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A B S T R A C T

Background. Delayed graft function (DGF) is a common com-
plication after kidney transplantation in the era of accepting an
equal number of brain- and circulatory-death donor kidneys in
the Netherlands. To identify those cases with an increased risk
of developing DGF, various multivariable algorithms have been

proposed. The objective was to validate the reproducibility of
four predictive algorithms by Irish et al. (A risk prediction
model for delayed graft function in the current era of deceased
donor renal transplantation. Am J Transplant 2010;10:2279-
2286) (USA), Jeldres et al. (Prediction of delayed graft function
after renal transplantation. Can Urol Assoc J 2009;3:377-382)
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(Canada), Chapal et al. (A useful scoring system for the predic-
tion and management of delayed graft function following
kidney transplantation from cadaveric donors. Kidney Int
2014;86:1130-1139) (France) and Zaza et al. (Predictive model
for delayed graft function based on easily available pre-renal
transplant variables. Intern Emerg Med 2015;10:135-141)
(Italy) according to a novel framework for external validation.
Methods. We conducted a prospective observational study with
data from the Dutch Organ Transplantation Registry (NOTR).
Renal transplant recipients from all eight Dutch academic med-
ical centers between 2002 and 2012 who received a deceased
allograft were included (N¼ 3333). The four prediction algo-
rithms were reconstructed from donor, recipient and transplan-
tation data. Their predictive value for DGF was validated by c-
statistics, calibration statistics and net benefit analysis. Case-
mix (un)relatedness was investigated with a membership model
and mean and standard deviation of the linear predictor.
Results. The prevalence of DGF was 37%. Despite a signifi-
cantly different case-mix, the US algorithm by Irish was best
reproducible, with a c-index of 0.761 (range 0.756 – 0.762), and
well-calibrated over the complete range of predicted probabil-
ities of having DGF. The US model had a net benefit of 0.242 at
a threshold probability of 0.25, compared with 0.089 net benefit
for the same threshold in the original study, equivalent to cor-
rectly identifying DGF in 24 cases per 100 patients (true positive
results) without an increase in the number of false-positive
results.
Conclusions. The US model by Irish et al. was generalizable
and best transportable to Dutch recipients with a deceased
donor kidney. The algorithm detects an increased risk of DGF
after allocation and enables us to improve individual patient
management.

Keywords: delayed graft function, external validation, kidney
transplantation, net benefit analysis, prediction

I N T R O D U C T I O N

Renal transplantation is the preferred type of renal replacement
therapy with respect to patient outcome as compared with
long-term dialysis [1, 2]. Although improvement in short-term
management of renal transplant recipients has been established
over the past decades, patient and graft survival has hardly pro-
gressed due to chronic rejection and comorbidity associated
with immunosuppressive medication. The incidence of infec-
tions and malignancies in renal transplant patients is manifold
increased [3–5]. Dutch dialysis patients wait for more than 3
years for a deceased donor kidney and >10% of patients died
while on the waiting list in 2014 [6]. This persisting shortage of
donor organs has led to an upward trend in accepting older
deceased donors fulfilling expanded criteria donor (ECD),
including donations after circulatory death (DCD) [7]. These
ECD kidneys have been shown to be a valuable source to meet
the growing demand, at the expense of having an increased risk
of delayed graft function (DGF) [8].

DGF is defined as the need for concomitant dialysis within
the first week after transplantation. The causes for DGF are
multiple and include prolonged ischaemia times, donor and

recipient age, type of donation and calcineurin inhibitor phar-
macodynamics (nephrotoxicity) that result in renal allograft
failure [9–11]. This in turn provides an optimal inflammatory
milieu to prime the alloimmune response and therefore, pre-
dicting DGF is of high importance for future graft management
[12, 13]. Besides an increased risk of individual patient morbid-
ity, also the societal impact of an increase in DGF due to
extended criteria donations and DCD is enormous. The pro-
longed hospitalization attributed to the use of these types of
donor organs results in an �50% increase in costs (around
$70 000/person) as compared with standard criteria donors
[14]. It is therefore of importance to predict those cases with an
increased risk of developing DGF so as to improve individual
patient management and allocate hospital resources to those
patients in need of extra surveillance.

Multiple demographic and clinical donor and recipient
parameters have been associated with the development of DGF.
This has led to the construction of various multivariable algo-
rithms that were shown to predict DGF. External validation of
these algorithms in different patient settings (independent vali-
dation) is considered the gold standard to measure generaliz-
ability. With the use of data from the prospectively collected,
nation-wide renal transplantation registry of The Netherlands
[The Netherlands Organ Transplant Registry (NOTR)], we per-
formed external validation of four algorithms according to a
novel framework as proposed by Debray et al. [15].

