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Multivendor Evaluation of Automated MRI
Postprocessing of Biventricular Size and
Function for Children With and Without

Congenital Heart Defects
Jelle P. G. van der Ven, MD,1,2 Wouter van Genuchten, MD,1,2 Zaheda Sadighy, MD,1

Emanuela R. Valsangiacomo Buechel, PhD,3 Samir Sarikouch, PhD,4 Eric Boersma, PhD,5 and

Willem A. Helbing, PhD1,6*

Background: Manually segmenting cardiac structures is time-consuming and produces variability in MRI assessments. Auto-
mated segmentation could solve this. However, current software is developed for adults without congenital heart defects (CHD).
Purpose: To evaluate automated segmentation of left ventricle (LV) and right ventricle (RV) for pediatric MRI studies.
Study Type: Retrospective comparative study.
Population: Twenty children per group of: healthy children, LV-CHD, tetralogy of Fallot (ToF), and univentricular CHD,
aged 11.7 [8.9–16.0], 14.2 [10.6–15.7], 14.6 [11.6–16.4], and 12.2 [10.2–14.9] years, respectively.
Sequence/Field Strength: Balanced steady-state free precession at 1.5 T.
Assessment: Biventricular volumes and masses were calculated from a short-axis stack of images, which were segmented
manually and using two fully automated software suites (Medis Suite 3.2, Medis, Leiden, the Netherlands and SuiteHeart
5.0, Neosoft LLC, Pewaukee, USA). Fully automated segmentations were manually adjusted to provide two further sets
of segmentations. Fully automated and adjusted automated segmentation were compared to manual segmentation.
Segmentation times and reproducibility for each method were assessed.
Statistical Tests: Bland Altman analysis and intraclass correlation coefficients (ICC) were used to compare volumes and
masses between methods. Postprocessing times were compared by paired t-tests.
Results: Fully automated methods provided good segmentation (ICC > 0.90 compared to manual segmentation) for the
LV in the healthy and left-sided CHD groups (eg LV-EDV difference for healthy children 1.4 � 11.5 mL, ICC: 0.97, for Medis
and 3.0 � 12.2 mL, ICC: 0.96 for SuiteHeart). Both automated methods gave larger errors (ICC: 0.62–0.94) for the RV in
these populations, and for all structures in the ToF and univentricular CHD groups. Adjusted automated segmentation
agreed well with manual segmentation (ICC: 0.71–1.00), improved reproducibility and reduced segmentation time in all
patient groups, compared to manual segmentation.
Data Conclusion: Fully automated segmentation eliminates observer variability but may produce large errors compared to
manual segmentation. Manual adjustments reduce these errors, improve reproducibility, and reduce postprocessing times
compared to manual segmentation. Adjusted automated segmentation is reasonable in children with and without CHD.
Evidence Level: 3.
Technical Efficacy: Stage 2.
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MRI is considered the reference standard for the assess-
ment of volumetric parameters of the heart.1 It can

provide excellent spatial resolution, can provide excellent con-
trast between blood and tissue, and does not expose the
patient to ionizing radiation.2 However, several limitations of
MRI limit its widespread use. First, image acquisition is rela-
tively time-consuming and thus patient movement, including
breathing, can reduce image quality. This is especially limit-
ing in young children, who may not be able to follow instruc-
tions for breath-holds. Second, postprocessing of the images
is needed to measure parameters of cardiac function. This is a
time-consuming activity, which needs to be performed by
trained observers.3,4 Even then, important interobserver vari-
ability exists among volumetric MRI measurements.3,5

Automated postprocessing by software algorithms might
help to reduce postprocessing time and reduce interobserver vari-
ability. Improvements in computing power, artificial intelligence,
and the increased use of MRI have led to the development of
several commercially available automated postprocessing software
packages.6 These algorithms have shown promising results in
the adult population.7–9 The algorithms are generally trained
using large datasets of structurally normal adult hearts, such as
the UK Biobank cohort,10 but may not include pediatric sub-
jects. Assessment of ventricular volumes and function for the
follow-up of congenital heart defects (CHD) is an important
indication for MRI in children.2 However, children and patients
with CHD are mostly under-represented in—or excluded
entirely from—the training datasets of automated segmentation
algorithms.11,12 Structurally abnormal hearts may confound
algorithms, which are trained exclusively on structurally normal
hearts.13 Furthermore, there are large differences in body propor-
tions between adults and children.14 These differences could
affect the performance of postprocessing algorithms even in chil-
dren with structurally normal hearts. For legal, ethical, and train-
ing reasons, human supervision and corrections are probably
warranted when using such algorithms in practice for both chil-
dren and adults.

