed
the file “HumanOmni5-4v1-1 A.csv” from GSE31438 (GEO) to GEN format
with a custom script. We then ran Impute2 v2.3.2 [7], with the following
arguments:

1 #!/bin/bash

2 impute2 -m $where/genetic_map_chr12_combined_b37.txt -h $where/
ALL.chr12.phase3_shapeit2_mvncall_integrated_v4 .20130502.

genotypes.breakmulti .2504 Samples.impute.hap -l $where /1000
GP_Phase3_chr12.legend -g $where2/chr12.study.gens -strand_g

$where2/chr12.study.strand -Ne 20000 -int 673462 772945 -o ./

chr12.one.phased.impute2

10. Guidelines on how to repurpose UMtools

A wide range of R-packages have already been developed to analyze data
from Illumina’s DNA methylation microarray platforms such as minfi, wa-
teRmelon, ENmix, ChAMP, lumi, methylumi, meffil, EWAStools, sva, etc.
In brief, these standard tools cover parsing IDATs, QC, batch effect correc-
tion, pre-processing and normalizations, exploratory analysis and differential
methylation analysis among other tasks (cell type composition, sex or age
prediction, to name a few). UMtools does not aim to replace any of the afore-
mentioned packages; in fact, it uses minfi as a dependency. UMtools focuses
on the low-level analysis of Illumina DNA methylation microarray data, at
the level of fluorescence intensities and can hence supplement some QC tasks,
exploratory and post-hoc analysis. DNA methylation microarrays are particu-
larly popular in epigenome-wide association studies (EWAS) to discover novel
biomarkers associated with a phenotype of interest. For this reason, we focus
this guideline especially towards EWAS users.

1) Sample quality control

CVlog T serves as a quantitative alternative to detection p values. For exam-
ple, multi-dimensional scaling on the CVlog T matrix (for example, obtained
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by running minfi::mdsPlot) could reveal how noise-to-signal ratio varies be-
tween samples and hence answer questions like: do we see batch effects in the
noise-to-signal ratio? Samples subject to a high average CVlog T across CpGs
can be filtered out via outlier analysis. We always recommend predicting sex,
comparing with reported sex and excluding samples when these two do not
match to avoid sample mix-ups. This is normally done based on total fluores-
cence intensities in ChrX/Y (Bg noise of Y-probes and double total intensity
of X-probes in females). However, cross-reactive probes interfere in this test.
Cross-reactive Y-probes can be detected via BC(CVlog T ) < 5/9 in a dataset
that includes both males and females. This can be performed in R by choosing
which indexes to include in the minfi:::.getSex function as in:

1 CN <- minfi ::getCN(rgSet)

2 minfi :::. getSex(CN = CN , xIndex = xIndex , yIndex = yIndex , cutoff

= -2)

The proposed features should not replace standard quality control such
as excluding outlier samples based on control probes (with special attention
to bisulfite conversion controls) and detection p values or checking for batch
effects at the DNA methylation scale.

2) Probe quality control

We advocate not to use in silico predicted probe-exclusion lists but rather a
probe flagging system (more information available in the Discussion section of
our manuscript). For example, BC(CVlog T ) > 5/9 can be used to flag probes
potentially displaying ambivalence in probe failure (due to genetic artefacts or
simply unreliable performance). Also, predicted number of clusters (output
by the K-caller) > 1, can be used to flag probes with higher order clusters
in the U/M plane. These could be both genetic artefacts or meQTLs. Also,
UMtools contains a wide range of annotations that may be useful to EWAS
researchers such as:

• data(annot 450K): Genetic variants associated to Illumina Infinium Hu-
manMethylation450 Beadchip probes based on dbSNP151

• data(annot EPIC): Genetic variants associated to Illumina InfiniumMethy-
lationEPIC Beadchip probes based on dbSNP151

• data(classification CpG SNP 450K): Classification of CpG/SBE-SNPs
in the Illumina Infinium HumanMethylation450 Beadchip microarray

• data(classification CpG SNP EPIC): Classification of CpG/SBE-SNPs
in the Illumina Infinium MethylationEPIC Beadchip microarray;
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• data(CR probes): List of in silico-predicted cross-reactive probes in the
Illumina Infinium

• data(triallelic CpG SNP 450K): Tri-allelic SNPs associated to Illumina
Infinium HumanMethylation450 Beadchip probes

• data(triallelic CpG SNP EPIC): Tri-allelic SNPs associated to Illumina
Infinium MethylationEPIC Beadchip probes

For more details, please see Tutorial at https://github.com/Benjami

nPlanterose/UMtools. We envision in silico predictions and data-driven
information side-by-side (and properly labelled as such) as in:

