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A B S T R A C T   

Aim of the study: Occurrence of hand-foot syndrome (HFS) during capecitabine treatment often results in treat-
ment interruptions (26 %) or treatment discontinuation (17 %), and can severely decrease quality of life. In this 
study, we investigated whether single nucleotide polymorphisms (SNPs) in genes involved in capecitabine 
metabolism – other than DPYD – are associated with an increased risk for capecitabine-induced HFS. 
Methods: Patients treated with capecitabine according to standard of care were enrolled after providing written 
informed consent for genotyping purposes. Prospectively collected blood samples were used to extract genomic 
DNA, which was subsequently genotyped for SNPs in CES1, CES2 and CDA. SNPs and clinical baseline factors that 
were univariably associated with HFS with P ≤ 0.10, were tested in a multivariable model using logistic 
regression. 
Results: Of the 446 patients eligible for analysis, 146 (32.7 %) developed HFS, of whom 77 patients (17.3 %) 
experienced HFS ≥ grade 2. In the multivariable model, CES1 1165–33 C>A (rs2244613, minor allele frequency 
19 %) and CDA 266 + 242 A>G (rs10916825, minor allele frequency 35 %) variant allele carriers were at higher 
risk of HFS ≥ grade 2 (OR 1.888; 95 %CI 1.075–3.315; P = 0.027 and OR 1.865; 95 %CI 1.087–3.200; P = 0.024, 
respectively). 
Conclusions: We showed that CES1 1165–33 C>A and CDA 266 + 242 A>G are significantly associated with HFS 
grade 2 and grade 3 in patients treated with capecitabine. Prospective studies should assess whether this 
increased risk can be mitigated in carriers of these SNPs, when pre-emptive genotyping is being followed by dose 
adjustment or by alternative treatment by a fluoropyrimidine that is not substrate to CES1, such as S1.   

1. Introduction 

Capecitabine, an oral prodrug of 5-fluorouracil (5-FU), is approved 
for treatment of solid tumors including colorectal cancer, gastroesoph-
ageal cancer, and breast cancer [1]. Most often, it is administered in a 2 
weeks on, 1 week off schedule. Hand-foot syndrome (HFS), also known 
as palmar-plantar erythrodysesthesia, is a major side effect of capeci-
tabine. It has been reported that 53–77 % of patients treated with 
capecitabine develop HFS, leading to treatment interruption in 26 % of 
patients and even discontinuation in 17 %.[1–8]. 

HFS symptoms include palmoplantar numbness, tingling, burning 
pain and edema which may evolve into desquamation, blistering and 
ulceration [9]. Symptoms can limit activities of daily living and can 

seriously impact patients’ quality of life [10,11]. In case of HFS grade 2 
(skin changes with pain and limiting instrumental ADL) or higher, 
treatment interruption is recommended in the summary of product 
characteristics [1,9,12]. Depending on the severity of HFS, dose modi-
fications ranging from dose reductions to permanent discontinuation are 
advised.[1]. 

Metabolism of capecitabine into the active agent 5-FU consists of 
three steps (Fig. 1): carboxylesterase 1 and 2 (CES1/2) convert capeci-
tabine into 5′-DFCR, which is subsequently converted into 5′-DFUR by 
cytidine deaminase (CDA), and ultimately, 5′DFUR is converted into 5- 
FU by thymidine phosphorylase (TP). TP is highly expressed in tumor 
tissue [13]. Over 80 % of 5-FU is catabolized in the liver into inactive 
metabolites by dihydropyrimidine dehydrogenase (DPD), and around 
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20 % is directly excreted through urine [1]. Only 1–5 % of 5-FU is 
converted into active metabolites which have a cytotoxic effect via 
incorporation into DNA and RNA, and inhibition of thymidylate syn-
thase (TYMS) [14]. 

Dose modifications based on pre-emptive genotyping of common 
single nucleotide polymorphisms (SNPs) in DPYD, the gene encoding 
DPD, significantly reduce the incidence of fluoropyrimidine-related 
toxicity [15,16]. However, it should be noted that the overall inci-
dence of HFS is still high in patients treated with capecitabine, despite 
upfront DPYD testing [2–7]. Potentially, SNPs in other enzymes, 
involved in capecitabine metabolism, may play a role in the risk on HFS 
during capecitabine treatment. 