We hypothesized that fully automated segmentation of
ventricular volumes, although it eliminates observer variability,
has poor agreement with manual segmentation and great vessel
flow derived stroke volume (SV) in children. Automated seg-
mentation followed by manual adjustment might increase
agreement with manual segmentation, increase reproducibility
compared to manual segmentation, and reduce postprocessing
time compared to manual segmentation. Thus, the aims of this
study were 1) to compare left and right ventricular (LV, RV)
volumes and masses obtained from two automated cardiovascu-
lar MRI segmentation software packages (Medis Medical Imag-
ing, Leiden, the Netherlands and SuiteHeart, Neosoft LLC,
Pewaukee, USA), both fully automated and with manual
adjustments, with those derived from manual segmentation in
healthy children and children with different CHD diagnoses
and 2) to compare postprocessing times, reproducibility, and

internal consistency (as determined by the comparison of great
vessel flow derived stroke volume [SV] and segmentation
derived SV) between techniques.

Materials and Methods
This retrospective study was approved by the institutional review
board of the Erasmus Medical Center, Rotterdam, the Netherlands.
All patients, or their legal guardians, gave informed consent for
either participation in clinical research or reuse of clinical MRI stud-
ies for research purposes in accordance with national legislature.

Study Population
Twenty healthy children, as well as children with aortic stenosis or
regurgitation (n = 20), tetralogy of Fallot (ToF) (n = 20), and uni-
ventricular CHD following Fontan palliation (n = 20) were
included in this study. Healthy children were screened by medical
history and physical examination. Cardiopulmonary conditions were
exclusion criteria for healthy children.15 The CHD groups represent
CHD affecting primarily the left ventricle (LV-CHD), CHD affect-
ing the right ventricle, and complex CHD, respectively. Healthy
children, patients with ToF, and patients with univentricular CHD
were randomly selected—stratified by age groups—from previously
published cohorts.15–20 Children with LV-CHD were selected from
studies performed in clinical practice. The sample size of 20 subjects
per group is adequately powered (i.e. statistical power 80%,
α = 0.05) to assesses volume differences of 5.5 mL between mea-
surements, based on a measurement standard deviation of 8 mL.

Image Acquisition
Balanced steady-state free precession MR images were obtained using
either a Signa 1.5 T whole-body MR imaging system for subjects
from the University Children’s Hospital Zurich and Erasmus MC
Sophia Children’s Hospital Rotterdam (General Electric, Milwaukee,
USA) or an Intera R11 1.5-T whole-body MR scanner for subjects
from the Bad Oeynhausen Hospital center (Philips Medical Systems,
Best, the Netherlands). MRI protocols have previously been
described extensively.21–24 Scan parameters are summarized in the
online supplement S1. Images were obtained as a stack of 8–19
images in the short axis orientation from the apex up to the atrioven-
tricular and ventriculo-arterial valves. Subjects were instructed to
hold their breath during image acquisition. Young children unable
to be instructed for effective breath-holding were sedated and images
were obtained while freely breathing. No subjects received general
anesthesia with intubation for MRI. Flow measurements were
obtained on the level above the aortic and pulmonary valves, perpen-
dicular to the vessel plane with a retrospectively gated 2D velocity-
sensitized gradient echo sequence. Typical scan parameters were
repetition time 4.5–15 msec, echo time 2.4–6.5 msec, flip angle
18�–30�, slice thickness 6–7 mm, field of view 290 � 220 mm,
matrix 144–256 � 128, 1–6 phase-encoded lines per cardiac phase
per cardiac cycle, velocity encoding 150 cm/sec, 24–40 reconstructed
phases.

