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Simple Summary: Peptide receptor radionuclide therapy (PRRT) is one of the treatment options for
locally advanced or metastatic gastroenteropancreatic (GEP) neuroendocrine tumors (NETs). This
treatment makes use of radioactive labeled somatostatin analogues, with 177Lu-DOTATATE as its
established standard. PRRT has positive effects in tumor control and it lowers the risk of disease
progression or death. It also improves the quality of life of the patient. Unfortunately, important risk
factors for a minority of patients include renal and hematological toxicities. NET is a rare disease
and treating patients with PRRT requires clinical expertise. This guide gives an overview of the
background of PRRT and the current results in NET patient care.

Abstract: Peptide receptor radionuclide therapy (PRRT) with [177Lu]Lu-[DOTA0,Tyr3]-octreotate
(177Lu-DOTATATE) has become an established second- or third-line treatment option for patients with
somatostatin receptor (SSTR)-positive advanced well-differentiated gastroenteropancreatic (GEP)
neuroendocrine tumors (NETs). Clinical evidence of the efficacy of PRRT in tumor control has been
proven and lower risks of disease progression or death are seen combined with an improved quality
of life. When appropriate patient selection is performed, PRRT is accompanied by limited risks
for renal and hematological toxicities. Treatment of NET patients with PRRT requires dedicated
clinical expertise due to the biological characteristics of PRRT and specific characteristics of NET
patients. This review provides an overview for clinicians dealing with NET on the history, molecular
characteristics, efficacy, toxicity and relevant clinical specifics of PRRT.

Keywords: peptide receptor radionuclide therapy; 177Lu-DOTATATE; guide; neuroendocrine tumors

1. Introduction

Peptide receptor radionuclide therapy (PRRT) with radiolabeled somatostatin analogs
(SSAs) has become an established second- or third-line treatment option for patients with
progressive well-differentiated (grade 1–2) gastroenteropancreatic (GEP) neuroendocrine
tumors (NETs). Due to the increasing incidence and prevalence of GEP-NETs over recent
decades [1] and the development of NET-specific treatments and treatment protocols, there
is a growing utilization of such systemic treatment for this advanced patient group. PRRT
with [177Lu]Lu-[DOTA0,Tyr3]octreotate (177Lu-DOTATATE) is the first registered theranos-
tic application in the field of NETs [2,3]. With this therapy, radiolabeled SSAs target the
somatostatin receptor (SSTR) subtype 2 that is over-expressed on the cancer cell surface [4].
Treatment of NET patients with PRRT requires dedicated clinical expertise due to the
biological characteristics of PRRT (for example, binding to SSTR, DNA damage induction
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capacity and the radioactive component) and specific characteristics of NET patients (such
as origin, grade and SSTR expression). Consequently, eligibility of NET patients for PRRT
should be discussed in an expert multidisciplinary team. This review provides an overview
of the development of PRRT, clinical management of patients undergoing PRRT and key
unmet needs for future investigations.

2. Background of PRRT
2.1. Mechanism of Action

PRRT with 177Lu-DOTATATE uses an intravenously administered beta radiation-
emitting radiopharmaceutical targeting SSTR on tumor cells. SSTRs are G-protein coupled
receptors with five subtypes of which subtype 2 (SSTR2) is the most commonly expressed
in NETs, followed by SSTR1 and SSTR5 [5,6]. Healthy non-diseased organs can also express
SSTR subtypes, as can be seen in the healthy liver, spleen, pituitary, salivary glands, thyroid,
adrenals, kidney, prostate, pancreas, intestine and blood vessels [7–9]. The antitumoral
effect of PRRT is triggered by radiation-induced DNA damage. After binding to the SSTR2,
the radiopharmaceutical agonists are internalized into the tumor cell where the irradiation
induces different types of DNA damage such as DNA single strand breaks (SSBs) and DNA
double strand breaks (DSBs) of which the latter are the major contributors to tumor cell
death induction [10,11] (Figure 1).
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Figure 1. Mechanism of action of PRRT with 177Lu-DOTATATE. Intravenous administration of 177Lu-
DOTATATE leads to tumor cell binding via SSTR2. After internalization of the radiopharmaceutical–
SSTR2 complex, local radiation by beta particles can lead to cell death through the induction of DNA
damage (image created with BioRender.com, accessed on 1 September 2022).

