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ABSTRACT
Background: MicroRNAs (miRNAs) represent a class of noncoding RNAs that regulate gene expression and are

implicated in the pathogenesis of different diseases. Alcohol consumption might affect the expression of miRNAs, which

in turn could play a role in risk of diseases.

Objectives: We investigated whether plasma concentrations of miRNAs are altered by alcohol consumption. Given the

existing evidence showing the link between alcohol and liver diseases, we further explored the extent to which these

associations are mediated by miRNAs.

Methods: Profiling of plasma miRNAs was conducted using the HTG EdgeSeq miRNA Whole Transcriptome Assay

in 1933 participants of the Rotterdam Study. Linear regression was implemented to explore the link between alcohol

consumption (glasses/d) and miRNA concentrations, adjusted for age, sex, cohort, BMI, and smoking. Sensitivity analysis

for alcohol categories (nondrinkers, light drinkers, and heavy drinkers) was performed, where light drinkers corresponded

to 0–2 glasses/d in men and 0–1 glasses/d in women, and heavy drinkers to >2 glasses/d in men and >1 glass/d

in women. Moreover, we utilized the alcohol-associated miRNAs to explore their potential mediatory role between

alcohol consumption and liver-related traits. Finally, we retrieved putative target genes of identified miRNAs to gain an

understanding of the molecular pathways concerning alcohol consumption.

Results: Plasma concentrations of miR-193b-3p, miR-122-5p, miR-3937, and miR-4507 were significantly associated

with alcohol consumption surpassing the Bonferroni-corrected P < 8.46 × 10−5. The top significant association was

observed for miR-193b-3p (β = 0.087, P = 2.90 × 10−5). Furthermore, a potential mediatory role of miR-3937 and miR-

122-5p was observed between alcohol consumption and liver traits. Pathway analysis of putative target genes revealed

involvement in biological regulation and cellular processes.

Conclusions: This study indicates that alcohol consumption is associated with plasma concentrations of 4 miRNAs. We

outline a potential mediatory role of 2 alcohol-associated miRNAs (miR-3937 and miR-122-5p), laying the groundwork

for further exploration of miRNAs as potential mediators between lifestyle factors and disease development. J Nutr

2022;152:2677–2688.
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Introduction

Alcohol consumption is a modifiable lifestyle factor and a
leading risk factor for the global burden of many diseases.
Given its widespread nature, alcohol has been estimated to
contribute to 2.7 million deaths and 4% of the global disease
burden annually (1). High alcohol intake has been associated
with an increased risk of stroke, peripheral artery disease
(2), liver diseases (3–6), various cancers (7–10), overall all-
cause mortality (11), and many other diseases (12). Although
numerous molecular mechanisms have been postulated to
explain the link between alcohol consumption and the risk of
various diseases, this complex etiology remains to be explored

(13–15). The liver is the primary organ for metabolizing
and detoxification of alcohol (16), while excessive alcohol
consumption can have a severe impact on liver health,
including fatty liver, alcoholic hepatitis, and cirrhosis (17).
In addition, only 10%–20% of chronic alcohol consumers
will progress to advanced alcoholic liver disease (18). The
exact molecular mechanisms involved in alcohol-related liver
traits and diseases are still not fully elucidated (19, 20).
Behavioral factors, including alcohol consumption, have been
linked with epigenetic markers (21–23), and these epigenetic
markers have also been linked to several diseases (20). Epige-
netic mechanisms include DNA methylation, histone protein
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modifications, and RNA-mediated regulation by noncoding
RNAs (20, 24).

MicroRNAs (miRNAs) are small noncoding RNA molecules
(∼22 nucleotides in length) that regulate gene expression at
the posttranscriptional level. As such, miRNAs are estimated to
regulate the expression of more than half of the protein-coding
genes in our genome (25). They are considered as a type of
epigenetic regulation whose mechanism of action relies on the
degradation of mRNAs and translational repression (26). An
extensive body of research has demonstrated that dysregulation
of miRNAs is associated with disease risk (27–32). Moreover,
recent studies have indicated an influence of modifiable lifestyle
factors (such as smoking and diet) on miRNA expression
levels (33). Two before–after studies with small sample sizes
(n = 16–18) (34, 35) showed differential expression of miRNAs
after exposure to alcohol consumption, including miR-122-
5p, a highly expressed liver miRNA. However, limited studies
were conducted to explore the association between expression
levels of miRNAs and alcohol consumption in larger sample
sizes (33). Because identifying alcohol-associated changes in
miRNA expression might help to elucidate the mechanism
of action between alcohol consumption and health outcomes,
it is of crucial importance to explore this niche. In this
study, we aimed to investigate the association of plasma
miRNAs with alcohol consumption and to explore whether
there is a mediating effect for the alcohol-associated miRNAs
in the cross-sectional association of alcohol consumption
with liver function and disease, using data from the large
population-based prospective Rotterdam Study (RS) cohort
(36).

Methods
Study population

This study was conducted in the RS, which is an ongoing prospective
population-based cohort study. In brief, the RS consists of 4 subcohorts.
The first subcohort (RS-I) was initiated in 1990 with individuals ≥55
y of age (n = 7983). The study was extended by including a second
subcohort (RS-II) in 2000 (n = 3011, ≥55 y of age), a third subcohort
(RS-III) in 2006 (n = 3932, ≥45 y of age), and the most recent fourth
subcohort (RS-IV) in 2016 (n = 3005, ≥40 y of age). In addition to
these baseline examinations, the participants were re-examined during
follow-up every 3–5 y. More in-depth details regarding the design of the
RS can be found elsewhere (36).