MRI Postprocessing
Images were analyzed on a Windows 10 workstation using commer-
cially available software packages. Manual contouring of cardiac
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structures was performed according to current postprocessing guide-
lines using Medis Suite version 3.2.60 (Medis Medical Imaging
Systems, Leiden, The Netherlands).25,26 Endocardial contours were
delineated both tracing trabeculae—and including papillary muscles
in the ventricular wall mass—(trabeculated) and with smooth endo-
cardial borders—including papillary muscles in the blood pool
(smoothed). For univentricular CHD patients, all ventricular struc-
tures that unload into the aorta were considered as a single ventri-
cle.27 For analysis of great vessel flow the vessel were manually
identified, automatically propagated across all phases, and manually
reviewed and revised where needed. Forward flow, rather than net
flow, was used to ensure fair comparisons to volumetrically derived
stroke volumes, accounting for possible valve regurgitation.25

Observers were blinded to the great vessel flow derived SV and the
results of segmentation for intraobserver and interobserver variability
during manual segmentation. Manual segmentation of the same
study for intraobserver variability was performed with an interval of
at least 1 month.

Two software packages for automated contour detection (Medis
Suite version 3.2.60, Medis Medical Imaging, Leiden, the Netherlands
and SuiteHeart 5.0.0, Neosoft LLC, Pewaukee, USA) automatically
segmented the studies in the same manner as the manual segmentation
protocol to the extent possible. SuiteHeart automated segmentation
was performed tracing trabeculated contours. Medis automated seg-
mentation was performed tracing smoothed contours, as no options for
tracing trabeculated contours are available. For comparisons between
manual segmentation and automated segmentation—that is, both fully
automated and automated adjusted by human input—trabeculated
automated contours were compared to trabeculated manual contours
for SuiteHeart and smoothed automated contours were compared to
smoothed manual contours for Medis. When not otherwise specified,
we refer to trabeculated contours throughout this article. End-diastolic
and end-systolic phases for the RV were manually adjusted to match
these phases of the LV, in accordance with the manual segmentation
protocol. For fully automated segmentation, the apical and basal limits
of the ventricle were determined without human input or supervision.
Examples of fully automated segmentation are provided as an online
supplement S1.

We also assessed the effects of manual corrections on the results
of automated segmentation. Three observers involved in manual seg-
mentation (JvdV with 8 years of experience, ZS with 1 year, and
WvG with 6 years) were instructed to adjust the automatically seg-
mented contours, where necessary, in accordance with the manual seg-
mentation protocol. Each study was segmented by JvdV twice and
once by either ZS or WvG for analysis of interobserver variability. If
the automated segmentation did not (correctly) identify ventricular
structures in ≥3 slices, the automated segmentation was considered
failed. If automated segmentation failed, measurements from manual
segmentation for intraobserver or interobserver variability were used
instead. Excluding these cases from analysis entirely may introduce
bias as potentially only less complex cases are included in the statistical
analysis. Furthermore, this approach more closely simulates the appli-
cation of automation in practice, where studies need to be manually
segmented if automated segmentation fails.

In this study, we assessed 1) differences between biventricular
volumes, ejection fraction and mass derived between fully automated
segmentation and automated segmentation followed by manual

adjustment vs. fully manual segmentation, 2) agreement of SV
derived by different segmentation strategies with great vessel flow-
derived SV, 3) Intraobserver and interobserver variability for differ-
ent segmentation strategies, and 4) postprocessing times.

The postprocessing times of manual segmentation and manual
corrections on automated segmentation were clocked by a stopwatch.
Time recordings for each observer were started when observers started
postprocessing (i.e. excluding study loading times) and were stopped
when segmentation was complete. Time spent reviewing and adjusting
contours were included in the postprocessing time.