2.2. The Choice for 177Lu-DOTATATE

Clinical development of PRRT commenced with SSAs labeled with indium-111,
yttrium-90 and lutetium-177 [12]. PRRT with 177Lu-DOTATATE is approved by the Food
and Drug Administration (FDA) and European Medicine Agency (EMA) and consists of the
SSA octreotate [13] and 1,4,7,10-tetraazacyclotetradecane-1,4,7,10-tetraacetic acid (DOTA),
which is the chelator for stable binding of lutetium-177 to octreotate [14]. Lutetium-177 is a
medium-energy beta-emitting radionuclide and a low-energy gamma-emitting radionu-
clide. The gamma emission allows imaging and dosimetry where the beta emission is used
for therapeutic purposes. The beta emission of lutetium-177 shows tissue penetration with
a maximum range of 2 mm. Detailed information on chemical structure, production and
quality control of 177Lu-DOTATATE can be found elsewhere [15]. Indium-111 is much less
suitable for therapy compared to lutetium-177, because its auger electrons will not reach
the nucleus and will therefore not be able to induce sufficient DNA damage [16]. Another
important part of the potential therapeutic effect is the choice of SSA. Octreotate shows
a higher affinity to SSTR2 than the earlier developed octreotide. This can explain why
the uptake of 177Lu-DOTATATE in the tumor was increased three to four times in com-
parison to 111In-diethylenetriaminepentaacetic acid (DTPA)-octreotide [17]. Therapeutic
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activity of 111In-DTPA-octreotide, known for its diagnostic use as OctreoScan®, originally
showed promising preliminary results on symptom control in NETs, but radiological tumor
regression was rare and high levels of myelotoxicity were observed [18,19]. Given the
specific characteristics of the different radionuclides, not only is the variance in efficacy
important to take into account when selecting the preferred radionuclide, but also the risk
of toxicity has to be taken into account. Less renal toxicity was seen in patients treated
with 177Lu-DOTATATE compared to patients treated with [90Y]Y-[DOTA0,Tyr3]octreotide
(90Y-DOTATOC). This can be explained by the lower beta-energy and tissue penetration
of lutetium-177. Due to the lack of gamma emission, yttrium-90 is also not suitable for
scintigraphy with a gamma camera [20], however, positron emission tomography (PET)
imaging is possible [21]. 177Lu-DOTATATE can also be used for tumor dosimetry to obtain
more knowledge about the tumor-absorbed dose. An indication of the absorbed dose
can be obtained by dosimetric calculation on the total body scintigraphy. Quantitative
single photon emission computed tomography/computerized tomography (SPECT/CT)
can be more precise in the estimation of the tumor-absorbed dose per cycle. However,
these scans are more time consuming, especially for dosimetry at multiple time points. A
reduction of uptake in the tumor in every subsequent cycle might be an indication of a
good tumor response. On the other hand, there is still a large variety between cycles and
different tumor sides within the patient [22]. A significant dose–response correlation was
found in pancreatic NETs (panNETs) but not in small intestinal NETs (SI-NETs) [23,24]. The
different range of the beta particles from lutetium-177 and yttrium-90 could potentially be
an advantage in patients with tumors of different sizes, for instance in an induction setting,
although further research is needed [25,26].