In this study, we aimed to assess whether SNPs in CES1, CES2 and 
CDA can predict the occurrence of HFS, independent of DPYD variants, 
in patients treated with capecitabine. 

2. Material and methods 

2.1. Study design 

In this cohort study, we studied adult patients who were treated with 
capecitabine according to standard of care at Erasmus MC Cancer 
Institute between January 2011 and June 2021. Patients were enrolled if 
they provided written informed consent in the Code-Geno study (local 
protocol MEC 02–1002) or the M14DPD study (NCT02324452; local 
protocol MEC 15–358), in which whole-blood samples were collected 
prospectively for genotyping purposes. 

Electronic patient files were retrospectively studied in order to 
collect the following clinical and demographic data; age, sex, body 
surface area (BSA), Eastern Cooperative Oncology Group Performance 
Status (ECOG-PS), tumor type, treatment regimen, dose reductions, 
treatment interruptions, treatment discontinuation, HFS, diarrhea, 
nausea, and vomiting during capecitabine treatment according to the 
Common Terminology Criteria for Adverse Events version 5.0 (CTCAE) 
[12]. Only adverse events (AEs) that were possibly, probably, or defi-
nitely related to capecitabine treatment were classified as 
treatment-related AEs. AE grading was primarily done by the treating 
physician or – if not registered in the patient file – was assessed by the 
authors. 

2.2. Selection of SNPs 

SNPs in genes encoding for the metabolizing enzymes (i.e., CES1, 
CES2, and CDA) of capecitabine were selected if a previous association 
with treatment-related AEs was reported in the literature [17–22]. SNPs 
with a minor allele frequency (MAF) of at least 10% were included.[23]. 

From the literature, eight potentially relevant SNPs in three genes 
(CES1, CES2 and CDA) encoding enzymes involved in the capecitabine 
metabolism were selected (Table 1) [17–22]. Patients carrying 
DPYD* 2 A, DPYD* 13, 2846 A>T, 1236 G>A, and/or DPYD* 7 poly-
morphisms were excluded from analysis.[16,24]. 

2.3. DNA isolation and genotyping 

DNA was isolated on the MagNaPure Compact Instrument (Roche 
Diagnostics GmbH, Mannheim, Germany) from 400 µL of the collected 
whole blood samples using the Nucleic Acid Isolation kit l (Roche Di-
agnostics GmbH, Mannheim, Germany). Fluorescent-labeled primers 
and probes were mixed with the TaqMan GTXpress Master Mix (Applied 
Biosystems, Life Technologies Europe BV, Bleiswijk, the Netherlands) 
and the obtained 20 ng genomic DNA to perform qPCR. The Taqman 
qPCR consisted of 40 cycles of denaturation for 20 s on 95 ◦C, subse-
quently annealing for 3 s on 92 ◦C and extension for 30 s on 60 ◦C. The 
Taqman 7500 software (Applied Biosystems) was used for allelic 
discrimination to determine the genotypes by measuring allele-specific 
fluorescence. 

2.4. Statistical analysis 

Distribution of SNPs was tested according to Hardy-Weinberg equi-
librium (HWE) using the chi-squared test. SNPs in the same gene were 
tested for linkage disequilibrium (LD) by calculating R2 using LDlink 
(https://ldlink.nci.nih.gov/). If R2 > 0.8, only the SNP with the stron-
gest significant association was tested against endpoints. 

HFS was categorized in not-limiting activities of daily living (grade 
0 or grade 1) and limiting activities of daily living (grade 2 or higher). 
Genotypes of the SNPs were fitted in the most appropriate of the 
following models: dominant, recessive or additive. Adverse events were 
tested against genotypes of the SNPs in the dominant and recessive 
model and baseline factors (i.e., dichotomized age, sex and ECOG-PS) 
using the Fisher’s exact test or the chi-squared test. For the additive 
model, logistic regression analysis was used. Genetic polymorphisms 
and baseline factors associated with a toxicity endpoint with p < 0.1 in 
univariable analysis were entered in multivariable analysis (without 
backward selection), which was performed using logistic regression 
analysis. Multivariable associations were internally validated by boot-
strapping. One thousand bootstrap samples were generated, with 
replacement, and the bias-corrected 95% CIs were calculated for ORs. 
All statistical analyses were performed using SPSS version 28.0.1.0. 