For the present study, 1000 participants were included from the
fourth visit of RS-I (RS-I-4) and 1000 participants from the second
visit of RS-II (RS-II-2), for whom we had miRNA expression data
measured (total n = 2000). These visits of the RS occurred between
2002 and 2005. From the 2000 unique individuals, 1 participant was
excluded owing to missing profiling data for all miRNAs, whereas 66
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were excluded owing to missing data on alcohol consumption. In total,
1933 nonoverlapping participants were included in our analysis. The
RS has been approved by the Medical Ethics Committee of the Erasmus
Medical Center and by the Dutch Ministry of Health, Welfare, and Sport
(36).

miRNA expression profiling
Blood samples were collected in EDTA-treated containers , followed
by separation of plasma into aliquots and storage at −80◦C,
according to standard procedures. Plasma samples were then used
for miRNA expression profiling using the HTG EdgeSeq miRNA
Whole Transcriptome Assay (WTA) (HTG Molecular Diagnostics).
The WTA measured the expression of 2083 human miRNAs using
the Illumina NextSeq sequencer (Illumina). The assay characterizes
miRNA expression patterns and hereby measured the expression of
13 housekeeping genes, providing flexibility in data analysis and
normalization. The miRNA expression quantification was based on
counts per million (CPM), which were log2 transformed and used
as standardization, adjusting for total reads within each sample.
Furthermore, the miRNAs showing log2 CPM < 1.0 were referred to
as low expressed; whereas, the well-expressed miRNAs were defined
as those with >50% of values above the lower limit of quantification
(LLOQ), resulting in a total of 591 miRNAs, which were used in
our analysis. The LLOQ was used for the selection of well-expressed
miRNAs (n = 591), which was based on a monotonic decreasing spline
curve fit between the means and SDs of all miRNAs in the whole sample
of study participants.

Assessment of alcohol consumption
Participants were administered interviews at home by research assis-
tants, where they were asked about their alcohol consumption. The first
question asked whether participants ever drank alcohol. If the answer
was confirmative, it was later followed by more extensive questions
on the type of alcohol (e.g., beer; red wine; white wine; moderately
strong spirits such as Campari, Martini, and sherry; and strong spirits
such as rum, brandy, and whisky) and frequency of consumption per
week. This information was collected and used to calculate the average
alcohol consumption in glasses per day. The glasses per day information
could be used to estimate grams of alcohol, assuming that 1 glass of
alcohol would roughly correspond to 10 g of alcohol (37). Because
our study population also included a percentage of alcohol nondrinkers
(n = 307, 15.88%), the alcohol consumption variable was right-skewed.
To satisfy the assumption of normality of residuals in linear regression,
we applied transformation of [log(glasses/d + 1)], according to the
approach reported by Liu et al. (38). Furthermore, alcohol consumption
was categorized into nondrinkers (0 glasses/d), light drinkers (0–2
glasses/d in men and 0–1 glasses/d in women), and heavy drinkers (>2
glasses/d in men and >1 glass/d in women).

Assessment of covariates
Questionnaires were used to assess the participants’ age, sex, and
smoking status (classified as current, former, and never smokers).
Furthermore, the height and weight of participants were measured with
the participants standing without heavy garments or shoes. BMI was
computed as weight in kilograms divided by height in meters squared
(kg/m2).

Assessment of fatty liver and hepatic steatosis using
computed tomography (CT) scan and ultrasound
A multidetector CT scanner (Somatom Sensation 16 or 64, Siemens)
was acquired as part of a larger project on vascular calcification. For
the current project, the Electorcardiogram-gated, noncontrast cardiac
scan was used to assess the density of the liver, as a proxy for fatty liver
disease. Detailed imaging parameters are described in detail elsewhere
(39). We assessed the density of the liver using a standardized strategy
that included drawing 3 circular regions of interest (ROIs) in liver tissue
in which the mean liver attenuation (LA) was calculated (40). The ROIs
were carefully chosen to include solely liver tissue (avoiding disruptive
tissue such as focal lesions, cysts, or large blood vessels). Next, we
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FIGURE 1 Overview of the study design. The flowchart summarizes the sample sizes for the different analyses. The main analysis investigating
the association between alcohol consumption and miRNA expression was performed on participants from RS-I-4 and RS-II-2 within the RS, who
had data available on miRNA concentrations and alcohol consumption (n = 1933). Nondrinkers: 0 glasses/d; light drinkers: 0–2 glasses/d in
men and 0–1 glasses/d in women; heavy drinkers: >2 glasses/d in men and >1 glass/d in women. ALP, alkaline phosphatase; CT, computed
tomography; GGT, γ -glutamyl transferase; miRNA, microRNA; NAFLD, nonalcoholic fatty liver disease; RS, Rotterdam Study; US, ultrasound.

determined the mean Hounsfield unit (HU) value from the retrieved
3 measurements as an indicator of the total liver fat amount. As the
amount of liver fat is increased, the measured LA is decreased; therefore,
a lower LA indicates a higher risk of fatty liver. All measurements
were computed using Philips iSite Enterprise software (Royal Philips
Electronics NV 2006), described in depth elsewhere (41). In addition, we
transformed liver fat (A) using exponential values (B) (B = A3.5/10,000)
because it was left-skewed (41).

Beyond the CT assessment, hepatic steatosis was determined by
using abdominal ultrasound (US) data, generated via a Hitachi HI
VISION 900 by an experienced and certified technician (Supplemental
Table 1). Steatosis was diagnosed by dichotomizing the data into the
presence or absence of hyperechogenic liver parenchyma, as reported
previously (42). More details on liver steatosis and nonalcoholic fatty
liver disease (NAFLD) within the RS can be found elsewhere (43).