3) Post-hoc analysis

After significance testing, the numbers become more manageable, and the tar-
geted tools included in UMtools can hence be used. We recommend making
U/M plots for each significant result coloring by the phenotype of interest for
visual examination; strong effect sizes should be obvious in the U/M plane;
for example, age-associated CpGs display a change in slope in the U/M plane.
In general, it is good practice to go back to the raw data to check whether the
obtained results are a consequence of data preprocessing. If not obvious on
the raw data, it is very important to ensure that the preprocessing strategy is
optimal to avoid false positive results. Particularly, the formation of clusters
in the U/M plane should alert the researcher that genetics may be playing a
role in the variation observed, either artefactual or genuine. To distinguish
between both scenarios, we firstly recommend consulting probe design and
checking for potential genetic artefacts by looking at the current version of
dbSNP and by cross-referencing with Table 1. Finding which sample belongs
to which cluster can be performed by bGMM and may be helpful in finding
out the underlying mechanism at a given probe (especially if genetic informa-
tion is also available). For a data-driven approach, co-methylation plots can
help see whether neighboring CpGs are co-methylated with the significant hit.
Interpreting co-methylation plots requires care and details can be found in
the Discussion of our manuscript. But even if no clusters are observed in the
U/M plane, co-methylation with nearby CpGs should be observable for any
CpG displaying inter-individual variation (as long as there are available probes
within the co-methylation windows). Additionally, we also recommend visiting
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higher CpG resolution WGBS data to check whether the region presents inter-
individual variation. Finally, we recommend bearing in mind the possibility
of genetic artefacts when using DNA methylation microarrays on specimens
where the expected genetic profile differs from that considered in the design of
the microarray. For example, in cancer-control EWAS genetic artefacts may
be inherent to the genetic rearrangements associated to tumorigenesis; hence,
it is possible that genetic differences translate into an observed change in the
artefactual methylation read-out. If the genetic artefact is not correctly iden-
tified, it may be considered a differentially methylated site rather than simply
a mutation. It is good practice to check whether any technical measures are
associated to the phenotype of interest. For example, it is possible to test
whether noise-to-signal ratio at a significant hit via CVlog T is correlated with
the phenotype of interest. If so, it is possible that the DNA methylation differ-
ences are artefactual and that solely the underlying genetic template differs.
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Figure S1. K-caller output visualization for a set of representative examples forming varying 
number of clusters in the U/M plane on the E-risk cohort. (A) K=1. (B) K=2. (C) K=3. (D) K=4. 
Black points in B, C and D represent outliers, samples that do not belong to any cluster as per 
dbscan criterion. The coordinate transformation employed is described in detail on Additional file 
2.  
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Figure S2. Behavior of sex-chromosome targeting probes at a cohort with a low sample size (n = 
48). (A) U/M plots and (B) CVlogT distribution for examples highlighted in Figure 1D.  
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Figure S3. Comparison between detection p-values and BC(CVlogT). Heatmap for (A) minfi::detP, 
(B) ewastools::detP, (C) sesame::pOOBAH and (D) UMtools::CVlogT. As column colours, males 
and females are highlighted in blue and pink, respectively. As row colours, known cross-reactive 
probes have been highlighted in purple. 
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Figure S4. Comparison between Gaphunter and K-caller. Performance metrics on (A) the training 
set and (B) the testing set. Comparison should be made based solely on the testing set as the K-
caller has been optimized on that given training set. As K-caller employs raw intensity signals, we 
supplied gaphunter with the output of minfi::preprocessRaw for fair comparison.  

Training set 

 minfi::gaphunter, thr = 0.05, outCutoff=0.01, 

 PREDICTED 

TRUE K = 1  K = 2 K = 3 K = 4 K = 5 K = 6 

K= 1 515 1 0 0 0 0 

K= 2 75 85 38 7 0 0 

K = 3 2 28 131 45 5 1 

K = 4 1 4 3 2 0 0 

 UMtools::Kcaller, minPts = 12; eps = 0.035 

 PREDICTED 

TRUE K = 1  K = 2 K = 3 K = 4 

K= 1 515 1 0 0 

K= 2 9 193 3 0 

K = 3 0 8 204 0 

K = 4 0 0 3 7 

For K = {1, 2, 3} 
macroPrecision = 0.797 

macroRecall = 0.747 
macroF1 = 0.756 

For K = {1, 2, 3} 
macroPrecision = 0.975 

macroRecall = 0.967 
macroF1 = 0.971 

Testing set 

Markers 

  ChrY ChrXinact ChrXhypermeth + escape SNP-probes 

# probes 266 3,981 3,028 65 

Expected K 2 2 
1 if high  

sample size 
3 

Probe failure in fe-
males 

Yes No No No 

UMtools 

K-calling 
Correct # clusters 

predicted 
0.977 0.902 0.999 1.000 

Gaphunter 
Correct # clusters 

predicted 
0.169 0.559 0.996 N/A 

A 

B 
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Figure S5. Overview of annotated genetic variants in dbSNP151. (A) Probe count associated to 
genetic artefact categories in the 450K and the EPIC. (B) BC(CVlogT) and corMZ(CVlogT) distribution 
and (C) number of clusters called by K-caller across categories in the E-risk cohort. Total number 
of probes included in each category is highlighted on top of each violin or bar plot.  

A 

B 

C 

C
o
u
n
ts

 

Appendix 2 303



Figure S6. Additional controls for CpG/SBE-SNPs. (A) Distribution of corMZ(CVlogT) across cate-
gories. (B) Expected distribution of K-calls with and without K-calling confusion correction. (C) 
Ternary plot representation of K-calling distribution for observed distribution and expected distri-
bution corrected for confusion of the K-caller. The two categories that violate expectations are 
highlighted with a purple asterisk. 
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 Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept) 0.14701     0.02161    6.803  1.18e-11 *** 

L1I_minus_SNP1_C_AGT 0.59024     0.02580   22.881   < 2e-16 *** 

L1I_minus_SNP2_G_A  0.19035     0.02531    7.521  6.63e-14 *** 

L1I_minus_SNP2_G_CT 0.61005     0.03106   19.641   < 2e-16 *** 

L1I_minus_SNP3_A_G_T  -0.03892     0.03803   -1.023     0.306     

L1I_minus_SNP3_AGT_C    0.63494     0.03336   19.032   < 2e-16 *** 

L1I_plus_SNP0_A_C_T  -0.03410     0.04227   -0.807     0.420     

L1I_plus_SNP0_ACT_G 0.61697     0.03259   18.930   < 2e-16 *** 

L1I_plus_SNP1_C_AG 0.5464 0.03529   15.485   < 2e-16 *** 

L1I_plus_SNP1_C_T  0.18359     0.02695    6.811  1.11e-11 *** 

L1I_plus_SNP2_G_ACT 0.61938     0.02598   23.840   < 2e-16 *** 

L1II_minus_SNP1_C_AGT   0.60521     0.02269   26.679   < 2e-16 *** 

L1II_minus_SNP2_G_C     0.01121     0.02787    0.402     0.688     

L1II_minus_SNP2_G_TA 0.02157     0.02221    0.971     0.332     

L1II_plus_SNP1_C_TA     0.01798     0.02276    0.790     0.430     

L1II_plus_SNP2_G_ACT    0.59762     0.02258   26.462   < 2e-16 *** 

REFERENCE: "II_plus_SNP1_C_G" 
Residual standard error: 0.1742 on 4086 degrees of freedom 
Multiple R-squared:  0.7262, Adjusted R-squared:  0.7252  
F-statistic: 722.5 on 15 and 4086 DF,  p-value: < 2.2e-16 

 Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept) 0.307946 0.016934 18.185 < 2e-16 *** 

L1I_minus_SNP1_C_AGT 0.362207  0.020213 17.919 < 2e-16 *** 

L1I_minus_SNP2_G_A  0.090616  0.019831 4.569 5.03e-06 *** 

L1I_minus_SNP2_G_CT 0.397874 0.024337 16.348 < 2e-16 *** 

L1I_minus_SNP3_A_G_T  -0.001648 0.029799 -0.055 0.956 

L1I_minus_SNP3_AGT_C    0.391824    0.026140   14.989   < 2e-16 *** 

L1I_plus_SNP0_A_C_T  0.012914   0.033123    0.390     0.697     

L1I_plus_SNP0_ACT_G 0.384054    0.025539   15.038   < 2e-16 *** 

L1I_plus_SNP1_C_AG 0.353048    0.027653   12.767   < 2e-16 *** 

L1I_plus_SNP1_C_T  0.099491    0.021120    4.711  2.55e-06 *** 

L1I_plus_SNP2_G_ACT 0.390025    0.020357   19.159   < 2e-16 *** 

L1II_minus_SNP1_C_AGT   0.370059    0.017775   20.819   < 2e-16 *** 

L1II_minus_SNP2_G_C     0.004964    0.021839    0.227     0.820     

L1II_minus_SNP2_G_TA 0.012474    0.017404    0.717     0.474     

L1II_plus_SNP1_C_TA     0.010493    0.017830    0.588     0.556     

L1II_plus_SNP2_G_ACT    0.366566    0.017696   20.715   < 2e-16 *** 

REFERENCE: "II_plus_SNP1_C_G" 
Residual standard error: 0.1365 on 4086 degrees of freedom 
Multiple R-squared:  0.6231, Adjusted R-squared:  0.6218  
F-statistic: 450.4 on 15 and 4086 DF,  p-value: < 2.2e-16 

Figure S7. Linear models of (A) BC(CVlogT) and (B) corMZ(CVlogT) as a function of the CpG/SBE-
SNP categories.  
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Figure S8. Modelling type-I (+) SNP1: C↔T and type-I (−) SNP2: G↔A categories (n = 425). (A) 
BC(CVlogT) and corMZ(CVlogT) as a function of the average methylation of nearby CpGs. Digits within 
the plot window symbolize the total number of CpGs assessed by the probe. (B) The non-linear 
correlation between BC(CVlogT) and corMZ(CVlogT) as evidence of genetic control. (C) Linear model 
testing the interaction between methylation status and number of CpGs targeted by the probe. (D) 
Graphical model on the behavior of these two categories. (E) A highlighted example and (F) its se-
quence context with 3 internal CpGs. 
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3'-ATTTATTTGYGTTTGAATTGYTTGGGGTGTTAGTTTTGATGGYAGTTT[G Y/T]GGTGGTCGG-5' (bc-cDNA) 

 

5'-TAAATAAACACAAACTTAACAAACCCCACAATCAAAACTACCATCAAA[C A] (probe T-I U) 

5'-TAAATAAACGCAAACTTAACGAACCCCACAATCGAAACTACCGTCAAA[C G] (probe T-I M) 

 Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept) 0.371384 0.027230 13.639 < 2e-16 *** 

Imeth -0.093340 0.033430 -2.792 0.00548 ** 

nCpG -0.007638 0.007462 -1.023 0.30668 

Imeth:nCpG  0.054812 0.009776 5.607 3.73e-08 *** 

Residual standard error: 0.1297 on 421 degrees of freedom 
Multiple R-squared:  0.1585, Adjusted R-squared:  0.1525  
F-statistic: 26.43 on 3 and 421 DF,  p-value: 1.11e-15 
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Figure S9. Additional controls for probe SNPs. (A) corMZ(CVlogT)2 and (B) number of clusters 
called by K-caller as a function of strand, SNP alleles and distance to the 3’-end of the probe. 
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BC(CVlogT) 

 Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept) -2.86643 0.046495 -61.65 <2e-16 *** 

delta -0.0173 0.000603 -28.685 <2e-16 *** 

- A/G  -0.40052 0.048065 -8.333 <2e-16 *** 

- A/T -0.14337 0.073154 -1.96 0.05 . 

- C/G -0.0555 0.056094 -0.989 0.3225 

- C/T 0.015951 0.04806 0.332 0.74 

- G/T -0.11202 0.060484 -1.852 0.064 

+ A/C -0.19166 0.059612 -3.215 0.0013 ** 

+ A/G -0.01112 0.047666 -0.233 0.8156 

+ A/T -0.11947 0.069136 -1.728 0.084 . 