3. Results 

3.1. Patients 

From a total of 573 patients treated with capecitabine, 446 patients 
were eligible for analysis (Supplementary Fig. S1). The majority of pa-
tients was treated with capecitabine in combination with oxaliplatin 
(n = 170, 38%) or received capecitabine monotherapy with (n = 96, 
22%) or without concomitant radiotherapy (n = 80, 18%). Patients 
were treated with different treatment regimens and different dosing 
regiments (flat-dosed or dosing based on body surface area)[25]. In 
total, 217 patients (49%) were treated with flat-dose capecitabine of 
3500 mg/day. Patient characteristics are summarized in Table 2. 

Fig. 1. Capecitabine metabolism Fig. 1 shows the simplistic metabolism of 
capecitabine. Abbreviations: 5′DFCR: deoxy-5-fluorocytidine; 5′DFUR: 5′- 
deoxy-5-flurouridine; 5-FU: 5-fluorouracil; CES1/2: carboxylesterase 1 or 2; 
CDA: cytidine deaminase; TP: thymidine phosphorylase. 
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3.2. Hand-foot syndrome 

HFS was observed in 146 patients (33 %): grade 1 in 69 patients (16 
%), grade 2 in 62 patients (14%) and grade 3 in 15 patients (3%). A 
complete overview of the occurrence and grades of HFS is shown in 
Table 2. 

3.3. Associations of SNPs with toxicity 

Minor allele frequencies of the studied SNPs are provided in Table 1. 
Higher risk of HFS grade 2 and grade 3 was found in CES1 1165–33 C>A 
(OR 1.9; 95% CI 1.1–3.3; P = 0.027) and CDA 266 + 242 A>G variant 
allele carriers (OR 1.9; 95% CI 1.1–3.2; P = 0.024), compared with non- 
carriers of the respective SNPs. However, risk of developing HFS was 
significantly lower in CES2 − 823 C>G variant allele carriers (OR 0.4; 
95% CI 0.2–0.8; P = 0.005). Interestingly, female patients treated with 
capecitabine were at higher risk of HFS grade 2 and grade 3 (OR 2.1; 
95% CI 1.3–3.6; P = 0.003), diarrhea (OR 1.5; 95% CI 1.0–2.4; 
P = 0.043), nausea (OR 1.7; 95% CI 1.1–2.5; P = 0.014) and vomiting 
(OR 2.8; 95% CI 1.4–5.4; P = 0.003). Haplotype analyses were per-
formed given the strong linkage between CES1 1165–33 C>A and CES1 
1165–41 C>T, but no additional associations in these analyses were 
found (data not shown). 

In multivariable analysis, patients carrying a variant allele of CES1 
1165–33 C>A were also at significantly higher risk of developing 
toxicity in all grades (OR 1.6; 95% CI 1.0–2.5; P = 0.033) and of 
developing diarrhea during capecitabine therapy (OR 1.5; 95% CI 
1.0–2.4; P = 0.049), next to the previously mentioned risk of HFS grade 
2 and higher. Carriers of this SNP (either heterozygous or homozygous) 
more frequently had dose adjustments or treatment discontinuation, but 
this difference was not significant (61% vs. 56%; P = 0.178). 

All results from multivariable analysis were internally validated by 
bootstrapping. Results of univariable, multivariable and bootstrap 
analysis are shown in Table 3. 

4. Discussion 

In this study, we demonstrated that carriers of CES1 1165–33 C>A 
(rs2244613) and CDA 266 + 242 A>G (rs10916825) polymorphisms 
are at higher risk of developing HFS grade 2 and grade 3 during cape-
citabine treatment. 

CES1 1165–33 C>A has previously been associated with 
capecitabine-related toxicity, but not with HFS, in 144 Swiss cancer 
patients.[17] In our study, we validated the presence of the association 
between this CES1 SNP with capecitabine-related toxicity and, in 
contrast to Hamzic et al. [17], we additionally demonstrated CES1 
1165–33 C>A variant allele carriers are at higher risk of severe HFS 
during capecitabine treatment. 

Carboxylesterase 1, responsible for the conversion of capecitabine to 
5-dFCR, is highly expressed in the liver [26]. The reduced CES1 protein 
function in case of the CES1 1165–33 C>A SNP has been illustrated 
using other CES1 substrates, e.g. by measuring significantly lower trough 
levels of the CES1-formed active metabolite of dabigatran in variant 

Table 1 
Studied single nucleotide polymorphisms.  