M A T E R I A L S A N D M E T H O D S

Selection of algorithms for the prediction of DGF

Until 23 September 2015, we identified 1147 articles through
Medline with the search term: (Prognosis/Broad[filter]) AND
(‘Delayed Graft Function’[Mesh] OR ‘delayed graft function’[-
tiab]). From these 1147 articles, four unique or updated algo-
rithms were identified for validation [16–19].

Study population

This validation cohort comprised of adult renal transplant
recipients that were transplanted in any of the eight university
hospitals covering all renal transplantations in the Netherlands.
Donor kidneys were acquired through allocation by the
Eurotransplant allocation programme, Leiden, the Netherlands
[20]. From January 2002 until January 2012, data from 3333
recipients of a deceased renal transplant were collected in the
NOTR, a nation-wide prospectively collected registry by the
Dutch Transplant Foundation. Patients with primary non-
function were excluded from this cohort. The clinical and research
activities being reported are consistent with the Principles of the
Declaration of Istanbul as outlined in the ‘Declaration of Istanbul
on Organ Trafficking and Transplant Tourism’.

Study outcome

DGF was the primary outcome. The four identified articles
that proposed an algorithm for the prediction of DGF used the
same definition of the endpoint as proposed by Mallon et al.
[21]: the use of dialysis within the first week after transplanta-
tion. Per definition, this includes a heterogeneous group of
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diagnoses, including acute tubular necrosis, acute rejection
(T cell-mediated and antibody-mediated rejection), acute calci-
neurin toxicity, early recurrent renal diseases and primary non-
function due to technical complications. None of the articles
differentiated between underlying disease entities that resulted
in DGF. The studies by Irish et al. (>24 h graft survival) [18]
and Chapal et al. (>7 days of graft survival) [19] specifically
indicated that patients with primary non-function were
excluded from analysis, albeit with different definitions,
whereas the studies by Jeldres et al. [16] and Zaza et al. [17] did
not. In the current study, cases with primary non-function,
defined as definite transplant failure due to continuous need for
additional renal replacement therapy (return to dialysis or
retransplantation), were excluded.

Available data

The parameters necessary to calculate the four algorithms
are depicted in Supplementary data, Table S1. In the NOTR
database, recipient race [Organ Procurement and Transplanta-
tion Network/United Network for Organ Sharing (OPTN/
UNOS) 6/350 points in the nomogram of Irish et al.] and recip-
ient pre-transplantation blood transfusions (OPTN/UNOS
6/350 points) were not available. In general, very few black
recipients specifically from African-American ancestry live in
The Netherlands and therefore this parameter was set to ‘no’ in
all recipients. Pretransplantation transfusion was, in concord-
ance with the UNOS nomogram, set to ‘no/unknown’, which
corresponds to the reference category. Supplementary data,
Table S2 lists the percentage of missing data in the NOTR
cohort. For 2803 of the 3333 (84.1%) patients, we had complete
information available. From the articles, we extracted the exclu-
sion criteria. Jeldres et al. did not mention specific exclusion cri-
teria in their methods [16]. Irish et al. excluded donors younger
than 16 years, recipients of multi-organ transplantations, pre-
emptive renal transplantations, recipients of machine perfused
grafts and living donors [18]. Zaza et al. excluded patients with
a pre-transplantation panel reactive antibody (PRA)>20%,
recipients with a body mass index (BMI)>30 kg/m2 and pre-
emptive renal transplantations [17]. The authors did not state
whether they included living donations in their model as well.
Lastly, Chapal et al. excluded patients younger than 18 years,
recipients of multi-organ transplantations, pre-emptive renal
transplantations, recipients of a pulsatile machine perfused
graft, recipients of a living and deceased after brain death donor,
donors older than 54 years, recipients who were immunized
prior to transplantation and recipients on peritoneal dialysis
prior to transplantation [19].

Statistical analyses

All analyses were performed within the R computing envi-
ronment v3.2.1 GUI 1.66 Mavericks build (6956) in R studio
v0.99.467 for Macintosh OS X 10.11.1 (www.r-project.org) with
use of various packages as listed below. Differences in study
characteristics between the NOTR cohort before and after
application of the exclusion criteria were calculated by chi-
square tests or non-parametric Mann–Whitney tests and
Bonferroni-corrected P-values were reported. A full description

of the methods to perform all statistical analyses are described
in Supplemental R syntax and Supplementary Materials and
Methods: multiple imputation chained equations [22], imputa-
tion result pooling [23], construction of calibration plots, net
benefit analysis [24], Kaplan–Meier analysis, reconstruction of
the OPTN/UNOS individual patient data and membership
model analysis [15].