Statistical Analysis
All continuous data are presented as mean � standard deviation
(SD) or median and interquartile range (IQR), depending on the
distribution. Volumetric data were not indexed for body surface area.
Assessment of differences in volumes and mass between automated
segmentation strategies versus manual segmentation, and for repro-
ducibility analyses, were performed by paired t tests, Bland Altman
analysis, and intraclass correlation coefficient (ICC). ICC is pres-
ented as ICC [95% confidence interval].28 An ICC ≥ 0.90 was con-
sidered good agreement, and ICC ≥ 0.80 was considered moderate
agreement.29 ICC values are presented in color according to this
classification in tables to allow for an easy overview. All statistical
analyses were performed using R version 3.6.1 (R Core team,
Vienna, Austria).

Results
Manual Segmentation
Subject characteristics, including ventricular volumes and
function derived by manual segmentation, are summarized in
Table 1. One (5%) healthy subject, 3 (15%) patients with
LV-CHD, 1 (5%) patient with ToF, and 20 (100%) uni-
ventricular CHD patients were imaged while free breathing.

For healthy subjects, LV and RV SV derived from man-
ual segmentation agreed excellently with great vessel flow
derived LV and RV SV (difference 5.5 � 14.5 mL, ICC: 0.90
[0.73–0.97] for the LV and 2.6 � 11.6 mL, ICC: 0.92
[0.81–0.97] for the RV, see online supplement S1). This was
also true for the LV SV in the LV-CHD group
(difference � 11.9 � 11.6 mL, ICC: 0.97 [0.93–0.99]), but
not for the RV SV (difference 1.8 � 26.8 mL, ICC: 0.73
[0.29–0.91]). For ToF and univentricular CHD, the agree-
ment between manual segmentation SV and great vessel flow-
derived SV ranged from poor for single ventricular SV
(difference � 6.3 � 18.2 mL, ICC: 0.68 [39–0.84]) to mod-
erate for RV SV of ToF patients (difference �9.6 � 16.5 mL,
ICC: 0.87 [0.69–0.95]).

Intraobserver and interobserver variability of manual
segmentation is presented in Table 2. Intraobserver and inter-
observer variability was excellent for healthy children and
patients with LV-CHD (ICC > 0.91 for all parameters). For
patients with ToF and univentricular CHD, reproducibility
ranged from poor (eg interobserver variability of RV ESV for
ToF: 12.9 � 21.8 mL, ICC: 0.76 [0.54–0.88]) to excellent
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(eg intraobserver variability of LV EDV for ToF:
1.9 � 9.4 mL, ICC 0.96 [0.91–0.98]). In general, inter-
observer variability was poorer than intraobserver variability
and variability was poorer in the end-systolic phase than in
the end-diastolic phase.

Fully Automated Segmentation
Automated segmentation was successful for all studies using
SuiteHeart. Six studies were unable to be segmented auto-
matically using Medis (one healthy subject, two with LV-
CHD, one with ToF and two with univentricular CHD).
Failed automated segmentation was more common in youn-
ger patients (9.0 [3.4–10.1] vs. 13.2 [10.4–15.8],
P = 0.002) and for free breathing studies (3/9 vs. 3/68,
P = 0.010). Failed automated segmentation was not

statistically significantly related to any diagnosis group or
manual segmentation time.

Differences in measurements between manual and fully
automated segmentation are shown in Table 3. For healthy
children, agreement between fully automated and manual seg-
mentation is good for left ventricular parameters for both
software suites. Agreement for right ventricular parameters
ranged from poor-to-good Medis and moderate-to-good for
SuiteHeart (eg RV EDV -3.0 � 20.8 mL, ICC: 0.92 [0.83–
0.96] for Medis and 4.6 � 16.9 mL, ICC: 0.92 [0.82–0.96]
for SuiteHeart). For patients with LV-CHD, the agreement
between fully automated and manual segmentation of both
software suites was similar to that of healthy children, that is,
agreement is good for LV parameters and ranges from bad to
good for RV parameters. However, this agreement was poor
for several parameters in patients with ToF (eg RV SV

TABLE 1. Patient Characteristics

Healthy children LV-CHD ToF Univentricular CHD

(n = 20) (n = 20) (n = 20) (n = 20)

Patient characteristics

Age 11.7 [8.9–16.0] 14.2 [10.6–15.7] 14.6 [11.6–16.4] 12.2 [10.2–14.9]

Male sex 9 (45%) 19 (95%) 15 (75%) 16 (80%)