Gene SNP ID Variant Assay ID MAF No. of WT No. of HET No. of HVAR HWE P-value 

CES1 rs2244613 1165–33 C>A C__11290377_10  19%  298  130  18  0.42 
CES1 rs2244614 1165–41 C>T C__16195956_10  58%  82  214  150  0.71 
CES1 rs3217164 690 + 129delC C__34030231_10  51%  111  217  117  0.60 
CES2 rs2241409 1613–108 G>A   18%  297  133  15  0.98 
CES2 rs11075646 -823 C>G   10%  361  81  4  0.82 
CDA rs2072671 -79A>C * 2 C__25472931_20  35%  197  185  64  0.06 
CDA rs603412 -205 C>G C____566821_30  42%  155  205  85  0.24 
CDA rs10916825 266 + 242 A>G C__31573761_10  35%  187  206  53  0.74 

Abbreviations: MAF: minor allelic frequencies; WT: wild types; HET: heterozygous variants; HVAR: homozygous variants; HWE: Hardy-Weinberg equilibrium. 

Table 2 
Patient characteristics.  

Characteristics Total study 
cohort 
N = 446 
patients 

Patients with HFS (all 
grades) n = 146 

Sex (%) 
Male 
Female 

249 (56) 
197 (44) 

72 (49) 
74 (51) 

Age (years, median, [IQR]) 62 [54–69] 60 [52–69] 
ECOG performance status (%) 

1 
2 
3 

302 (68) 
10 (2) 
1 (<1) 

1 (1) 
0 
0 

BSA (median, [IQR]) 1.9 [1.8–2.1] 1.9 [1.7–2.1] 
Primary tumor type (%) 

Colorectal 
Esophagus/Gastric 
Breast 
Neuro-endocrineA 

OtherB 

295 (66) 
80 (18) 
53 (12) 
8 (2) 
10 (2) 

95 (65) 
18 (12) 
27 (18) 
2 (1) 
5 (3) 

Metastatic disease (%) 182 (41) 72 (49) 
Treatment regimen 

Capecitabine monotherapy 
Capecitabine + radiotherapy 
Capecitabine + oxaliplatin 
Capecitabine + bevacizumab 
Capecitabine + epirubicin 
+ oxaliplatin 
Capecitabine + epirubicin 
+ cisplatin 
Capecitabine + temozolomide 
OtherC 

80 (18) 
96 (22) 
170 (38) 
16 (4) 
15 (3) 
52 (12) 
7 (2) 
10 (2) 

40 (27) 
20 (14) 
50 (34) 
12 (8) 
3 (2) 
13 (9) 
2 (1) 
6 (4) 

Capecitabine cumulative daily dose 
(%) 
≥ 4000 mg 
3500 mg 
≤ 3000 mg 

86 (19) 
217 (49) 
143 (32) 

41 (28) 
74 (51) 
31 (21) 

Capecitabine adjustment/ 
discontinuation (%) 
Due to adverse events 

126 (28) 59 (40) 

Occurrence of hand-foot syndrome 
CTCAE grade 1 
CTCAE grade 2 
CTCAE grade 3 

69 (15) 
62 (14) 
15 (3) 

69 (47) 
62 (42) 
15 (10) 

A Neuro-endocrine tumor: bronchus (n = 5), jejunum (n = 2), pancreas (n = 1), 
and thymus (n = 1) 
B Other tumor types (number of patients in total cohort/number of patients with 
HFS): appendix (n = 2; n = 2), duodenum (n = 2; n = 1)), goblet cell (n = 1; 
n = 0), jejunum (n = 2; n = 0), pancreas (n = 1; n = 0), ampulla of Vater 
(n = 1; n = 1)), and pseudomyxoma peritonei (n = 1; n = 0). 
C Other treatment regimen: capecitabine + trastuzumab (n = 4; n = 3), cape-
citabine + lapatinib (n = 2; n = 1), capecitabine + bevacizumab + paclitaxel 
(n = 2; n = 1), capecitabine + vinorelbine (n = 1; n = 0), and capecitabine 
+ cisplatin + pembrolizumab (n = 1; n = 0). 
Abbreviations: IQR: interquartile range; CTCAE: common terminology criteria 
for adverse events. 
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allele carriers than in wild types [27]. 
The pathophysiology of HFS is still not known. It is suggested that 