+ C/G -0.04753 0.055152 -0.862 0.3888 

+ C/T -0.40604 0.047723 -8.508 <2e-16 *** 

+ G/T -0.06528 0.060924 -1.071 0.284 

REF = "- A/C" 
(Dispersion parameter for Gamma family taken to be 3.25651) 
Null deviance: 92428  on 48655  degrees of freedom 
Residual deviance: 87412  on 48643  degrees of freedom 
AIC: -246974 
Number of Fisher Scoring iterations: 7 

 Estimate  Std. Error  t value  Pr(>|t|)     

(Intercept) -1.120E+-00 5.20E-03 -215.406 < 2e-16 *** 

delta -9.96E-04 6.75E-05 -14.768 < 2e-16 *** 

- A/G  -2.71E-02 5.38E-03 -5.033 4.85E-07 *** 

- A/T -6.05E-03 8.18E-03 -0.739 0.4597 

- C/G -5.92E-03 6.28E-03 -0.944 0.3452 

- C/T -1.61E-03 5.38E-03 -0.299 0.7652 

- G/T -2.11E-03 6.77E-03 -0.312 0.7551 

+ A/C -1.26E-02 6.67E-03 -1.891 0.0587 

+ A/G -6.38E-03 5.33E-03 -1.196 0.2315 

+ A/T -5.46E-03 7.74E-03 -0.705 0.4806 

+ C/G -5.09E-04 6.17E-03 -0.082 0.9343 

+ C/T -2.36E-02 5.34E-03 -4.426 9.61E-06 *** 

+ G/T -8.39E-03 6.82E-03 -1.231 0.2181 

REF = "- A/C" 
(Dispersion parameter for Gamma family taken to be 0.04075982) 
Null deviance: 1453.0  on 48655  degrees of freedom 
Residual deviance: 1438.7  on 48643  degrees of freedom 
AIC: -147163 
Number of Fisher Scoring iterations: 4 

corMZ(CVlogT) 

Figure S10. Generalized linear models of the Gamma family with log link function of (A) BC
(CVlogT) and (B) corMZ(CVlogT) as a function of the probe-SNP categories.  
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failure, (B) U epiallele and (C) M epiallele. (D) SNP at a SBE site of a type-I probe causing detec-
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only concordant monozygotic twin pairs were taken into account in the computation. Confusion 
matrices are also available on the plots. Probe designs are highlighted in yellow boxes. 
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Figure S12. An example of an unannotated large indel that encompasses six contiguous 450K 
probes on chromosome 10. (A) U/M plots of all six probes. (B) Heatmap of M-values. (C) Ob-
served and previously reported allelic frequencies of the variant. The variant gssvL15561 is re-
ported as a copy number variation (CNV) of 6442 bp in the Database of Genomic Variants (which 
includes other ancestries apart from EUR). The observed differences in MAF estimation can be 
explained by population frequency differences. 
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Figure S13. Examples of triallelic CpG-SNPs. (A) cg27346510 and (B) cg25873514. 
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Figure S14. Set of predicted autosomal artefactual probes based on data-driven and in silico in-
formation. (A) Pipeline employed to obtain a list of autosomal artefactual probes. (B) Visualiza-
tions of the resulting sets (genuine-autosomal and artefactual-autosomal probes). Please note 
that allosomal probes (n = 11,648) are not included in this visualization.  
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Figure S15. Quantification of the genetic artefact bleed-through in the heritability ranking of van 
Dongen et al (2016). (A) Distribution of nCluster called by K-caller in the excluded and remaining 
probes. (B) Correlation between heritability and nCluster (fueled by genetic artefacts and genuine 
meQTLs). (C) Heritability titration and quantification of % probes belonging to the artefactual set 
(green) and random set of probes (purple). The remaining number of CpGs is plotted in orange. 
(D) Members of the heritability ranking included in the artefactual set. (E) Visualization of the dif-
ferent sets (included in the ranking, excluded from the ranking, excluded from ranking but remov-
ing allosomal and cross-reactive (CR) probes) 
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AFR, whole blood EUR, Isolated cell types 

Figure S16. Validation of the NINJ2 meQTL across populations and tissues. (A) Co-methylation 
in blood of AFR ancestry and (B) in isolated blood cell types of EUR ancestry. (C) Heatmap of 
beta-values in isolated cell types. Each column colour represents a different cell type. (D) Quanti-
fication of methylation cluster incongruencies  within references of the same individual. (E) Exam-
ple of methylation patterns in one of the CpGs in the meQTL. (F) Co-methylation in adipose tissue 
of MZ twins. (G) Heatmap of methylation ratio in adipose tissue of MZ twins. 

Adipose 

Beta-value 

Beta-value 
Adipose 

Isolated cell types 

M intensity 

U
 i
n

te
n
s
it
y
 

1 incongruence  
in 241 samples  

across 34 individuals 

Confusion matrix 

A 

C 

B 

D 

E 

F G 

R2 

c
o

r M
Z

2
 

R2 R2 

314 Chapter 8



Matched 450K-SNP array (EUR, WB) 

Figure S17. Analysis of the NINJ2-meQTL on matched 450K-SNP array and WGBS datasets. (A) 
Beta value heatmap of 450K samples. (B) Comparison between imputed genotype on the SNP 
array data and predicted genotype on the 450K platform. (C) An example CpG where the misclas-
sification is highlighted. (D) Three matching WGBS samples from heterozygous individuals includ-
ed in the 450K/SNP array datasets (newborn, middle-aged, 103 year old individual). The cover-
age seems low in the region. (E) Additional 7 WGBS samples from another study belonging to B-
lymphocytes from healthy patients.  
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Figure S18. NINJ2 meQTL in early hematopoietic blood progenitors. (A) Methylation heatmap. 
(B) Co-methylation plot. (C) U/M plot of cg14911689 (within the meQTL) colour per cluster, per 
individuals (A-T, referring to individuals 1 to 20) and per cell type (A: blast cells; B: Common mye-
loid progenitor; C: Granulocyte-macrophage progenitor; D: Hematopoietic stem cells; E: Late-
Multipotent progenitor cells; F: leukemia stem cells; G: Megakaryocyte-erythroid progenitor; 
H:MPP (Multipotent progenitor cells). 
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Figure S19. NINJ2 meQTL methylation in (A) Adipose tissue (AT) of monozygotic (MZ) twins, (B) 
whole blood (WB) of dizygotic twins (DZ) and (C) AT of DZ twins. Twin pair numbering was kept 
as in  the original dataset (E-MTAB-3549). 
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MZ-WB MZ-AT 

Figure S20. Heatmap of NINJ2 meQTL methylation in (A) Whole blood (WB) of monozygotic 
(MZ) twins (B) Adipose tissue (AT) of MZ twins, (C) WB of dizygotic twins (DZ) and (D) AT of DZ 
twins. Twin pair numbering was kept as in  the original dataset (E-MTAB-3549). L and R stand for 
left and right and is simply one way to refer to each twin within a twin pair.  
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A 