Institutional Review Board Approval

The Institutional Review Board did not review the study,
because research on already available data from patients’ medi-
cal records is not covered under the Dutch Medical Research
Involving Human Subjects Act (WMO). The Academic
Medical Center Research Code for Scientific Integrity can be
found at the following link: https://www.amc.nl/web/file?uui
duid0739524-e2b3-4c29-9e65-aa97d7903433&owner¼4d928ce
4-e557-4531-8337-ee2442f7f9d8&contentid¼17768.

R E S U L T S

Baseline characteristics and the indirect effects of
patient exclusion

Table 1 shows the baseline characteristics of the 3333
patients in the NOTR database. To expose the hidden effects of
patient exclusion, we applied the same exclusion criteria to the
NOTR database (Table 1). Since Jeldres et al. did not describe
any exclusion criteria, we did not observe a change in case-mix
of the NOTR database. Based on the exclusion criteria as
described in the study by Irish et al., 167 of 3333 patients were
excluded (5%). This indirectly led to a significant increase in the
percentage of recipients that were treated with haemodialysis
before transplantation (63% versus 68%, P¼ 0.01). The preva-
lence of DGF after exclusion in these patients remained
unchanged (37%). Application of the exclusion criteria as
described in the study by Zaza et al. resulted in exclusion of
1165 recipients (32%). Indirectly, this led to a higher number of
patients that acquired a first renal transplant (87% versus 94%,
P< 0.0001) and more male recipients (60% versus 65%,
P< 0.0001). The prevalence of DGF remained unchanged
(37%). Application of the exclusion criteria as described by
Chapal et al. resulted in exclusion of 1971 patients, correspond-
ing to 59% of the NOTR data. These exclusion criteria indirectly
changed the composition of the cohort by means of a reduced
prevalence of DGF (37% versus 22%, P< 0.0001) and fewer
donors with antemortal anoxia (10% versus 5%, P¼ 0.0002).

Discrimination of the four multivariable models

We calculated the c-indices with use of the parameters as
provided by the original articles [16–19]. In Table 2, we can
observe that the multivariable models by Jeldres et al., Zaza
et al. and Chapal et al. had a lower c-statistic as compared with
the original articles: Jeldres et al. median (range) c-statistic
0.565 (0.561–0.571), Zaza et al. c-statistic 0.561 (0.560–0.563)
and Chapal et al. c-statistic 0.581 (0.574–0.594). After applica-
tion of the exclusion criteria, the c-statistic worsened for Zaza
et al., 0.546 (0.545–0.548) and improved for Chapal et al., 0.617
(0.596–0.641). A model that only included cold ischaemia time
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had a c-statistic of 0.567 (0.543–0.593), indicating very little to
no added value of these algorithms in our hands. The more
extensive model by Irish et al. had a c-statistic 0.761 (0.756–

0.762), which was considerably higher than the c-statistic in the
original study, 0.70. Application of the exclusion criteria only
lowered the c-statistic marginally 0.758 (0.756–0.760).

Table 1. Characteristics of the NOTR cohort and the effects of patient exclusion on parameter distribution

Parameters NOTR Jeldres et al. [16] Irish et al. [18] Zaza et al. [17] Chapal et al. [19]

Transplantation
N (% of total) 3333 (100) 3333 (100) 3166 (95) 2268 (68) 1362 (41)
DGF, n (%) 1183 (37) 1183 (37) 1148 (37) 801 (37) 292 (22)**
HLA class I and II, no. of 0 mismatches (%) 411 (13) 411 (13) 396 (13) 269 (13) 210 (16)
HLA-A, no. of 0 mismatches (%) 1177 (37) 1177 (37) 1133 (38) 773 (36) 503 (38)
HLA-B, no. of 0 mismatches (%) 789 (25) 789 (25) 765 (25) 518 (24) 343 (26)
HLA-DR, no. of 0 mismatches (%) 1235 (39) 1235 (39) 1198 (40) 799 (37) 535 (41)
Cold ischaemia time, h, mean (95% CI) 18 (9–28) 18 (9–28) 18 (10–28) 18 (9–28) 18 (9–29)
Anastomosis time, min, mean (95% CI) 35 (19–55) 35 (19–55) 35 (19–55) 35 (19–55) 35 (19–56)
Induction therapy, n (%) 945 (29) 945 (29) 911 (29) 599 (27) 389 (29)
Induction therapy by ATG, n (%) 116 (4) 116 (4) 111 (4) 64 (3) 41 (3)