Measuring liver enzymes
Serum γ -glutamyl transferase (GGT) and alkaline phosphatase (ALP)
concentrations were determined within 2 wk of collecting and stored
with nonfasting and fasting blood samples at −20◦C. The Merck
Diagnostica (Merck) kit was used on an Elan Autoanalyzer (Merck).
Furthermore, considering local cutoffs, elevated GGT was defined as
>34 U/L for women and >49 U/L for men, whereas ALP was considered
elevated at >97 U/L for women and >114 U/L for men; more details
can be found elsewhere (44). To satisfy the assumption of normality
of residuals, because GGT and ALP were right-skewed, we applied log
transformation.

Statistical analyses

Alcohol consumption in association with alterations in

miRNA concentrations.
Multivariable linear regression models were implemented to explore
the association between alcohol consumption as the main exposure
[log(glasses/d + 1)] and plasma miRNA concentrations (log2 CPM)
as the outcome. For a more detailed overview of the inclusion criteria
and the analysis workflow, see Figure 1. We tested 3 different models.
The first model was adjusted for age, sex, and cohort; the second
model was further adjusted for BMI; whereas in the final model

we additionally adjusted for smoking status. The main results were
reported from the fully adjusted model. The Bonferroni-corrected P
value threshold < 0.05/591 = 8.46 × 10−5 (after adjustment based on
the number of miRNAs tested) was set for our hypothesis-free approach.
The assumptions of linear regression analysis including normality of
residuals, normality of random effects, multicollinearity, linear relation,
and homogeneity of variance were assessed using the “performance”
package in R.

Furthermore, for the alcohol-associated miRNAs, we performed a
sensitivity analysis, where we treated alcohol exposure as a categoric
variable. The nondrinker category was included as the reference group,
where it was compared with the light and heavy drinkers.

Moreover, because alcohol consumption might have sex-specific
differences due to differential drinking patterns (45) or alcohol
metabolism (46), we performed a sex-stratified analysis to explore
potential changes in alcohol-associated miRNAs.

Mediation analyses with liver traits.
In our secondary objective, we performed mediation analyses, where
our exposure was always alcohol consumption, the mediators were
miRNAs associated with both alcohol consumption and liver disease,
and the outcomes were liver-related traits, including CT-based LA, liver
enzymes (GGT and ALP), US-based hepatic steatosis, and NAFLD. For
the continuous outcomes (CT-based LA, GGT, and ALP) we used linear
regression, whereas for binary outcomes (steatosis and NAFLD) we used
logistic regression. The selection criteria of potential mediators were
based on a seminal article by Baron and Kenny (47), stating that in order
to define a variable as a mediator, there should be a significant relation
between the mediator (miRNAs) and the outcome (liver-related traits).
In that line, 3 of the alcohol-associated miRNAs (miR-193b-3p, miR-
122-5p, and miR-3937) were previously associated with liver-related
traits within the RS (48), hence they were included as mediators in
our analyses. Our mediation analyses were implemented using 2-way
decomposition assessing the direct and indirect effects, meaning that
the overall effect of alcohol consumption on liver-related traits with
miRNAs as mediators was decomposed into 2 main components: 1)
the direct effect of alcohol consumption on liver-related traits (i.e., LA,
GGT, ALP, steatosis, and NAFLD) in the absence of mediators (i.e.,
miR-193b-3p, miR-122-5p, or miR-3937) and 2) the indirect effect.

Plasma miRNAs associated with alcohol consumption 2679



Models were adjusted for the same confounders as in the main analysis,
including age, sex, cohort, BMI, and smoking status. In addition, we
also assessed if there was a potential interaction effect between the
exposure and the mediator. For the models that showed the presence of
an interaction effect (P < 0.05), we implemented exposure and mediator
interaction terms in mediation analyses. All the confounders included
in the statistical analyses were obtained at the same time point as the
miRNA expression data, as well as the data on CT-based LA and liver
enzymes (RS-I-4 and RS-II-2), whereas the data based on US (steatosis
and NAFLD) were collected during a follow-up visit and analyzed in the
longitudinal setting. We used the “mediate”function from the mediation
package (49) to obtain the average causal mediation effect (ACME),
average direct effect, total effect, and proportion mediated per model.
Mediation results were based on quasi-Bayesian approximation with
1000 simulations.

Furthermore, the mediation analyses performed assumed no un-
measured confounding. As such, we included bias analyses using the
“medsens” function from the mediation package (49) to determine
the ρ at which ACME was 0 per model. A value of ρ close to 0
reflects that the assumption of no additional unmeasured confounding
is sensitive to violations and likely does not hold. We implemented
recommended AGReMa Statement guidelines when reporting the
results (50), including reporting baseline characteristics as well as
potential confounders in Supplemental Table 1.

Mendelian randomization.
We investigated the causal relation between the alcohol-associated
miRNAs and liver-related traits by utilizing the 2-sample Mendelian
randomization (MR) approach. Instrumental variables (IVs) for each
of the alcohol-associated miRNAs were extracted using different re-
sources, including a genome-wide association study (GWAS) conducted
in the RS (n = 1687) (data not shown) and publicly available GWASs on
miRNAs (51–53). We identified 10 cis-miRNA expression quantitative
trait loci (miR-eQTL)s for miR-193b-3p (53), whereas miR-193b-3p
and miR-122-5p only had trans-miR-eQTLs (51). The trans-eQTLs
were excluded from our further analysis owing to the assumption of no
horizontal pleiotropy (53, 54). Next, the cis-miR-eQTLs of miR-193b-
3p were pruned at R2 < 0.01, to remove correlated single-nucleotide
polymorphisms (SNPs). This left us with a single SNP (rs30227) to be
used as an IV. IVs on liver traits were extracted from the IEU GWAS
database release (https://gwas.mrcieu.ac.uk/), where we included the
following traits: liver fat percentage (55), NAFLD (https://finngen.git
book.io/documentation/), and liver enzymes (56). MR was performed
using the “TwoSampleMR” package in R, by implementing the Wald
ratio because a single SNP was available to be used as an IV.