C 

B 

Figure S21. SNP-TFBS association. Output of motifbreakR analysis against (A) HOMOCO, (B) 
HOMER, and (C) FactorBook. 
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A 

Figure S22. (A) Output of motifbreakR analysis against ENCODE. (B) Output of SNP2TFBS, 
SNPViewer (SIB) web tool analysis. (C) Output of ChIPSummitDB web tools analysis. (D) Unibind 
UCSC track focused on rs34038797, highlighted collocating TFBS detected via ChIP-seq in sev-
eral different tissues (see legend on the left). 
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Figure S23. SNP-TFBS association and cross-omics approach. (A) Output of the UCSC browser 
at the region highlighting the position of the putative cis-causal variant, collocating with the pro-
moter of NINJ2-AS1. (B) Summary of cross-omics annotation of the SNP rs34038797. (C) Graph-
ical epigenomic model on this locus. 
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Figure S24. Variation probes associated to SNPs across several versions of dbSNP. The 
SNPs.CommonSingle files from the IlluminaHumanMethylation450kanno.ilmn12.hg19 offer an 
opportunity to examine the pattern of variation in dbSNP across the years. Either (A) CpG, (B) 
SBE and (C) Probe SNPs patterns across versions of dbSNPs are examined. All patterns of inclu-
sion are scanned but only the top hits are displayed. The number of instances of each row behav-
ior is displayed as a number on the far right row display. 
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Figure S25. Putative example of a proxy-GWAS based on DNA methylation data. (A) Summary 
statistics for EWAS, GWAS and meQTL mapping. (B) MAF estimation and the identification of a 
putative cis-causal variant, rs8059821, performed like on our validation of the NINJ2 meQTL. (C) 
UCSC browser snapshot centered at rs8059821. (D) Lack of co-methylation of cg01097406. (E) 
WGBS on MZ twins centered on cg01097406-targeted CpG displaying inter-individual variation 
on a very short region that includes the putative cis-causal variant. (F) WGBS methylation 
heatmap across MZ twins in the region highlighted with a red window in E. 
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Figure S26. Assessing the limitations of the co-methylation strategy. (A) Distribution of distance 
of CpG neighbours in the 450K and the 850K DNA methylation microarrays. The line indicates 
log10(500), as a threshold for observing co-methylation. (B) Co-methylation at the HLA-DRB1 lo-
cus due to networks of linkage disequilibrium between genetic artefacts. 
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Figure S27. CausalDB Manhattan focusing on the NINJ2 region. (A) CausalDB (B) Highlighted 
variant corresponds to rs34038797. Only traits with p-val < 10-13 are displayed. 
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Figure S28. TMHMM output on the short and long version of NINJ2. (A) Alignment of the N-
terminal in the short and long versions of NINJ2 protein (MEGAX). Output of TMHMM for the (B) 
long and (C) short version, with a simple schematics.  
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Summary

Genome-wide association studies (GWAS) have led to the discovery of genetic
variants influencing human phenotypes in health and disease. However, almost
two decades later, most human traits can still not be accurately predicted from
common genetic variants. Moreover, genetic variants discovered via GWAS
mostly map to the non-coding genome and have historically resisted interpre-
tation via mechanistic models. Alternatively, the epigenome lies in the cross-
roads between genetics and the environment. Thus, there is great excitement
towards the mapping of epigenetic inter-individual variation since its study
may link environmental factors to human traits that remain unexplained by
genetic variants. For instance, the environmental component of the epigenome
may serve as a source of biomarkers for accurate, robust and interpretable
phenotypic prediction on low-heritability traits that cannot be attained by
classical genetic-based models. Additionally, its research may provide mech-
anisms of action for genetic associations at non-coding regions that mediate
their effect via the epigenome. The aim of this thesis was to explore epigenetic
inter-individual variation and to mitigate some of the methodological limita-
tions faced towards its future valorisation. Chapter 1 is dedicated to the
scope and aims of the thesis. It begins by describing historical milestones and
basic concepts in human genetics, statistical genetics, the heritability problem
and polygenic risk scores. It then moves towards epigenetics, covering the sev-
eral dimensions it encompasses. It subsequently focuses on DNA methylation
with topics like mitotic stability, epigenetic reprogramming, X-inactivation or
imprinting. This is followed by concepts from epigenetic epidemiology such
as epigenome-wide association studies (EWAS), epigenetic clocks, Mendelian
randomization, methylation risk scores and methylation quantitative trait loci
(mQTL). The chapter ends by introducing the aims of the thesis.

Chapter 2 focuses on stochastic epigenetic inter-individual variation re-
sulting from processes occurring post-twinning, during embryonic development
and early life. Specifically, it describes the discovery and characterisation of
hundreds of variably methylated CpGs in the blood of healthy adolescent
monozygotic (MZ) twins showing equivalent variation among co-twins and
unrelated individuals (evCpGs) that could not be explained only by measure-
ment error on the DNA methylation microarray. DNA methylation levels at
evCpGs were shown to be stable short-term but susceptible to aging and epi-
genetic drift in the long-term. The identified sites were significantly enriched
at the clustered protocadherin loci, known for stochastic methylation in neu-
rons in the context of embryonic neurodevelopment. Critically, evCpGs were
capable of clustering technical and longitudinal replicates while differentiating
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young MZ twins. Thus, discovered evCpGs can be considered as a first pro-
totype towards universal epigenetic fingerprint, relevant in the discrimination
of MZ twins for forensic purposes, currently impossible with standard DNA
profiling.