Donor
Age, years, mean (95% CI) 47 (17–68) 47 (17–68) 48 (18–68) 48 (18–68) 48 (18–69)
Gender, males, n (%) 1703 (51) 1703 (51) 1623 (51) 1142 (50) 635 (47)
BMI, kg/m2, mean (95% CI) 25 (19–33) 25 (19–33) 25 (19–33) 25 (19–33) 25 (20–33)
Donor type, no. of DBD (%) 2040 (61) 2040 (61) 1917 (60) 1330 (59) 1362 (100)
Cerebrovascular accident, n (%) 1830 (59) 1830 (59) 1736 (59) 1268 (59) 842 (62)
Antemortal anoxia, n (%) 296 (10) 296 (10) 284 (10) 215 (10) 68 (5)***
Antemortal hypotensive period, n (%) 905 (27) 905 (27) 852 (27) 690 (30) 394 (29)
Antemortal inotropic medication use, n (%) 1001 (30) 1001 (30) 955 (30) 708 (31) 464 (34)
Last serum creatinine, lmol/L, mean (95% CI) 75 (39–125) 75 (39–125) 75 (39–126) 75 (39–125) 76 (39–128)

Recipient
First transplantation, n (%) 2886 (87) 2886 (87) 2730 (87) 2100 (94)** 1123 (83)
Age, years, mean (95% CI) 52 (28–71) 52 (28–71) 52 (28–71) 52 (28–71) 52 (28–71)
Gender, males, n (%) 1988 (60) 1988 (60) 1891 (60) 1478 (65)** 791 (58)
BMI, kg/m2, mean (95% CI) 25 (19–33) 25 (19–33) 25 (19–33) 24 (19–29) 25 (19–33)
Haemodialisys prior to transplantation, n (%) 2081 (63) 2081 (63) 2073 (68)* 1429 (66) 1362 (100)
Prior dialysis time, years, mean (95% CI) 4 (1–9) 4 (1–9) 4 (1–9) 4 (1–9) 5 (1–10)
Pre-emptive transplantation, n (%) 155 (5) 155 (5) 0 (0) 0 (0) 0 (0)
Primary renal disease with possibility of

recurrence in transplant, n (%)
1741 (52) 1741 (52) 1675 (53) 1344 (52) 690 (51)

Peak PRA, mean (95% CI) 13 (0–86) 13 (0–86) 13 (0–86) 9 (0–57) 18 (0–93)
Pre-transplant PRA, mean (95% CI) 4 (0–35) 4 (0–35) 4 (0–35) 1 (0–4) 6 (0–50)

*P¼ 0.01 versus complete NOTR cohort (after Bonferroni correction),
**P< 0.0001, ***P¼ 0.0002.
DBD, donation after brain death.

Table 2. Discriminative value of the four algorithms for DGF

Model N included Patients included (%) c-statistic (ROC) Range

CIT only 3333 100 0.567 0.543–0.593
Jeldres et al. [16]

Development data set (original) 532 100 0.74
Complete NOTR data 3333 100 0.565 0.561–0.571
NOTR data, exclusion criteria applied 3333 100 0.565 0.561–0.571

Irish et al. [18]
Development data set (original) 24 337 100 0.70
Complete NOTR data 3333 100 0.761 0.756–0.762
NOTR data, exclusion criteria applied 3166 95 0.758 0.756–0.760

Zaza et al. [17]
Development data set (original) 2755 100 0.63
Complete NOTR data 3333 100 0.561 0.560–0.563
NOTR data, exclusion criteria applied 2268 68 0.546 0.545–0.548

Chapal et al. [19]
Development data set (original) 1238 100 0.73
Complete NOTR data 3333 100 0.581 0.574–0.594
NOTR data, exclusion criteria applied 1362 41 0.617 0.596–0.641

CIT, cold ischemia time; ROC, receiver operating characteristics.
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Calibration of the four multivariable models

With calibration plots, we can visualize whether the pre-
dicted and observed probabilities are appropriately scaled over
the entire range of predicted probabilities. The algorithm of
Irish et al. had the widest dynamic range of predicted probabil-
ities (Figure 1). The intercept of the calibration curves was
0.000 and the slope was 1.001 before and 1.002 after application
of the exclusion criteria, which is virtually overlapping with an
ideal intercept and slope of 0 and 1, respectively, indicative of a
well-calibrated model. The model by Jeldres et al. had a narrow
range of predicted probabilities and model calibration was not
as good as the model by Irish et al. (intercepts 0.005, calibration
slopes 1.014). The models of Zaza et al. and Chapal et al. had
reasonable calibration intercepts and slopes (Figure 1).
Application of the exclusion criteria led to a further narrowing
of the dynamic range for both models, and both were still not
well calibrated. We observed a shift in the distribution of the
predicted probabilities to lower risks in the model of Chapal
et al. when we applied the exclusion criteria, which can be
explained by the exclusion of 59% of patients with a relatively
high risk of DGF.