Our analyses were performed using R software, version 4.1.1
(R Core Team, 2021). Moreover we used the following packages
for different utilities within R: rio (version 0.5.27) (57) for data
importing/exporting; tidyverse (version 1.3.1) (58), janitor (version
2.1.0) (59), and lubridate (version 1.7.10) (60) for data manipulation
and handling; stats (version 4.1.1) (61), broom (version 0.7.9) (62),
performance (version 0.9.1) (63), and purrr (version 0.3.4) (64) for
modeling; ggplot2 (version 3.3.5) (65) for visualization; mediation
(version 4.5.0) (49) for mediation analyses; TwoSampleMR (version
0.5.6) for MR analysis (66); and tableone (version 0.13.0) (67) for
clinical characteristics.

In silico analyses of alcohol-associated miRNAs.
We explored if the alcohol-associated miRNAs are expressed in
the liver by using the Human miRNA tissue atlas (https://ccb-we
b.cs.uni-saarland.de/tissueatlas) (68, 69). More details regarding the
tissue specificity index (TSI) can be found elsewhere (69). As an
additional analysis, we utilized 3 universally used miRNA target gene
prediction databases: TargetScan (70), miRTarBase (71), and miRDB
(72), to identify putative target genes of the alcohol-associated miRNAs.
Applying a cutoff based on a total context score of ≤ −0.60, we selected
target genes using TargetScan, whereas for miRDB we applied selection
on target scores ≥ 60. The scores of the 2 databases are explained
in detail elsewhere (70, 73). In addition, we used miRTarBase (71) to

TABLE 1 Participant characteristics of the study population
from RS-I-4 and RS-II-2 within the RS cohort1

Variable n = 1933

Age, y 71.62 ± 7.5
Female sex, n (%) 1098 (56.8)
BMI, kg/m2 27.65 ± 4.13
Smoking

Current 260 (13.5)
Former 1069 (55.3)
Never 604 (31.2)

Alcohol, glasses/d 0.71 [0.07–2.00]
Nondrinkers 307 (15.9)
Light drinkers 996 (51.5)
Heavy drinkers 630 (32.6)

1Values are mean ± SD for continuous data and n (%) for categoric data, apart from
alcohol (glasses/d) which is reported in median [IQR] owing to the distribution of the
variable. Alcohol categories were defined as follows: nondrinkers: 0 glasses/d; light
drinkers: 0–2 glasses/d in men and 0–1 glasses/d in women; heavy drinkers: >2
glasses/d in men and >1 glass/d in women. RS, Rotterdam Study.

select the target genes that were proven by experimental validation
methods, such as reporter assay, qPCR, and western blot. We focused
on genes that were available in any 2 out of the 3 aforementioned
databases. Furthermore, we investigated if any of these predicted target
genes had been associated previously with alcohol consumption and/or
alcohol use disorder by either a review, a GWAS, an epigenome-wide
association study (EWAS), or a transcriptome-wide association study
on alcohol consumption (33, 38, 74, 75). Finally, the putative target
genes we obtained from the analysis described already were used for
gene ontology analysis to explore the biological processes these genes
might be involved in (76), by utilizing the publicly available Web tool
PANTHER (http://www.pantherdb.org/) (77).

Results

Table 1 presents characteristics of the study population
(n = 1933). The mean ± SD age of the study population was
71.62 ± 7.5 y, with a BMI of 27.65 ± 4.13 kg/m2 and a
median [IQR] alcohol consumption of 0.71 glasses/d [0.07–
2.00 glasses/d]. Of the 1933 individuals, 56.8% were women.

Plasma miRNAs associated with alcohol consumption

We found 4 miRNAs to be significantly associated with
alcohol consumption (as a continuous variable), surpassing
the significance threshold of P < 8.5 × 10−5. Of these,
miR-193b-3p, miR-122-5p, and miR-3937 showed a positive
association, whereas miR-4507 was inversely associated with
alcohol consumption (Table 2, Figure 2). Table 2 and Figure 3

present the results of our sensitivity analysis, where we
explored alcohol consumption as a categoric exposure.
The categorization of alcohol consumption reduced the
power, yet the association of miR-3937 remained statisti-
cally significant for heavy drinkers (P = 3.02 × 10−6)
in comparison with nondrinkers. In addition, mean ex-
pression of miR-3937 in light drinkers increased by 0.142
compared with the mean of nondrinkers in the reference
category, whereas this increase almost doubled (0.273) in
heavy drinkers. In contrast, the mean expression of miR-
4507 in light drinkers decreased by −0.029 in compar-
ison with the mean of nondrinkers (reference), whereas
for heavy drinkers this dropped by −0.155 (Table 2,
Figure 3).
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TABLE 2 Association between miRNAs and alcohol consumption as a continuous variable (glasses/d) and a categoric variable (never
drinkers compared with light or heavy drinkers)1