Besides, DNA methylation microarrays are the preferred technology for
EWAS and mQTL mapping studies. However, their probe design inherently
assumes that the assayed genomic DNA is identical to the reference genome,
leading to genetic artifacts whenever this assumption is not fulfilled. Building
upon the previous experience analysing microarray data, Chapter 3 covers
the development and benchmarking of UMtools, an R-package for the quantifi-
cation and qualification of genetic artifacts on DNA methylation microarrays
based on the unprocessed fluorescence intensity signals. These tools were used
to assemble an atlas on genetic artifacts encountered on DNA methylation
microarrays, including interactions between artifacts or with X-inactivation,
imprinting and tissue-specific regulation. Additionally, to distinguish artifacts
from genuine epigenetic variation, a co-methylation-based approach was pro-
posed. Overall, this study revealed that genetic artifacts continue to filter
through into the reported literature since current methodologies to address
them have overlooked this challenge.

Furthermore, EWAS, mQTL and allele-specific methylation (ASM) map-
ping studies have all been employed to map epigenetic variation but require
matching phenotypic/genotypic data and can only map specific components
of epigenetic inter-individual variation. Inspired by the previously proposed
co-methylation strategy, Chapter 4 describes a novel method to simultane-
ously map inter-haplotype, inter-cell and inter-individual variation without
these requirements. Specifically, binomial likelihood function-based bootstrap
hypothesis test for co-methylation within reads (Binokulars) is a randomiza-
tion test that can identify jointly regulated CpGs (JRCs) from pooled whole
genome bisulfite sequencing (WGBS) data by solely relying on joint DNA
methylation information available in reads spanning multiple CpGs. Binoku-
lars was tested on pooled WGBS data in whole blood, sperm and combined,
and benchmarked against EWAS and ASM. Our comparisons revealed that Bi-
nokulars can integrate a wide range of epigenetic phenomena under the same
umbrella since it simultaneously discovered regions associated with imprint-
ing, cell type- and tissue-specific regulation, mQTL, ageing or even unknown
epigenetic processes. Finally, we verified examples of mQTL and polymorphic
imprinting by employing another novel tool, JRC sorter, to classify regions
based on epigenotype models and non-pooled WGBS data in cord blood. In
the future, we envision how this cost-effective approach can be applied on
larger pools to simultaneously highlight regions of interest in the methylome,
a highly relevant task in the light of the post-GWAS era. Moving towards
future applications of epigenetic inter-individual variation, Chapters 5 and
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6 are dedicated to solving some of methodological issues faced in translational
epigenomics.

Firstly, due to its simplicity and well-known properties, linear regression
is the starting point methodology when performing prediction of a contin-
uous outcome given a set of predictors. However, linear regression is in-
compatible with missing data, a common phenomenon and a huge threat to
the integrity of data analysis in empirical sciences, including (epi)genomics.
Chapter 5 describes the development of combinatorial linear models (cmb-
lm), an imputation-free, CPU/RAM-efficient and privacy-preserving statisti-
cal method for linear regression prediction on datasets with missing values.
Cmb-lm provide prediction errors that take into account the pattern of miss-
ing values in the incomplete data, even at extreme missingness. As a proof-
of-concept, we tested cmb-lm in the context of epigenetic ageing clocks, one of
the most popular applications of epigenetic inter-individual variation. Overall,
cmb-lm offer a simple and flexible methodology with a wide range of applica-
tions that can provide a smooth transition towards the valorisation of linear
models in the real world, where missing data is almost inevitable.

Beyond microarrays, due to its high accuracy, reliability and sample mul-
tiplexing capabilities, massively parallel sequencing (MPS) is currently the
preferred methodology of choice to translate prediction models for traits of
interests into practice. At the same time, tobacco smoking is a frequent habit
sustained by more than 1.3 billion people in 2020 and a leading (and pre-
ventable) health risk factor in the modern world. Predicting smoking habits
from a persistent biomarker, such as DNA methylation, is not only relevant
to account for self-reporting bias in public health and personalized medicine
studies, but may also allow broadening forensic DNA phenotyping. Previously,
a model to predict whether someone is a current, former, or never smoker had
been published based on solely 13 CpGs from the hundreds of thousands in-
cluded in the DNA methylation microarray. However, a matching lab tool with
lower marker throughput, and higher accuracy and sensitivity was missing to-
wards translating the model in practice. Chapter 6 describes the development
of an MPS assay and data analysis pipeline to quantify DNA methylation on
these 13 smoking-associated biomarkers for the prediction of smoking status.
Though our systematic evaluation on DNA standards of known methylation
levels revealed marker-specific amplification bias, our novel tool was still able
to provide highly accurate and reproducible DNA methylation quantification
and smoking habit prediction. Overall, our MPS assay allows the technologi-
cal transfer of DNA methylation microarray findings and models to practical
settings, one step closer towards future applications.

Finally, Chapter 7 provides a general discussion on the results and topics
discussed across Chapters 2-6. It begins by summarizing the main findings
across the thesis, including proposals for follow-up studies. It then covers
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technical limitations pertaining bisulfite conversion and DNA methylation mi-
croarrays, but also more general considerations such as restricted data access.
This chapter ends by covering the outlook of this PhD thesis, including topics
such as bisulfite-free methods, third-generation sequencing, single-cell methy-
lomics, multi-omics and systems biology.
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Samenvatting

Genoombrede associatiestudies (GWAS) hebben geleid tot de ontdekking van
genetische varianten die menselijke fenotypes in gezondheid en ziekte bëınvloe-
den. Bijna twee decennia later kunnen de meeste menselijke eigenschappen
echter nog steeds niet nauwkeurig worden voorspeld op basis van veelvoorkomende
genetische varianten. Bovendien komen genetische varianten die via GWAS
zijn ontdekt meestal voor in niet-coderende regio’s van het genoom en is
het moeilijk gebleken de verbanden te interpreteren via mechanistische mod-
ellen. Als alternatief ligt het epigenoom op het kruispunt tussen genetica en
de omgeving. Er is dus grote opwinding over het in kaart brengen van epi-
genetische interindividuele variatie, aangezien de studie omgevingsfactoren kan
koppelen aan menselijke eigenschappen die onverklaard blijven door genetis-
che varianten. De omgevingscomponent van het epigenoom kan bijvoorbeeld
dienen als een bron van biomarkers voor nauwkeurige, robuuste en interpre-
teerbare fenotypische voorspelling van eigenschappen met een lage erfelijkhei-
dsgraad die niet kunnen worden bereikt door klassieke op genetica gebaseerde
modellen. Bovendien kan epigenetisch onderzoek mechanismen blootleggen
voor genetische associaties in niet-coderende regio’s die hun effect sorteren via
het epigenoom. Het doel van dit proefschrift was om epigenetische inter-
individuele variatie te onderzoeken en om enkele van de methodologische
beperkingen waarmee men geconfronteerd zal worden bij toekomstige val-
orisatie te verminderen.