BSA 1.39 [1.04–1.70] 1.58 [1.12–1.77] 1.58 [1.36–1.73] 1.29 [1.13–1.54]

Subjective image quality

No diagnostic quality 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Reduced diagnostic quality 2 (10%) 3 (15%) 1 (5%) 2 (10%)

Many artifacts 2 (10%) 1 (5%) 2 (10%) 5 (25%)

Some artifacts 5 (25%) 7 (35%) 4 (20%) 5 (25%)

Optimal diagnostic quality 11 (55%) 9 (45%) 13 (65%) 8 (40%)

Ventricular size and function

LV EDV (mL) 98 [73–136] 121 [103–220] 128 [105–145] SiV EDV 115 [100–135]

LV ESV (mL) 33 [25–46] 39 [23–92] 47 [35–57] SiV ESV 51 [47–66]

LV SV (mL) 63 [46–88] 88 [69–107] 77 [65–94] SiV SV 61 [49–71]

LV EF (%) 66 [64–68] 65 [59–71] 61 [57–65] SiV EF 51 [49–57]

LV Mass (g) 75 [49–92] 109 [84–206] 80 [59–102] SiV Mass 72 [67–92]

RV EDV (mL) 110 [79–139] 142 [96–173] 186 [146–220] -

RV ESV (mL) 41 [32–57] 60 [34–82] 84 [60–112] -

RV SV (mL) 63 [46–87] 73 [56–88] 98 [87–120] -

RV EF (%) 60 [59–63] 60 [50–63] 53 [50–57] -

Reported volumes and masses are manually segmented by a single observer (JvdV).
LV = left ventricular; ToF = tetralogy of Fallot; CHD = congenital heart disease; BSA = body surface area; EDV = end diastolic vol-
ume; ESV = end systolic volume; SV = stroke volume; EF = ejection fraction; RV = right ventricular; SiV = single ventricular.
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difference 30.1 � 25.5 mL, ICC: 0.62 [0.32–0.80] for
SuiteHeart), and for most parameters in patients with uni-
ventricular CHD (eg single ventricular SV difference
�6.9 � 16.0, ICC: 0.78 [0.56–0.89] for SuiteHeart).

Fully automated segmentation had agreement with great
vessel flow-derived LV SV of a magnitude similar to that of
manual segmentation across study groups (online supplement
S1). For the RV and single ventricle, fully automated segmen-
tation had worse agreement with great vessel flow-derived SV
than manual segmentation (eg single ventricular SV in Medis:
difference �2.4 � 27.0 mL, ICC: 0.38 [0.0–0.69] vs. single
ventricular SV manual: difference �6.3 � 18.2 mL, ICC:
0.68 [0.39–0.84]).

Fully automated segmentation has, by definition, per-
fect intraobserver and interobserver reproducibility for all
parameters (difference 0 � 0 mL, ICC: 1).

Automated Segmentation Followed by Manual
Adjustment
Large errors in automated segmentation may be easily recog-
nized and corrected by experienced observers. Automated seg-
mentation followed by manual adjustment resulted in
moderate-to-good agreement with manual segmentation for
healthy children and LV-CHD (ICC: 0.88–0.99) and mostly
moderate-to-good agreement for patients with ToF and uni-
ventricular CHD (ICC: 0.70–0.97, presented in the online
supplement S1). Note that the agreement between automated
segmentation followed by manual adjustment and manual
segmentation is of a similar magnitude as the interobserver
agreement of manual segmentation.

Agreement between great vessel flow-derived LV and
RV SV and automated segmentation followed by manual
adjusted-derived LV and RV SV was similar to—or, for some
analyses, more favorable than—that of manual segmentation
for healthy children, patients with LV-CHD, and patients
with ToF (presented in the online supplement S1: ICC:
0.74–0.95 for automated segmentation followed by manual
adjustment vs. 0.72–0.97 for manual segmentation). For
patients with univentricular CHD agreement between great
vessel flow-derived single and automated segmentation
followed by manual adjustment derived single ventricular SV
was poor for both Medis and SuiteHeart (ICC: 0.33
[0–0.64] for Medis vs. 0.62 [0.31–0.81] for SuiteHeart).