Alcohol, glasses/d (n = 1933) Never drinkers (n = 307) vs. light (n = 996) or heavy drinkers (n = 630)

miRNA ID β SE P value Category β SE P value

miR-193b-3p 0.087 0.020 2.90 × 10−5 Light drinkers 0.026 0.031 4.07 × 10−1

Heavy drinkers 0.086 0.033 1.02 × 10−1

miR-122-5p 0.151 0.037 4.31 × 10−5 Light drinkers 0.015 0.056 7.77 × 10−1

Heavy drinkers 0.125 0.060 3.75 × 10−2

miR-3937 0.145 0.036 5.71 × 10−5 Light drinkers 0.142 0.054 8.64 × 10−3

Heavy drinkers 0.273 0.058 3.02 × 10−6

miR-4507 − 0.110 0.027 8.36 × 10−5 Light drinkers − 0.029 0.042 4.85 × 10−1

Heavy drinkers − 0.155 0.045 6.26 × 10−4

1On the left side of the table are the results from the linear regression with continuous data on alcohol consumption as the main exposure transformed to [log(glasses/d + 1)],
where the analyses were adjusted for age, sex, cohort, BMI, and smoking status. The right side of the table depicts alcohol consumption stratified to a categoric variable
(where nondrinkers were treated as a reference) and used as the main exposure for linear regression analysis, adjusted for age, sex, cohort, BMI, and smoking status. In all the
analyses presented, miRNA expression levels were outcome variables, and the effect sizes reported are β coefficients from regression analysis. Nondrinkers: 0 glasses/d; light
drinkers: 0–2 glasses/d in men and 0–1 glasses/d in women; heavy drinkers: >2 glasses/d in men and >1 glass/d in women. miR, microRNA; miRNA, microRNA.
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FIGURE 2 Plasma miRNAs associated with alcohol consumption in glasses per day (n = 1933). The volcano plot depicts the measure of effect
size against magnitude of significance for the linear regression model testing the association between miRNA expression levels and alcohol
consumption, adjusted for age, sex, cohort, BMI, and smoking. The dots indicate each tested miRNA and represent the β coefficients obtained
from each linear regression analysis. Red dots indicate positively associated miRNAs, blue dots indicate negatively associated miRNAs, and
black dots represent miRNAs that were not significantly associated. miR, microRNA; miRNA, microRNA.
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Furthermore, in the sex-stratified analysis, we observed that
all the effect size estimates were in the same direction. However,
most of the alcohol-associated miRNAs had stronger effect size
estimates in men, except for miR-4507 which showed more
decrease in women than in men (Supplemental Table 2).

Mediation analyses for alcohol consumption, miRNA
expression, and liver disease

We tested the potential mediatory role of 3 miRNAs previously
shown to be associated with fatty liver disease (miR-193b-
3p, miR-122-5p, and miR-3937) (47, 48) in the association
between alcohol and liver function and disease (Figure 4).
Supplemental Table 1 presents the descriptive characteristics of
this subset of participants (n = 705). We performed mediated
interaction terms for all the models, of which 1 model suggested
an interaction effect between mediator and exposure: miR-122-
5p and alcohol on ALP (P = 0.04) (Supplemental Table 3). For
this model, we included interaction terms in the main analysis,

whereas for the other models we did not include any interaction
terms (Table 3). Out of all the mediation analyses performed,
we identified a mediatory role of miR-3937 in the association
between alcohol and CT-based fatty liver as well as GGT,
whereas miR-122-5p showed a mediatory role between alcohol
and CT-based fatty liver disease, GGT, and US-based steatosis
(Table 3). We performed the bias analysis testing violation of
the assumption of no unmeasured confounding in the mediation
analyses. We conducted ρ at which ACME was 0 and obtained
ρ values in the range between −0.1 and 0.4 (Table 3). A value
of ρ close to 0 indicates that the assumption of no unmeasured
confounding was sensitive to violation.

MR

We investigated the causal relation between the alcohol-
associated miR-193-5p and liver fat percentage, NAFLD, and
liver enzymes (https://finngen.gitbook.io/documentation/) (51–
53, 55, 56, 78). Supplemental Table 4 presents the results
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FIGURE 4 Conceptual diagram showing the relation between alcohol consumption and liver health, and the potential mediatory role of
alcohol-associated miRNAs. The conceptual diagram depicts the relation between exposure (alcohol consumption), outcome [liver-related traits
including CT-based liver attenuation, liver enzymes (γ -glutamyl transferase and alkaline phosphatase), and ultrasound-based hepatic steatosis
and nonalcoholic fatty liver disease], and the mediators (miRNA expression level). CT, computed tomography; miRNA, microRNA.

of the MR analysis. There was no statistical evidence for a
causal relation between alcohol-associated miRNAs and the
liver-related traits tested.

Liver expression and target genes of
alcohol-associated miRNAs

Publicly available tools were utilized to assess the expression
of alcohol-associated miRNAs across a wide range of tissues
(Supplemental Table 5). Among these, miR-122-5p had the
highest TSI of 0.97 (where a higher score indicates miRNA is
expressed in a single tissue) (Supplemental Table 5). In addition,
miR-122-5p and miR-4507 displayed the highest expression
in the liver tissue, whereas miR-193b-3p showed the highest
expression in muscle and miR-4507 in the stomach.

Supplemental Table 6 shows potential target genes of
the alcohol-associated miRNAs. Only miR-193b-3p and miR-
122-5p had validated target genes by experimental methods
as reported in miRTarBase (Supplemental Table 6) (71). By
performing a literature review, we identified that several
putative target genes of miR-193b-3p, miR-122-5p, and miR-
3937 had been previously associated with alcohol-related traits
(Supplemental Table 7). These included FLI and SMAD3,
both putative targets of miR-193b-3p, which were previously
identified in an EWAS on alcohol consumption (38). In addition,
putative target genes of miR-122-5p (XPO6 and SLC7A11)
were identified in the same EWAS, along with C7orf50, a
putative target gene of miR-3937 (Supplemental Table 7)
(38). Furthermore, DCLK2, 1 of the miR-3937 putative target
genes, was previously associated in a trans-ethnic genome-
wide association analysis of Alcohol Use Disorder Identification
Test (AUDIT)-Consumption (rs4423856, P = 1.48 × 10−8)
(74). Also, an miR-122-5p putative target gene, RAC1, was
previously associated with alcohol use during pregnancy (33,
79). FOXP1, another putative target gene of miR-122-5p, was
previously reported in a transcriptome-wide association study

on alcohol intake frequency (http://twas-hub.org/traits/) (80,
81).