3. Efficacy of PRRT
3.1. Tumor Control

Clinical evidence of the efficacy of PRRT in tumor control was proven by the phase III
NETTER-1 study and several phase II clinical trials [27–29]. The NETTER-1 clinical trial
compared four cycles of 7.4 GBq (800 mCi total) 177Lu-DOTATATE plus intramuscular long-
acting octreotide 30 mg every 4 weeks to a control group which received octreotide 60 mg
every 4 weeks in grade 1 and 2 midgut NET patients, progressive on a long-acting SSA.
The rate of progression-free survival (PFS) after 20 months was 65% of patients treated with
177Lu-DOTATATE compared to 11% of patients in the control group. The risk of progressive
disease (PD) or death was 79% lower in the 177Lu-DOTATATE group and the objective
response rate (ORR) was significantly higher in the 177Lu-DOTATATE group (18%) than in the
control group (3%). Sixteen percent of the patients treated with 177Lu-DOTATATE showed PD
compared to 56% of the control group [27]. After a follow-up of 76 months in the intention-to-
treat population, the median overall survival (OS) was 48 months in the 177Lu-DOTATATE
group, which did not significantly differ from the median OS of 36 months in the control
group. The similarity in OS between both groups may be explained by the fact that 36%
of the patients in the control group crossed over to the PRRT arm during follow-up [30].
In the largest phase II prospective trial to date, Brabander et al. included patients treated
with PRRT with 177Lu-DOTATATE for GEP-NETs, bronchial NET and NET of unknown
primary origin. A median PFS of 29 months and a median OS of 63 months were observed in
443 patients with bronchial and GEP-NETs who received a cumulative activity of 22.2–29.6 GBq
(600–800 mCi) 177Lu-DOTATATE. An ORR of 39% after PRRT was found, whereas stable
disease (SD) was observed in 43% of the patients [29]. In other phase II trials, retrospective
studies and meta-analyses of PRRT with 177Lu-DOTATATE, similar survival and response
data were found [31–36]. An overview of these results is given in Table 1. Although PRRT
with 177Lu-DOTATATE is the best option for treatment of patients with advanced GEP-NETs
at this moment, complete response rates are still rare (1–2%) [27,29].
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3.2. Symptom Control

PRRT is not only effective in reducing tumor growth, but it can also lead to symp-
tomatic improvement in NET patients, including associated hormonal syndromes [37]. In
the NETTER-1 trial, PRRT with 177Lu-DOTATATE provided a significant benefit in quality
of life (QoL) compared to octreotide LAR. Time to deterioration (TTD) was significantly
longer in the 177Lu-DOTATATE group, with positive outcomes in the domains of global
health, physical functioning, diarrhea, pain, body image, disease-related worries and
fatigue [38]. In a prospective series of 265 GEP- and bronchial NET patients, QoL, perfor-
mance status and symptoms (particularly insomnia, appetite loss and diarrhea) improved
significantly after PRRT [39]. Importantly, QoL in asymptomatic NET patients did not
decline during therapy. In a single center study of 144 patients, a symptomatic response to
PRRT with regard to diarrhea, abdominal pain, flushing and fatigue was observed in 70%,
63%, 64% and 53%, respectively [33]. Results are summarized in Table 1. In patients with a
functioning NET, PRRT has shown to be an effective treatment regarding symptom control
and circulating hormone levels [40,41]. Carcinoid syndrome (CS) is the most prevalent
hormonal NET syndrome and is caused by excretion of hormones and amines such as
serotonin, histamine, catecholamines, prostaglandins and tachykinins. In a study involving
22 patients with refractory CS who received PRRT for symptomatic control, flushing and
bowel movement frequency improved significantly [42]. Two-thirds of the patients who
had at least two episodes of flushing per day had a minimal decrease of 50% of these
episodes. Of patients with bowel movement frequency of at least four times a day, 47%
experienced > 30% decrease, while 29% experienced > 50% decrease [37]. In a systematic
review, symptomatic improvement after PRRT was observed in 74% of patients with diar-
rhea and in 6% of patients with flushing [43]. Together, these results have positioned PRRT
with 177Lu-DOTATATE as a viable option for refractory CS [44]. In addition, case reports
have shown improvement of symptoms and echocardiographic parameters of carcinoid
heart disease after PRRT, which is a severe symptom of CS [45]. Similar positive effects of
PRRT on hormonal levels and symptoms have been observed in patients with functioning
panNET syndromes, such as insulinoma, gastrinoma, glucagonoma and VIPoma [40].

Table 1. Overview of tumor control and symptom control following PRRT as described in key phase
II and III clinical trials.

Patients, n NET Subtype PFS
(Months)

mOS
(Months) ORR SD PD

mTTD QOL
Global Health

(Months)

Overall
Symptom

Improvement

Strosberg et al. [27,30,38] 101 SI-NET 28 48 18% 66% * 16% 29 m
Control group SSA 100 SI-NET 8.5 36 3% 41% 56% 6.1 m

Brabander et al. [29] 443 GEP and
bronchial NET 29 63 39% 43% 12%

Bodei et al. [36] 51 GEP and
bronchial NET 36 68%

at 36 months 55% 27% 18%

Ezziddin et al. [34] 68 GEP-NET 34 53 72% 13% 15%
Sabet et al. [35] 61 SI-NET 44% 48% 8%
Hamiditabar et al. [33] 143 NET of all origins 8% 46% 38% 47%

Khan et al. [39] 265 GEP and
bronchial NET 38–90%

PFS = progression-free survival, mOS = median overall survival, ORR = objective response rate, SD = stable
disease, PD = progressive disease, mTTD QOL = median time to deterioration in quality of life, m = months.
* Estimated percentage based on calculations.