accumulation of capecitabine and 5-FU metabolites in the skin initiate 
HFS [28]. This is supported by the fact that higher areas under the curve 
of 5′-DFCR, 5′-DFUR and 5-FU have been described in patients with HFS 
[29]. Moreover, Janssen et al. recently showed that the concentration of 
intracellular FUTP, an active metabolite of 5-FU, was associated with the 
development and severity of HFS [30]. Our results might add up to this 
evidence, as slower metabolism of capecitabine prolongs systemic 
exposure to capecitabine and its metabolites. This might imply that 
longer exposure to capecitabine and its metabolites, or maybe even 
more importantly, shorter exposure-free interval until the next treat-
ment cycle, contributes to the development of HFS. Having the rele-
vance of this SNP confirmed, prospective validation of alternative 
treatment or dosing schedules in carriers is warranted, e.g. by starting at 
a reduced dose, increasing the period off medication between cycles or 
by choosing an alternative agent that is not metabolized by carbox-
ylesterases, such as S1. Currently, S1 has been reported to be 
non-inferior to other fluoropyrimidines in colorectal cancer and is 
recognized as an alternative to 5-FU or capecitabine in case of intoler-
ance to these latter agents.[31] Our results warrant further study 
whether carriers of CES1 1165–33 C>A experience better treatment 
effects if they are directly treated with S1, rather than after onset of 
toxicity during treatment with 5-FU or capecitabine. 

In contrast, we found the CES2 − 823 C>G polymorphism 
(rs11075646) to be associated with a significantly reduced risk of 
developing HFS. Although this polymorphism has not previously been 
associated with the incidence of capecitabine-related toxicity, several 
other CES2 polymorphisms have been [21,22]. As CES2 is mainly 
expressed in the gastrointestinal tract, [26] impaired functioning pre-
vents the conversion of capecitabine into its active metabolites, which 
might lead to intestinal accumulation of capecitabine and reduced sys-
temic availability of its active metabolites. However, replication of these 
associations is needed to validate the result, preferably combined with 
additional pharmacokinetic assessments. 

In line with previous research, we observed an association between a 
CDA variant and a higher risk of developing capecitabine-related 
toxicity [20, 21, 32–34]. We found that CDA 266 + 242 A>G variant 
allele carriers are at higher risk than wild types of developing HFS grade 
2 and higher. This specific variant allele has previously been associated 
with overall capecitabine-related toxicity and, particularly, diarrhea 
grade 2 or higher [17]. This further confirms the potential role for CDA 
polymorphisms in predicting capecitabine-related toxicity. Contrasting 

prior research on CDA − 79A>C carriers, we did not find any association 
between toxicity and this SNP, whereas previous studies provide con-
flicting results on the association with adverse events and survival. 
[18–20, 35] As we performed the largest, but retrospective study, it 
remains unclear whether the influence of this SNP is valid. Prospective 
studies could clarify the role of CDA − 79 polymorphism on 
capecitabine-related adverse events and survival. 

Next to the investigated genotypes, we observed that female patients 
experienced adverse events severely more often. It is known that male 
and female patients have different pharmacodynamic effects of systemic 
medical treatment, not in the last place in oncology [36]. Especially for 
capecitabine, it has been stressed that more research into sex differences 
is warranted [36–38]. For instance, the subgroup of female patients 
experienced substantially less benefit from adjuvant capecitabine for 
biliary tract cancer compared with male patients [39]. 

Despite the explorative character of this study and the retrospective 
data collection, the sample size allows us to provide a reliable repre-
sentation of the occurrence of adverse events, especially HFS during 
treatment with capecitabine. In addition, the results shown are consis-
tent with previously published studies. It should be noted that we 
observed grade 3 HFS relatively infrequently (3 %). In this cohort, 
capecitabine dosing may potentially have been reduced early, to prevent 
the development of HFS grade 3. As the quality of life in patients 
developing HFS of all grades is highly affected, early dose reduction or 
treatment interruptions are the mainstay of HFS management [40]. 
Preemptive genotyping, which is currently standard of care for DPYD in 
the Netherlands, could be used to identify patients at increased risk for 
developing adverse events in general, and HFS in particular, during 
capecitabine treatment.[41] Future studies should assess the best 
strategy to mitigate adverse events for carriers of CES1 1165–33 C>A 
and CDA 266 + 242 A>G, and females. Also, it remains to be studied 
whether the effects of these intronic SNPs rely on their regulatory effects 
on gene expression, e.g. via alternative splicing, or on their linkage with 
uncharacterized exonic variants. 