Decision curve analysis for the prediction of DGF

Since the model by Irish et al. was best at discriminating
patients with or without DGF with a good calibration, we
decided to validate other predictive features of the model. Irish
et al. performed decision curve analysis to investigate the clini-
cal utility of the prediction model with the net benefit for differ-
ent threshold probabilities [24]. If there was to be a preventive
measure to mitigate the effects of DGF, the likelihood of

accepting this intervention would depend on the balance
between clinical benefit and adverse side effects. The threshold
probability is defined as the level of risk for DGF where the
expected benefit of intervention equals the expected benefit of
withholding the intervention. This probability threshold is sub-
jective by nature, depending on the likelihood of each outcome
and the judgement of these outcomes by physicians or patients.
The net benefit of the prediction model is calculated as the rate
of true positives minus the rate of false positives weighed by the
odds of DGF for the probability threshold. We compared the
net benefit of the prediction model with two opposites: treat all
patients with the intervention or treat none with the interven-
tion. Figure 2 shows that the model by Irish et al. had a net ben-
efit of 0.242 at a threshold probability of 0.25, which is
considerably higher than the 0.089 net benefit for the same
threshold in the original study (Figure 2A). A net benefit of
0.242 is equivalent to correctly identifying DGF in 24 cases per
100 patients (true-positive results) without an increase in the
number of false-positive results, as compared with assuming
absence of DGF in all patients. However, applying this thresh-
old, the net benefit of the model compared with the treat-all
strategy for DGF is rather small (0.24� 0.20¼ 0.04 net benefit).
At a threshold probability of 37% of DGF, our current rate of
DGF, the net benefit of the DGF model is 0.12 greater than the
treat-all strategy for DGF, equivalent to identifying 21 fewer
false-positive results per 100 patients (Figure 2B).

Predicted probability of DGF and graft survival

We validated whether the predicted probabilities as calcu-
lated for the model by Irish et al. also associated with graft
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FIGURE 1: Calibration plots of the multivariable prediction models for DGF when applied to the Dutch NOTR validation cohort. The upper
row shows the calibration plots of the four algorithms on the full NOTR cohort (N¼ 3333). The panels on the lower row represent the calibra-
tion plots after application of the exclusion criteria. The percentages in between the upper and the lower row indicate what percentage of
patients had to be excluded. Perfect calibration is represented by the thick grey line through the origin, i.e. an intercept (a) of 0 and a slope
(b) of 1. Ten quantile groups predicted probabilities were created and illustrated their corresponding outcome proportion with a triangle.
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survival. For direct comparison, we chose to use the same cut-
off values for the predicted probabilities to group the patients as
described in the original study (<10% risk of DGF, 10–25%
risk, >25–50% risk and >50% risk). Figure 3 shows the
Kaplan–Meier curve. Compared with<25% risk of DGF,

patients with a 25–50% risk of DGF had an increased risk of
graft failure [hazard ratio (HR)¼ 1.25, 95% confidence interval
(CI)¼ 1.03–1.53, P¼ 0.02] as well as patients with a>50% risk
of DGF (HR¼ 1.68, 95% CI¼ 1.39–2.03, P< 0.0001). In our
external validation study, a 2-fold increase in the predicted
odds for having DGF associated with an increased risk of 23%
(HR¼ 1.23) for graft failure compared with 30% in the original
study. A deleterious effect of DGF on death-censored graft fail-
ure was only observed in old recipients who had received a graft
from on old donor (both aged �65 years, Supplementary data,
Figure S1).