Automated segmentation followed by manual adjustment
resulted in excellent reproducibility for both software packages
and exceeded that of manual segmentation, even for uni-
ventricular CHD (see Tables 2 and 4: segmentation was con-
sidered good for 35 of the 50 parameters for manual
segmentation vs. 47 of the 50 (SuiteHeart) and 41 of the
50 (Medis) for automated segmentation followed by manual
adjustment). For healthy children, ICC exceeded 0.96 for
intraobserver variability for all parameters and exceeded 0.90
for interobserver variability. For CHD, intraobserver variabilityTA
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was good for most parameters for Medis, and for all parameters
for SuiteHeart (Table 4). Interobserver variability ranged from
generally good for LV-CHD (ICC: 0.88–1) to poor to good
for unventricular CHD (ICC: 0.56–0.93) in Medis. For
SuiteHeart, interobserver variability was moderate to good for
all patient groups (Table 4).

Postprocessing Time of Segmentation Strategies
An overview of postprocessing times is presented in the online
supplement S1. Manual segmentation times were 24 (IQR
16–28) minutes for healthy children, 23 (IQR 23–24) minutes
for LV-CHD, 19 (IQR 17–23) minutes for ToF, and
13 (IQR 12–14) minutes for univentricular CHD. Automated
segmentation followed by manual adjustment postprocessing
times did not differ significantly between Medis and
SuiteHeart (P = 0.429). Postprocessing times for automated
segmentation followed by manual adjustment were importantly
lower than those for manual segmentation (5 [IQR 4–6]
minutes for healthy children, 6 [IQR 4–8] minutes for LV-
CHD, 5 [IQR 4–6] minutes for ToF, and 7 [IQR 6–9]
minutes for univentricular CHD) (combined results for Medis
and SuiteHeart).

Discussion
Using current commercially available software suites, we
found fully automated segmentation of the ventricles in pedi-
atric subjects was good for the left ventricle in healthy chil-
dren and patients with LV-CHD. However, errors were
larger for the right ventricle in these patients, as well as for
patients with ToF and univentricular CHD (for the left,
right, and single ventricle). These errors were generally easily
recognized and may be adjusted by human observers.
Automated segmentation followed by manual adjustment: 1)
agreed well with manual segmentation, 2) improved repro-
ducibility compared to manual segmentation, and 3) reduced
segmentation time.

Several differences between adults and children warrant
researching the efficacy of postprocessing methods in chil-
dren. MRI studies are often obtained during breath-holds to
minimize motion and increase image quality, but young chil-
dren are unable to hold their breath and are often imaged
while free-breathing which may affect image quality. CHD is
an important indication for MRI in pediatrics and as such,
structural defects are more common than in adults.2 Differ-
ences in body proportions may also confound algorithms as
landmarks may not be recognized.30 Lastly, children have
smaller hearts, higher heart rates, a lower mass-to-volume
ratio and slightly more spherical left ventricles than adults.31

These factors could affect the performance of postprocessing
algorithms. It is important to consider that most algorithms
have been developed for, trained on, and validated in
populations of adults with structurally normal hearts.11,12

The performance of these algorithms in children requires

further study. Hammon et al evaluated a commercially avail-
able fully automated segmentation algorithm for the LV in
45 children and found the algorithms failed to detect the LV
in the three patients under 6 years old.30 Similarly, in our
present study, failure to automatically segment studies in
Medis was more common for younger patients and studies
obtained while breathing freely. It should be noted that stud-
ies obtained while free breathing were performed exclusively
in younger patients. Whether free breathing or younger age
leads to failure to automatically segment studies remains
uncertain. Fully automated segmentation may result in large
errors at any slice, but it is generally more common in the
basal or apical slice (data not shown). The current study dem-
onstrates that fully automated segmentation may be feasible
only in limited cases (the LV for healthy children and
LV-CHD).