Hoofdstuk 1 is gewijd aan de reikwijdte en doelstellingen van dit proef-
schrift. Het begint met het beschrijven van historische mijlpalen en basiscon-
cepten in de menselijke genetica, statistische genetica, het erfelijkheidsprob-
leem en polygene risicoscores. Hierna wordt epigenetica behandeld, waar-
bij de verschillende dimensies die het omvat worden bestreken. Vervolgens
richt dit hoofdstuk zich op DNA-methylatie met onderwerpen als mitotis-
che stabiliteit, epigenetische herprogrammering, X-inactivatie of imprinting.
Dit wordt gevolgd door concepten uit de epigenetische epidemiologie zoals
epigenoom-brede associatiestudies (EWAS), epigenetische klokken, Mendeli-
aanse randomisatie, methylatierisicoscores en methylatie kwantitatieve eigen-
schap loci (mQTL). Het hoofdstuk eindigt met een introductie van de doel-
stellingen van het proefschrift.

Hoofdstuk 2 richt zich op stochastische epigenetische inter-individuele
variatie die voortvloeit uit processen die zich voordoen na de afsplitsing van
monozygote tweelingen, tijdens de embryonale ontwikkeling en het vroege
leven. In het bijzonder beschrijft het de ontdekking en karakterisering van
honderden variabel gemethyleerde CpG’s in het bloed van gezonde adolescente
monozygote (MZ) tweelingen die een equivalente variatie vertonen tussen co-
tweelingen en niet-verwante individuen (evCpG’s) die niet alleen konden wor-
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den verklaard door een meetfout op het DNA methylatie microarray. DNA-
methyleringsniveaus bij evCpG’s bleken op korte termijn stabiel te zijn, maar
op de lange termijn vatbaar voor veroudering en epigenetische drift. De gëıden-
tificeerde sites waren significant verrijkt op de geclusterde protocadherine-loci,
bekend om stochastische methylering in neuronen in de context van embry-
onale neurologische ontwikkeling. Cruciaal was dat evCpG’s in staat waren
om technische en longitudinale replica’s te clusteren en tegelijkertijd jonge
MZ-tweelingen te onderscheiden. De ontdekte evCpG’s kunnen dus worden
beschouwd als een eerste prototype voor universele epigenetische vingeraf-
drukken, relevant bij het onderscheiden van MZ-tweelingen voor forensische
doeleinden, wat momenteel onmogelijk is met standaard DNA-profilering.

Bovendien zijn DNA-methylatie-microarrays de geprefereerde technologie
voor EWAS- en mQTL-mappingstudies. Hun probe ontwerp gaat er echter
inherent van uit dat het geteste genomische DNA identiek is aan het referen-
tiegenoom, wat leidt tot genetische artefacten wanneer niet aan deze veron-
derstelling wordt voldaan. Voortbouwend op de eerdere ervaring met het
analyseren van microarray-data, behandelt Hoofdstuk 3 de ontwikkeling en
benchmarking van UMtools, een R-pakket voor de kwantificering en kwalifi-
catie van genetische artefacten op DNA-methylatie-microarrays op basis van
de onverwerkte fluorescentie-intensiteitssignalen. Deze tools werden gebruikt
om een atlas samen te stellen over genetische artefacten die zijn aangetrof-
fen op DNA-methylatie-microarrays, inclusief interacties tussen artefacten of
met X-inactivatie, imprinting en weefselspecifieke regulatie. Om artefacten
te onderscheiden van echte epigenetische variatie, werd bovendien een op co-
methylering gebaseerde benadering voorgesteld. Over het algemeen onthulde
deze studie dat genetische artefacten blijven doorsijpelen in de gerapporteerde
literatuur, aangezien de reeds bestaande methodologiëen om ze te ondervan-
gen, deze uitdaging over het hoofd hebben gezien.

Bovendien zijn EWAS-, mQTL- en allel-specifieke methylatie (ASM) mapping-
onderzoeken allemaal gebruikt om epigenetische variatie in kaart te bren-
gen, maar vereisen ze bijpassende fenotypische / genotypische gegevens en
kunnen ze alleen specifieke componenten van epigenetische interindividuele
variatie in kaart brengen. Gëınspireerd door de eerder voorgestelde strate-
gie voor co-methylering, beschrijft Hoofdstuk 4 een nieuwe methode om
gelijktijdig inter-haplotype, inter-cel en inter-individuele variatie in kaart te
brengen zonder de hiervoor genoemde vereisten. In het bijzonder is de bi-
nominale waarschijnlijkheidsfunctie-gebaseerde bootstrap-hypothesetest voor
co-methylatie binnen reads (Binokulars) een randomisatietest die gezamen-
lijk gereguleerde CpG’s (JRC’s) kan identificeren uit samengevoegde WGBS-
gegevens (whole genome bisulfite sequencing) door uitsluitend te vertrouwen
op gezamenlijke DNA-methylatie-informatie beschikbaar in reads over meerdere
CpG’s. Binokulars is getest op samengevoegde WGBS-gegevens in volbloed,
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sperma en gecombineerd, en vergeleken met EWAS en ASM. Uit onze vergeli-
jkingen bleek dat Binokulars een breed scala aan epigenetische verschijnselen
onder dezelfde noemer kan integreren, omdat het tegelijkertijd regio’s ont-
dekte die verband houden met imprinting, celtype- en weefselspecifieke reg-
ulatie, mQTL, veroudering of zelfs onbekende epigenetische processen. Ten
slotte hebben we voorbeelden van mQTL en polymorfe imprinting geverifieerd
door een ander nieuw hulpmiddel, JRC sorter, te gebruiken om regio’s te clas-
sificeren op basis van epigenotypemodellen en niet-samengevoegde WGBS-
gegevens in navelstrengbloed. In de toekomst stellen we ons voor hoe deze
kosteneffectieve aanpak kan worden toegepast op grotere pools om tegelijker-
tijd interessante regio’s in het methyloom te markeren, een zeer relevante taak
in het licht van het post-GWAS-tijdperk.