Case-mix relatedness between the Dutch NOTR cohort
and the OPTN/UNOS cohort

Knowledge on the relatedness between the two cohorts
allows us to interpret the model performance in terms of clini-
cal transportability. We reconstructed the individual patient
data of the OPTN/UNOS cohort with a copula (see R codes in
Supplementary Text S1) to compare it directly to the individual
patient data of the Dutch NOTR cohort in a membership model
as proposed in the framework by Debray et al. [15].
Supplementary data, Table S3 shows that our reconstructed
OPTN/UNOS database indeed had a similar parameter distri-
bution to the original OPTN/UNOS data. Figure 4 shows a
higher mean, but lower standard deviation of the predicted risks
for DGF in our validation cohort compared with the original
OPTN/UNOS cohort. A membership c-statistic of 0.5 indicates
complete relatedness between cohorts. The c-statistic in this
study was 0.87 (Figure 4A and B), which is indicative of a
difference in case-mix between the OPTN/UNOS and the
NOTR cohort.
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FIGURE 2: Net benefit decision curve for predicted probabilities of having DGF based on the Dutch validation cohort. (A) The model by Irish
et al. [18] on the US OPTN/UNOS cohort showed that a threshold probability of 0.25 will results in a net benefit of 0.089. The net benefit of
the algorithm by Irish et al. applied to the Dutch NOTR cohort rendered a slightly higher net benefit of 0.242 at the same threshold probability.
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D I S C U S S I O N

In the current study, we observed that the model by Irish et al.
[18] performed well in Dutch patients, even though the case-
mix between the USA (OPTN/UNOS) and the Netherlands
(NOTR) differed substantially. Importantly, we observed a good
calibration of the US model with a broad dynamic range of pre-
dicted probabilities, which indicates that also at the extremes
(patients at a very low or very high risk of DGF), we can apply
the US algorithm on the Dutch transplant population. The algo-
rithm by Irish et al. performed equally well for the prediction of
graft failure. We believe that this extensive model covers a large

part of the variation among renal transplant recipients [13] and
all data that are needed to construct patient-specific absolute
risks are readily available at the institutes in the Netherlands (all
donor-derived data are available through standardized
Eurotransplant files upon transplantation) [20].

Discrepancies between the Dutch and the USA have been
reported previously, also depending on life expectancy, access
to dialysis, length of waiting time on the transplantation list and
health insurance regulations [25]. Another explanation for the
case-mix difference is that the OPTN/UNOS cohort included
transplants procured between January 2003 and December
2006 while the Dutch NOTR cohort included transplants in
a later era (until January 2012). Corroborating our results, a
recent external validation study by Decruyenaere et al., which
included 497 renal transplant recipients from Belgium,
described a similar predictive value by the algorithm of Irish
et al. (c-index¼ 0.78) [26]. In contrast to our study, they
observed that the model was not well calibrated due to an over-
estimation of the risk of DGF in low- to intermediate-risk
patients. An explanation could be found in a case-mix differ-
ence between the Belgian and US cohorts, but this was not
investigated as such. Recently, a second cohort from Belgium
also validated the US model [27]. The authors performed a ret-
rospective analysis on patients from the Antwerp University
Hospital (N¼ 253) and they calculated a c-index of 0.69, which
is comparable to the original US data. This shows that even
within one country, there is some difference in performance of
the algorithm, indicating that local protocols can influence
accuracy. The model was well calibrated, although the dynamic
range of prediction was small, most probably reflecting the
remarkably low prevalence of DGF in this cohort (15.3%). Also
in a Spanish cohort, the algorithm by Irish et al. performed well
(c-index¼ 0.71) and here the model was well calibrated [28]. A
somewhat lower c-index was calculated by Gourishankar et al.
(c-index¼ 0.69), who studied 730 kidney transplant recipients
at the University of Alberta in Canada [29]. These authors did
not report statistics on model calibration and we therefore can-
not compare them to those of the current study. Altogether,
these studies show that the US model has comparable accuracy
when validated in cohorts from various countries (c-indices
ranging from 0.68 to 0.78), although differences in calibration
occur. Institutions that externally validated the US algorithm
on their own patients might benefit from strategies to improve
model fit, which include intercept and slope updating or re-
calculation of the model’s estimates [30, 31].

By applying all exclusion criteria that were used in the origi-
nal study by Chapal et al., we had to exclude 59% of our data
set, which resulted, as a secondary effect, in a significant reduc-
tion of the incidence of DGF from 37% to 16%. This suggests
that the algorithm that was developed in this study might be
more suitable for patients with an a priori low risk of DGF (and
other posttransplant pathology). The model did not perform as
well in our cohort as compared with the original study (c-index-
¼ 0.581 in the validation cohort versus a c-index¼ 0.73 in the
original article). The model by Chapal et al. was not well cali-
brated and we found a small dynamic range of the predicted
probabilities, which limits its use in the clinical setting as well.
Although we observed an increase in model performance after