Supplemental Table 8 presents our biological processes over-
representation analysis on the putative target genes of alcohol-
associated miRNAs. The top biological process pathways were
the following: biological regulation, biological process, and
the transmembrane receptor protein serine/threonine kinase
signaling pathway (Supplemental Table 8).

Discussion

In this study, we investigated the link between plasma miRNA
expression and alcohol consumption in a population-based
setting. We identified plasma concentrations of 4 miRNAs to be
significantly associated with alcohol consumption, including 3
miRNAs positively and 1 miRNA inversely associated. Among
these, we observed a potential mediatory role of miR-122-
5p and miR-3937 between alcohol consumption and liver-
related traits. The identified miRNAs lay the groundwork for
further investigation of miRNAs as potential mediators between
modifiable lifestyle factors and disease risk.

miRNAs could modulate gene expression in response to
external influences, such as lifestyle factors (e.g., smoking,
alcohol consumption, and diet) (33). It has been shown that
miRNA expression was altered after exposure to maternal
alcohol consumption during human embryogenesis (82–84).
Similarly, Lewohl et al. (23) have identified differential
expression of 35 miRNAs in human postmortem brains
between 14 alcoholics and 13 controls. However, most of
the previous studies exploring the association between alcohol
consumption and miRNA expression were performed on animal
models (85–87). In addition, past research either has been
conducted on a subset of miRNA or had relatively modest
sample sizes (with the largest sample size reported n = 68)
(33). Our study benefits from a greater statistical power to

Plasma miRNAs associated with alcohol consumption 2683

http://twas-hub.org/traits/


TA
B

LE
3

M
ed

ia
tio

n
an

al
ys

is
of

3
al

co
ho

l-a
ss

oc
ia

te
d

m
iR

N
A

s
w

ith
al

co
ho

lc
on

su
m

pt
io

n
an

d
liv

er
-r

el
at

ed
tr

ai
ts

[C
T-

ba
se

d
liv

er
at

te
nu

at
io

n,
liv

er
en

zy
m

es
(G

G
T

an
d

A
LP

),
an

d
U

S
-b

as
ed

he
pa

tic
st

ea
to

si
s

an
d

N
A

FL
D

]i
n

R
ot

te
rd

am
S

tu
dy

pa
rt

ic
ip

an
ts

1

m
iR

N
A

ID
Li

ve
r-

re
la

te
d

tra
its

(n
=

70
5)

AC
M

E
(9

5%
CI

)
AD

E
(9

5%
CI

)
To

ta
le

ffe
ct

(9
5%

CI
)

Pr
op

.M
ed

.(
95

%
CI

)
ρ

at
w

hi
ch

AC
M

E
is

0

m
iR

-3
93

7
CT

-b
as

ed
fa

tty
liv

er
1.

63
0

(0
.1

14
,3

.4
90

)
−

24
.8

0
(−

34
.7

2,
−1

5.
66

)
−

23
.1

7
(−

33
.2

5,
−1

4.
14

)
−

0.
07

0
(−

0.
18

7,
−0

.0
04

)
0.

1
GG

T
−

0.
00

9
(−

0.
02

4,
−0

.0
00

1)
0.

28
7

(0
.2

09
,0

.3
75

)
0.

27
7

(0
.1

99
,0

.3
62

)
−

0.
03

5
(−

0.
09

4,
−0

.0
00

6)
−0

.1
AL

P
−

0.
00

3
(−

0.
00

9,
0.

00
00

5)
−

0.
02

8
(−

0.
06

5,
0.

00
9)

−
0.

03
1

(−
0.

06
8,

0.
00

5)
0.

11
7

(−
0.

35
1,

0.
85

2)
−0

.1
US

-b
as

ed
st

ea
to

si
s

−
0.

00
6

(−
0.

01
7,

−0
.0

00
1)

0.
06

3
(−

0.
00

09
,0

.1
27

)
0.

05
7

(−
0.

00
8,

0.
12

1)
−

0.
10

8
(−

0.
77

9,
0.

45
4)

−0
.1

US
-b

as
ed

N
AF

LD
−

0.
00

4
(−

0.
01

4,
0.

00
06

)
0.

25
5

(0
.1

89
,0

.3
17

)
0.

25
1

(0
.1

84
,0

.3
10

)
−

0.
01

9
(−

0.
06

1,
0.

00
2)

−0
.1

m
iR

-1
22

-5
p

CT
-b

as
ed

fa
tty

liv
er

−
1.

39
4

(−
3.

11
5,

−0
.1

94
)

−
21

.7
7

(−
31

.3
9,

−1
0.

92
)

−
23

.1
7

(−
32

.7
7,

−1
1.

88
)

0.
06

0
(0

.0
07

,0
.1

66
)

−0
.1

GG
T

0.
03

6
(0

.0
04

,0
.0

71
)

0.
24

1
(0

.1
66

,0
.3

14
)

0.
27

7
(0

.1
97

,0
.3

60
)

0.
13

1
(0

.0
17

,0
.2

38
)

0.
4

AL
P

0.
00

2
(−

0.
00

08
,0

.0
06

)
−

0.
03

2
(−

0.
06

9,
0.

00
9)

−
0.

02
8

(−
0.

06
7,

0.
07

3)
−

0.
08

0
(−

0.
87

5,
0.

64
4)

0
US

-b
as

ed
st

ea
to

si
s

0.
00

8
(0

.0
01

,0
.0

20
)

0.
04

7
(−

0.
01

6,
0.

10
9)

0.
05

6
(−

0.
00

6,
0.

11
7)

0.
15

5
(−

0.
70

2,
1.

18
8)

0.
1

US
-b

as
ed

N
AF

LD
0.