Automated segmentation for CHD may be difficult to
achieve reliably as training of automated segmentation algo-
rithms generally requires large training datasets.13 Backhaus
et al. evaluated the performance of the SuiteHeart automated
segmentation algorithm in adults undergoing clinically indi-
cated MRI (including patients with ToF and aortic valve
replacements) and found reduced agreement with manual seg-
mentation for LV measurements in subjects with ToF and in
studies with reduced image quality.9 This is in agreement
with the results of the current study. We demonstrated that
manual adjustments to automated segmentation provide high
agreement with conventional manual segmentation methods,
even for complex CHD. Agreement with great vessel flow
generally increased with manual adjustments to automated
segmentation, compared to fully automated segmentation.
However, this was not true for univentricular CHD. This
may relate to inaccuracy of great vessel flow-derived stroke
volume in this population, or reflect variability in segmenting
these studies (despite the use of automated segmentation).
Furthermore, we found automated segmentation followed by
manual adjustment reduces segmentation time compared to
manual segmentation and improves reproducibility. The
improved reproducibility of automated segmentation followed
by manual adjustment compared to fully manual segmenta-
tion may relate to large segments of the automated segmenta-
tion being satisfactory and remaining unaltered by both
observers.

Several factors in our study complicate direct compari-
sons between software suites. The automated segmentation in
Medis failed in six patients, compared to none in SuiteHeart.
These cases were excluded from analysis for Medis. Auto-
mated segmentation may be more likely to fail in complicated
cases (i.e. smaller children, reduced image quality, more com-
plex cardiac defects).13 The automated segmentation algo-
rithm of Medis provided smoothed contours only and does
not provide an option to trace trabeculae of the endocardial
border. Smoothing endocardial contours results in higher
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volumes and lower wall mass and may improve interobserver
variability.32,33 To account for these differences, smoothed
manual contours were used for all comparisons with the
Medis automated segmentation algorithm (both fully auto-
mated and adjusted by human input). Overall, the post-
processing time required for automated segmentation
followed by manual adjustment was similar between the soft-
ware suites. It should be noted that the manual and auto-
mated followed by manual adjustment segmentation times for
univentricular CHD were lower than for other groups, as
only a single ventricle needs to be segmented. The overall
results for automated segmentation followed by manual
adjustment can—subjectively—be considered excellent for
both software suites.

Limitations
The age distribution of included subjects differs across diag-
nosis groups, which probably introduced some bias. This was
primarily due to limited availability of studies across all age
ranges for each diagnosis group. Studies from patients under
8 years old were scarce for complex CHD and Fallot patient
groups, as these studies are rarely clinically indicated. Echo-
cardiography is generally a suitable imaging modality for these
indications at this age range. To assure we included a broad
range of ages for each diagnosis available studies were strati-
fied by age quartiles and randomly selected from these quar-
tiles. We included 20 subjects per group, which was an
adequate sample size according to our power calculation.
However, this sample size did not allow for reliable subset
analyses. Due to the nature of this study, not true reference
standard reference was available. We compared volumetrically
derived stroke volumes to those derived from great vessel
flow. However, these measurements are also subject to vari-
ability. We did not time postprocessing times for automated
postprocessing as this is heavily influenced by computer hard-
ware. Furthermore, it does not require user attention as both
software suites allow for queuing of the preprocessing of mul-
tiple studies as a background process. Differences between
segmentations were reported only as differences in resulting
volume measurements, rather than more descriptive differ-
ences of 2D contours, such as dice indices or Hausdorff dis-
tances.34,35 We expressed error size in volumes and mass as
these are more readily applicable for clinicians.4,5,36 Variabil-
ity (across observers and segmentation methods) is usually
expressed by systematic and random error. We used ICC
values for general statements regarding the agreement
between measurements as this parameter accounts for both
systematic and random error in a single dimension. As ICC
values are influenced by the total variability within the dataset
(which may vary across our study groups), ICCs cannot be
compared directly across study groups. Absolute differences
between measurements should always be considered.

Conclusions
Fully automated segmentation provided good results only for
the left ventricle in healthy children or those with LV-CHD.
Compared to manual segmentation, automated segmentation
followed by manual adjustment provided similar volumes and
mass, improved reproducibility, and importantly reduced seg-
mentation time, even for patients with complex CHD.
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