A

B

C

FIGURE 4: Case-mix differences between the Dutch NOTR cohort
and the US OPTN/UNOS cohort. In graphs (A) and (B), the y-axis
reflects the extent to which the Dutch cohort is different but related
to the US (OPTN/UNOS) cohort (as indicated by the c-statistic of
the membership model). In graph (A), the x-axis reflects the differ-
ence between the means of the DGF score of the Irish et al. [18]
model. In graph (B), the x-axis reflects the potential for good per-
formance indicated by the relative difference in standard deviation
of the DGF score. Panel (C) shows that the boxplot of the DGF score
is higher in the Dutch cohort compared with the US cohort.
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application of the same exclusion criteria (area-under-the-
curve¼ 0.617), this did not match the model performance in
the original publication and calibration did not improve either.
This difference in model performance could be due to kidney
allocation (France is not included in the Eurotransplant pro-
gramme), but most importantly, as mentioned by the authors
themselves as well [19], inclusion of induction therapy with
anti-thymocyte globulins (ATG) might bias their model sub-
stantially, since the indication to treat with ATG differs not
only per country, but also among different centres within a
country. Corroborating on this discussion, it has been shown
that also in randomized studies that investigated the influence
of induction therapy on the development of DGF, outcomes
differed between studies [13]. The recent study by
Decruyenaere et al. also failed to reproduce the model’s per-
formance [26]. There the authors calculated a c-index¼ 0.59 in
497 Belgian renal transplant recipients, which is comparable to
the c-index we calculated. They found that application of the
French algorithm to the Belgian patients severely overestimated
the risk of DGF. Similar misclassification and miscalibration
was found in another cohort from Belgium [27]. The authors
calculated a c-index of 0.51 and again the model by Chapal
et al. overestimated the risk of DGF substantially.

Now, how could we use the US prediction model for DGF in
daily practice for the individual patient? The prediction model
is based on donor, transplantation and recipient factors and is
therefore specifically designed in patients who have already
been transplanted. We want to stress that the prediction model
is not designed to accept or decline a transplant offer prior to
transplantation to have the best match between donor and
recipient, since this requires a risk estimation for the compari-
son between acquiring a transplant with DGF versus remaining
on dialysis. A study by Tonelli et al. has shown that renal trans-
plantation in general has a better long-term cardiovascular and
quality of life outcome as compared with dialysis, even when
controlling for risk factors of DGF [1]. To see the potential clin-
ical value of the US algorithm for the prediction of DGF, we
should (i) consider DGF as a composite surrogate endpoint
defined as the need for supportive renal replacement therapy
(dialysis) within the first week after transplantation, whatever
the underlying cause and (ii) consider that prevention of DGF
by an intervention delays death-censored graft failure. We
would like to stress that, as of yet, no drugs specifically treat all
underlying causes of DGF at once, but attempts have been
made to reduce DGF, for instance, in the CALLISTO trial by
delayed introduction of calcineurin inhibitors (by early intro-
duction of the mTOR inhibitor everolimus) [32]. There are cur-
rently various randomized trials with biologicals under
investigation that aim at preventing DGF. The medicaments
include the complement inhibitors eculizumab (NCT01403389,
NCT01919346 and NCT02145182) and a C1 esterase inhibitor
(NCT02134314) as well as the TLR2-antagonist OPN-305
(NCT01794663). Although the CALLISTO trial did some
risk stratification to select patients at the highest risk of DGF
prior to randomization, a validated, accurate and more
comprehensive risk stratification tool like the US algorithm
would probably be more worthwhile for individual patient
risk management.

An increasingly important metric to help physicians with
their decision to treat renal transplant patients with the help of
prediction models is decision analysis [24]. Prediction models
may lead to the early identification of patients at risk for an out-
come, in this case DGF, but this is at the cost of identifying
patients who in fact will not have the outcome (false positives).
In decision analysis, the trade-off between benefit and harm
(the net benefit) for that model is analysed over a range of
threshold probabilities. In a decision curve, the net benefit for
applying the intervention/treatment according to the prediction
model is compared with the net benefit assuming all patients
will have DGF and will undergo an intervention accordingly
(e.g. perform an early biopsy or preventive treatment in all
patients) versus the net benefit, under the assumption that none
of the patients will have DGF and therefore no patients will be
treated. For each DGF threshold probability, the decision curve
shows the strategy with the highest net benefit. The DGF
threshold is defined as the number of patients that a physician
would have to treat to prevent DGF in one patient; at a 25%
threshold probability, no more than four patients should be
treated to prevent DGF in one patient. When we applied
decision curve analysis for the Irish model, we observed a
higher net benefit on the NOTR data (0.242) compared with
the OPTN/UNOS data in the original article (0.089) for the
(arbitrary) DGF threshold probability of 25% [18]. When we
compare the strategy of treating patients according to the pre-
dictions of the US model to the strategy of treating all patients,
we observe a positive net benefit for the prediction model-
guided strategy from a DGF threshold probability of �10%
up to 70%. This indicates that over this wide range of risk
thresholds for DGF, it is always better to treat an individual
patient with prior stratification based on the US model
compared with treating all patients, because unnecessary
treatment of patients that are not at risk for DGF can be
avoided. Such risk stratification could help the treating
physician to make a more evidence-based decision on the
expected impact of a treatment based on the individual
patient risk profile. In the end, a patient management plan
that includes the harms (side effects, costs) and benefits
(efficacy) of particular drugs will lead to the most informed
treatment choice. Whether such a model-guided treatment
strategy to prevent DGF will also lead to a delay in death-
censored graft failure is not known, since this depends on the
causal effect of DGF on graft failure and the dynamics of
alloimmunity, infections and other post-transplant diseases
on follow-up. In fact, we observed that DGF only has a dele-
terious effect on death-censored graft survival when old
patients had received a transplant from an old donor
(Supplementary data, Figure S1), which is in agreement with
the literature and limits the use of DGF as a surrogate out-
come [33, 34].