Op weg naar toekomstige toepassingen van epigenetische interindividuele
variatie, zijn de Hoofdstukken 5 en 6 gewijd aan het oplossen van enkele
methodologische problemen waarmee translationele epigenomics te maken hebben.
Ten eerste is lineaire regressie, vanwege zijn eenvoud en bekende eigenschap-
pen, de uitgangspuntmethodologie bij het voorspellen van een continu resul-
taat op basis van een reeks voorspellers. Lineaire regressie is echter onverenig-
baar met ontbrekende data, een veelvoorkomend fenomeen en een enorme
bedreiging voor de integriteit van data-analyse in de empirische wetenschap-
pen, inclusief (epi)genomica. Hoofdstuk 5 beschrijft de ontwikkeling van
combinatorische lineaire modellen (cmb-lm), een imputatievrije, CPU/RAM-
efficïente en privacybehoudende statistische methode voor lineaire regressievoor-
spelling op datasets met ontbrekende waarden. Cmb-lm biedt voorspellings-
fouten die rekening houden met het patroon van ontbrekende waarden in de
onvolledige gegevens, zelfs bij extreme ontbrekende waarden. Als proof-of-
concept hebben we cmb-lm getest in de context van epigenetische verouder-
ingsklokken, een van de meest populaire toepassingen van epigenetische in-
terindividuele variatie. Over het algemeen bieden cmb-lm een eenvoudige en
flexibele methodologie met een breed scala aan toepassingen die een soepele
overgang kunnen bieden naar de valorisatie van lineaire modellen in de echte
wereld, waar ontbrekende gegevens bijna onvermijdelijk zijn.

Naast microarrays is massaal parallel sequensen (MPS) vanwege de hoge
nauwkeurigheid, betrouwbaarheid en monster multiplexing-mogelijkheden mo-
menteel de geprefereerde methodologie om predictiemodellen voor kenmerken
in de praktijk te brengen. Het roken van tabak is een veel voorkomende
gewoonte van meer dan 1,3 miljard mensen in 2020 en een toonaangevende
(en te voorkomen) gezondheidsrisicofactor in de moderne wereld. Het voor-
spellen van rookgewoonten op basis van een persistente biomarker, zoals DNA-
methylatie, is niet alleen relevant om zelfrapportagebias in onderzoeken naar
de volksgezondheid en gepersonaliseerde geneeskunde te verklaren, maar kan
ook een verbreding van forensische DNA-fenotypering mogelijk maken. Eerder
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is er een model gepubliceerd om te voorspellen of iemand een huidige, voorma-
lige of nooit-roker is, gebaseerd op slechts 13 van de honderdduizenden CpG’s
in de DNA-methylatie-microarray. Er ontbrak echter een bijpassende labtool
geschikt voor een lager aantal markers en met een hogere nauwkeurigheid
en gevoeligheid om zo het model in de praktijk te vertalen. Hoofdstuk
6 beschrijft de ontwikkeling van een MPS-assay en data-analysepijplijn om
DNA-methylatie op deze 13 aan roken gerelateerde biomarkers te kwantifi-
ceren voor de voorspelling van de rookstatus. Hoewel onze systematische
evaluatie van DNA-standaarden van bekende methylatieniveaus merkerspec-
ifieke amplificatiebias aan het licht bracht, was ons nieuwe hulpmiddel nog
steeds in staat om zeer nauwkeurige en reproduceerbare kwantificering van
DNA-methylatie en voorspelling van rookgewoonten te bieden. Over het alge-
meen maakt onze MPS-assay de technologische overdracht mogelijk van DNA-
methylatie-microarray-bevindingen en -modellen naar praktische instellingen,
een stap dichter bij toekomstige toepassingen.

Ten slotte biedt Hoofdstuk 7 een algemene discussie over de resultaten en
onderwerpen die in de Hoofdstukken 2-6 zijn besproken. Het begint met een
samenvatting van de belangrijkste bevindingen van het proefschrift, inclusief
voorstellen voor vervolgonderzoek. Vervolgens worden technische beperkingen
met betrekking tot bisulfietconversie en microarrays voor DNA-methylatie be-
handeld, maar ook meer algemene overwegingen zoals beperkte gegevenstoe-
gang. Dit hoofdstuk eindigt met het perspectief van dit proefschrift, inclusief
onderwerpen als bisulfietvrije methoden, derde generatie sequensing methodes,
enkelvoudige cel methylomics, multi-omics en systeembiologie.
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the end, it must be the beginning of a new chapter. Let us hope that the book
is not a thriller.





Inter-individual Variation 
of the Human Epigenome

& Applications
Benjamin Planterose Jiménez

PARANYMPHS
Diego Montiel González
d.f.montielgonzalez@prinses

maximacentrum.nl

Gabriela Daňková
gabrieladankov@gmail.com

Prof. Andries Querido zaal
Educational Centre

Erasmus MC
Wytemaweg 80, Rotterdam

Tuesday 4 April, 2023
At 13:00 hrs

by Benjamin Planterose Jiménez

Inter-individual variation of
the human epigenome

& applications

To attend the public defence
of the PhD thesis

INVITATION