00
5

(−
0.

00
01

,0
.0

14
)

0.
24

4
(0

.1
75

,0
.3

05
)

0.
25

0
(0

.1
83

,0
.3

10
)

0.
02

2
(0

.0
00

,0
.0

62
)

0.
1

m
iR

-1
93

b-
3p

CT
-b

as
ed

fa
tty

liv
er

−
1.

11
6

(−
2.

84
2,

0.
34

4)
−

22
.0

5
(−

31
.3

5,
−1

2.
09

)
−

23
.1

7
(−

32
.3

9,
−1

3.
49

)
0.

04
8

(−
0.

01
6,

0.
14

4)
−0

.1
GG

T
0.

01
1

(−
0.

00
4,

0.
03

1)
0.

26
5

(0
.1

88
,0

.3
43

)
0.

27
7

(0
.1

94
,0

.3
63

)
0.

04
2

(−
0.

01
6,

0.
11

4)
0.

2
AL

P
−

0.
00

1
(−

0.
00

4,
0.

00
08

)
−

0.
03

0
(−

0.
06

5,
0.

00
4)

−
0.

03
1

(−
0.

06
7,

0.
00

4)
0.

03
8

(−
0.

07
9,

0.
34

8)
0

US
-b

as
ed

st
ea

to
si

s
0.

00
4

(−
0.

00
1,

0.
01

2)
0.

05
3

(−
0.

00
8,

0.
11

7)
0.

05
8

(−
0.

00
4,

0.
12

1)
0.

07
1

(−
0.

19
4,

0.
46

7)
0.

1
US

-b
as

ed
N

AF
LD

0.
00

3
(−

0.
00

1,
0.

01
1)

0.
24

6
(0

.1
77

,0
.3

09
)

0.
25

0
(0

.1
81

,0
.3

14
)

0.
01

3
(−

0.
00

5,
0.

04
4)

0.
1

1
n

=
70

5.
Th

e
ta

bl
e

de
pi

ct
s

re
su

lts
fr

om
m

ed
ia

tio
n

an
al

ys
is

w
he

re
al

co
ho

lc
on

su
m

pt
io

n
w

as
tr

ea
te

d
as

th
e

ex
po

su
re

;t
he

ou
tc

om
es

w
er

e
liv

er
-r

el
at

ed
tr

ai
ts

in
cl

ud
in

g
C

T-
ba

se
d

fa
tt

y
liv

er
,l

iv
er

en
zy

m
es

(G
G

T
an

d
A

LP
),

an
d

U
S

-b
as

ed
st

ea
to

si
s

an
d

N
A

FL
D

;a
nd

m
iR

N
A

s
w

er
e

th
e

m
ed

ia
to

rs
.A

C
M

E
re

fle
ct

s
th

e
pr

op
or

tio
n

of
al

co
ho

le
xp

os
ur

e
on

liv
er

-r
el

at
ed

tr
ai

ts
m

ed
ia

te
d

th
ro

ug
h

th
e

m
iR

N
A

of
in

te
re

st
,w

he
re

as
A

D
E

re
fle

ct
s

th
e

di
re

ct
ef

fe
ct

of
al

co
ho

lc
on

su
m

pt
io

n
on

liv
er

-r
el

at
ed

tr
ai

ts
.

Pr
op

.M
ed

.r
efl

ec
ts

th
e

pr
op

or
tio

n
m

ed
ia

te
d

w
hi

ch
ca

nn
ot

be
ca

lc
ul

at
ed

w
he

n
th

e
in

di
re

ct
an

d
di

re
ct

ef
fe

ct
s

ar
e

in
op

po
si

te
di

re
ct

io
ns

,ρ
at

w
hi

ch
A

C
M

E
is

0,
de

pi
ct

in
g

ho
w

se
ns

iti
ve

th
e

te
st

ed
m

od
el

is
to

vi
ol

at
io

n
of

un
m

ea
su

re
d

co
nf

ou
nd

in
g.

A
C

M
E

,a
ve

ra
ge

ca
us

al
m

ed
ia

tio
n

ef
fe

ct
;A

D
E

,a
ve

ra
ge

di
re

ct
ef

fe
ct

;A
LP

,a
lk

al
in

e
ph

os
ph

at
as

e;
C

T,
co

m
pu

te
d

to
m

og
ra

ph
y;

G
G

T,
γ

-g
lu

ta
m

yl
tr

an
sf

er
as

e;
m

iR
,m

ic
ro

R
N

A
;m

iR
N

A
,m

ic
ro

R
N

A
;N

A
FL

D
,n

on
al

co
ho

lic
fa

tt
y

liv
er

di
se

as
e;

U
S,

ul
tr

as
ou

nd
.

2684 Karabegović et al.



detect significant associations between miRNAs and alcohol
consumption due to the larger sample size embedded in the
population-based RS cohort. In addition, the RNA-sequencing
method was used to measure a large number of miRNAs,
enabling us to investigate a more comprehensive miRNA
landscape (88).