Our study has limitations. We used data from a registry
database and we are therefore not able to check the validity of
all parameters that we included. For 15.9% of the patients, we
had missing data for one or more parameters. We performed
multiple imputations to account for these missing data. Also,
allocation algorithms differ from country to country. Although
this is not a limitation of our study per se, but rather in general,
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it makes a direct comparison among cohorts difficult. As a solu-
tion, to investigate the case-mix between cohorts, we chose to
reconstruct the individual patient data with a copula, which
allowed us to calculate the non-relatedness between the OPTN/
UNOS and NOTR database in a membership model as pro-
posed by Debray et al. [15]. We are limited by the data that are
collected by the registry, e.g. we did not have data available on
recipient race or pre-transplantation blood transfusions
(together accounting for 12/350 points in the normogram by
Irish et al.). These parameters could alter the individual risk
by�5%.

In conclusion, in a prospective cohort of 3333 renal trans-
plant patients from the eight university hospitals that perform
renal transplantations in the Netherlands, we could validate the
OPTN/UNOS algorithm by Irish et al. to predict DGF.
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A B S T R A C T

Background. There is mixed evidence regarding the nature of
cognitive function in patients who have undergone renal trans-
plantation. The aim of this meta-analysis was to examine which
cognitive domains are impacted following kidney transplanta-
tion and how performance compares with non-transplanted
patients or healthy controls/normative data.
Method. A systematic search was conducted using keywords
within three databases (Embase, MEDLINE and PsychINFO),
yielding 458 unique studies, 10 of which met the inclusion criteria.
Neuropsychological tests were grouped into nine cognitive
domains and three separate analyses were undertaken within each
domain: (i) within subjects pre- versus post-transplant, (ii) trans-
planted versus non-transplanted patients and (iii) transplanted
versus healthy matched controls and standardized normative data.
Results. Transplanted patients showed moderate to large
improvements in the domains of general cognitive status
(g¼ 0.526), information and motor speed (g¼ 0.558), spatial
reasoning (g¼ 0.376), verbal memory (g¼ 0.759) and visual
memory (g¼ 0.690) when compared with their pre-operative
scores. Test scores in the same five domains were significantly
better in post-transplanted patients when compared with
dialysis-dependant or conservatively managed chronic kidney
disease patients. However, post-transplanted patients’ perform-
ance was significantly low compared with that of healthy con-
trols (and standardized normative data) in the domains of

executive functioning (g¼�0.283), verbal fluency (g¼�0.657)
and language (g¼�0.573).
Conclusions. Two key issues arise from this review. First,
domain-specific cognitive improvement occurs in patients after
successful transplantation. Nevertheless, transplanted patients
still performed significantly below healthy controls in some
domains. Second, there are important shortcomings in existing
studies; the length of follow-up is typically short and only lim-
ited neuropsychological test batteries are employed. These fac-
tors are important in order to support the recovery of cognitive
function among patients following renal transplant.

Keywords: chronic kidney disease, cognition, dialysis, kidney
transplant, systematic review

I N T R O D U C T I O N

Chronic kidney disease (CKD) can result from multiple factors,
including hypertension, diabetes and genetic disorders [1–3].
End-stage kidney disease (ESKD) is the fifth and most severe
category of CKD and is defined as the inability of the kidneys to
metabolize and remove waste substances such as creatinine [4].
Patients suffering from ESKD depend on renal replacement
therapy (RRT) for survival. RRT options include kidney trans-
plantation, peritoneal dialysis (PD) and haemodialysis (HD) [5]
and transplantation is currently the recommended gold stand-
ard [6]. The majority of transplanted patients spend a period of
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