Conclusions 

We have shown that CES1 1165–33 C>A and CDA 266 + 242 A>G 
are potentially important biomarkers for identifying patients at 
increased risk on HFS grade 2 or higher. Prospective studies should 
investigate whether preemptive analysis on these SNPs, followed by 
alternative treatment or adjusted capecitabine dosage, is warranted. 

Table 3 
Associations of selected single nucleotide polymorphisms with toxicity.  

Endpoint Factor Comparison Univariable 
OR (95% CI) 

P Multivariable 
OR (95% CI) 

Bootstrap 
95% CI 

P 

Toxicity1 

All grades 
Sex 
CES1 1165–33 C>A 

Female vs. Male 
AA + CA vs. CC 

1.475 (0.986–2.207) 
1.612 (1.043–2.491)  

0.058 
0.031 

1.471 (0.982–2.205) 
1.608 (1.039–2.488) 

(0.878–2.250) 
(1.004–2.643)  

0.061 
0.033 

HFS 
All grades 

Sex 
CES2 823 C>G 

Female vs. Male 
GG + CG vs. CC 

1.479 (0.994–2.201) 
0.412 (0.230–0.739)  

0.053 
0.002 

1.385 (0.926–2.073) 
0.432 (0.240–0.777) 

(0.922–2.071) 
(0.214–0.757)  

0.113 
0.005 

HFS 
≥ grade 2 

Sex 
CES1 690 + 129delC 
CES1 1165–33 C>A 
CDA 266 + 242 A>G 

Female vs. Male 
-/- + C/- vs. CC 
AA + CA vs. CC 
GG + AG vs. AA 

2.008 (1.220–3.305) 
0.576 (0.338–0.980) 
2.015 (1.222–3.321) 
1.747 (1.035–2.951)  

0.006 
0.040 
0.005 
0.035 

2.161 (1.293–3.610) 
0.758 (0.415–1.384) 
1.888 (1.075–3.315) 
1.865 (1.087–3.200) 

(1.314–3.691) 
(0.424–1.384) 
(1.084–3.391) 
(1.099–3.294)  

0.003 
0.367 
0.027 
0.024 

Diarrhea 
All grades 

Sex 
CES1 1165–33 C>A 

Female vs. Male 
AA + CA vs. CC 

1.548 (1.018–2.355) 
1.554 (1.008–2.396)  

0.040 
0.045 

1.544 (1.013–2.353) 
1.549 (1.002–2.394) 

(0.992–2.404) 
(1.008–2.337)  

0.043 
0.049 

Nausea 
All grades 

Sex 
Age (years) 
CES1 690 + 129delC 

Female vs. Male 
≥ 65 vs. < 65 
-/- + C/- vs. CC 

1.702 (1.135–2.553) 
0.643 (0.523–0.978) 
1.528 (0.936–2.494)  

0.010 
0.039 
0.089 

1.671 (1.109–2.519) 
0.677 (0.443–1.036) 
1.573 (0.958–2.583) 

(0.125–2.662) 
(0.445–1.041) 
(0.941–2.707)  

0.014 
0.073 
0.073 

Vomiting 
All grades 

Sex 
CDA -79A>C 
CDA − 205 C>G 
CES1 690 + 129delC 

Female vs. Male 
CC + AC vs. AA 
CG vs. GG 
CC vs. GG 
-/- vs. C/- + CC 

2.781 (1.421–5.442) 
2.112 (1.051–4.242) 
2.356 (1.071–5.186) 
1.840 (0.949–3.568)  

0.002 
0.032 
0.088 
0.068 

2.761 (1.399–5.449) 
1.812 (0.707–4.643) 
1.498 (0.535–4.191) 
0.825 (0.227–2.991) 
1.715 (0.868–3.386) 

(1.425–6.619) 
(0.795–5.339) 
(0.512–4.807) 
(0.195 − 3.007) 
(0.781 − 3.384)  

0.003 
0.216 
0.353 
0.120 

1 Patients who developed toxicity (i.e. hand-foot syndrome, diarrhea, nausea, vomiting, mucositis, neutropenia, hyperbilirubinemia) grade 1 or higher. 
Abbreviations: HFS: Hand-foot syndrome. 
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