The most prominent association with alcohol consumption
was observed for miR-193b-3p. Previous studies have identified
miR-193 as a regulator of ALDH2 gene expression across
different species (89), where the ALDH2 gene encodes alcohol
aldehyde dehydrogenase 2, a key enzyme in alcohol metabolism
(90). This miRNA has several other putative target genes,
including FLI and SMAD3, previously identified in an EWAS
on alcohol consumption (38). The same study overlapped with
other putative target genes of our newly identified alcohol
miRNAs, including XPO6 and SLC7A11 of miR-122-5p and
C7orf50 of miR-3937 (38). In addition, miR-122-5p expression
has been shown to increase with moderate ethanol consumption
in healthy individuals (35). In line with this, 2 target genes of
miR-122-5p were linked with alcohol consumption, including
RAC1 with alcohol use during pregnancy (33, 79) and FOXP1
in a transcriptome-wide association study on alcohol intake
frequency (http://twas-hub.org/traits/) (80, 81). DLCK2 is a
target gene of miR-3937, linked with the AUDIT (rs4423856,
P = 1.48 × 10−8) (74). The last alcohol-associated miRNA
identified in our study (miR-4507) was previously reported
by Gardiner et al. (79) when comparing alcohol consumption
with alcohol abstinence during pregnancy. Multiple target
genes of alcohol-associated miRNAs were linked to alcohol
consumption through other omics analyses (Supplemental Table
7) (33, 38, 74). In addition, most of the identified miRNAs were
previously implicated in liver diseases, which is unsurprising
because the liver is a primary organ for alcohol metabolism and
detoxification (16, 91, 92). For instance, miR-193b-3p, miR-
3937, and miR-122-5p were linked with fatty liver disease in the
RS (48). In addition, miR-122-5p is firmly recognized as a liver-
specific miRNA (93) with an undeniably established role in liver
function and related diseases (93–95). These results corroborate
well with the findings linking the newly identified miRNAs to
alcohol consumption. When we explored alcohol consumption
as a categoric exposure (nondrinkers, light drinkers, and heavy
drinkers), despite the smaller sample size, the effect estimate
for heavy drinkers was almost double than for light drinkers
for the alcohol-associated miRNAs when comparing with the
nondrinkers group (Table 2). In our sensitivity analysis, we
identified that most of the alcohol-associated miRNAs had
stronger effect estimates in men, perhaps due to the higher
consumption of alcohol.

Our mediation analyses showed a potential mediatory role
of miR-122-5p in the association of alcohol consumption and
CT-based fatty liver disease, GGT, and US-based steatosis.
Moreover, we observed a mediating effect of miR-3937 in
the association between alcohol consumption and CT-based
fatty liver and GGT. This may indicate a significant estimated
indirect effect of alcohol consumption on liver function or
disease that is mediated partly through miR-3937 and miR-
122-5p. In addition, we did not find any statistical evidence for
causality between alcohol-associated miRNAs and liver-related
traits. However, we believe that these results might have been
hampered by the lack of strong IVs, because we only found a
single SNP as a valid IV. This warrants future studies to perform
large-scale GWASs on a broad landscape of miRNAs, providing
stronger IVs for estimating causal relations.

This study has strengths as well as limitations that should
be considered when interpreting the results. The strengths of
our study include the large sample size, availability of clinical
outcomes, and using a new RNA-sequencing-based assay with
high sensitivity. Yet, it is plausible that several limitations
could have influenced the results presented. First, mediation
analysis requires strong assumptions whose violations might
lead to spurious results, such as no unmeasured confounding.
In line with this, implementing mediation analysis in cross-
sectional observational studies and notably in genomic studies
is challenging and adds a layer of complexity (96). We
implemented bias analyses to explore if the assumption of no
unmeasured confounding held. Given the cross-sectional nature
of the data used for the presented study, we cannot rule out
reverse causality. In line with this, data on miRNAs, alcohol
consumption, fatty liver, and liver enzymes were measured
at the same time point, whereas US data were analyzed in
a longitudinal setting. Although we adjusted for potential
confounders, there might still be residual confounding due to
the dynamic nature of epigenetic markers, which might partially
explain some of the ρ values close to 0 we obtained from
bias analyses within mediation analyses. Future analyses are
warranted to replicate the findings from our study and explore
these findings in a longitudinal setting. In addition, future
studies are needed to explore the dynamic nature of epigenetic
markers such as miRNAs and explore reverse causation,
especially in the context of mediation analysis. Another source
of bias might have occurred from the CT scan used for LA (97);
however, we also included data on US-based measurements. In
addition, the FibroScan is currently an often used method in the
clinic to determine liver fat and fibrosis, whereas we used CT
scans in the current study. Nevertheless, large cohort studies are
more likely to use CT scans owing to their broad applications,
making possible direct replication of our obtained results by
other studies. Also, because miRNAs are tissue-specific, we
might have missed important miRNAs in relevant tissue such
as liver. However, the accessibility of plasma compared with
other tissues provides a potential benefit for identified miRNAs
to serve as indicators for alcohol exposure (98). In addition, we
utilized the Tissue Atlas database (https://ccb-web.cs.uni-saarl
and.de/tissueatlas) (68, 69) in order to explore the expression
of the alcohol-identified miRNAs across a wide range of
tissues.

In addition, it is important to address the potential limitation
coming from the data on alcohol consumption, because they
were collected by home-administered interviews and not by
FFQs or other validated self-reports, such as AUDIT (https:
//auditscreen.org/) (99). Although the FFQs are more detailed
and AUDIT is more effective in screening individuals with
unhealthy alcohol use, we did not have data derived from
FFQ or AUDIT on this wave of participants. In addition,
participants might have underestimated their true alcohol
consumption owing to social desirability bias. Finally, it is
important to acknowledge the potential risk of introducing
type I error in our additional analysis because we did not
correct for multiple testing. Given the nature of high correlation
of omics data, we believe the potential risk of introducing
type I error in our additional analysis is accounted for, to
a certain extent. Further studies are needed to replicate our
findings using larger sample sizes and longer follow-up times
as well as to experimentally confirm the role of identified
miRNAs in molecular pathways underlying alcohol-related
diseases.
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In conclusion, we showed in a population-based setting
that alcohol consumption was associated with plasma con-
centrations of 4 miRNAs, 2 of which showed a potential
mediatory role on liver-related traits. This might provide a better
understanding of the mechanism of action involved between
alcohol consumption and alterations in gene expression in
alcohol-related diseases.
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