3.3. Prediction of Response to PRRT

There are a variety of NET subtypes with differences in prognosis and response to
PRRT. GEP-NETs show higher PFS (25–30 months) and OS (39–71 months) after PRRT
than non GEP-NETs (12–29 months PFS and 39–53 months OS) [28,29]. Within the group
of GEP-NETs, panNETs and small intestinal NETs are the most prevalent. After PRRT, a
median PFS of 30 months for both groups was observed with a median OS of 71 months
in panNETs and 60 months in midgut NETs [29]. The outcome of PRRT has also been
associated with the extent of tumor burden and in particular the hepatic tumor load [46].
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An extensive tumor burden correlated with an increased rate of PD after PRRT and a signif-
icantly shorter OS [29,46]. Patients of whom the liver had over 50% tumor burden showed
significantly lower OS and PFS in phase II trials [47,48]. Conversely, in the NETTER-1 trial,
total liver tumor burden was found not to correlate with PFS, whereas the presence of at
least one large target lesion of > 3 cm was associated negatively with PFS [49]. Addition-
ally, higher uptake on SSTR imaging correlated significantly with better response rates
after PRRT [50]. Recently, the cumulative activity of 177Lu-DOTATATE was found to be
an independent predictive factor for survival after PRRT. In 130 patients who received a
reduced activity of 177Lu-DOTATATE because of disease-unrelated causes (such as bone
marrow and renal toxicity), PFS, OS and response rates were all lower as compared to
350 control patients who received 800 mCi 177Lu-DOTATATE [51]. The association be-
tween PFS and OS and reduced administered activity of 177Lu-DOTATATE persisted
in multivariable Cox regression analyses in which relevant confounders were included.
18F-FDG PET/CT has limited added value in the assessment for PRRT in well-differentiated
NETs. Although neuroendocrine neoplasm (NEN) patients with positive uptake on
18F-FDG PET/CT had a significantly shorter PFS than patients with a negative scan [52],
this modality is likely more a prognostic than predictive marker [53]. A grading score has
been developed to integrate the results of both 18F-FDG PET/CT and SSA PET imaging
ranging from non-aggressive somatostatin receptor imaging (SRI)-positive, FDG-negative
to aggressive FDG-positive, SRI-negative NETs. This NETPET score was found to be a
significant prognostic marker of OS in patients with GEP-NETs or bronchial NETs, but its
predictive role in PRRT is unknown [54,55].

3.4. Predictive Markers

The biochemical response to treatment in NETs has often been evaluated by serum
chromogranin A (CgA) levels. An increased level is associated with hepatic tumor burden,
rapid tumor progression and a shorter OS [56]. In patients who received PRRT, a decrease
in CgA of >50% was observed in 25–52% of patients [33,36,57]. Patients with a significant
decline in CgA levels after PRRT displayed prolonged PFS and OS [57]. Changes in CgA
levels during PRRT should be interpreted with caution though, as an increase in CgA can
be caused by both tumor progression and cell damage or lysis by PRRT [58]. The PRRT
predictive quotient (PPQ) is a circulating transcript assay that can predict the response
of GEP-NETs and bronchopulmonary NETs. A positive PPQ measured before the start
of PRRT accurately predicted the outcome of disease control after PRRT in 97% of cases,
whereas a negative PPQ was associated with PD after PRRT in 61% of cases at 2 months and
89% at 6–9 months after PRRT [59]. Levels of the NETest, a circulating transcript analysis
of 51 genes, during and after PRRT were found to be associated with response according
to RECIST on imaging [60]. A lack of decrease in NETest levels at the fourth PRRT cycle
signified the advent of PD in advance of imaging, with an overall diagnostic accuracy of
93% to predict response [61].

4. PRRT Protocol

The eligibility of a patient to receive PRRT should be discussed in a multidisciplinary team
in a specialized NET center for each individual patient. Although multiple protocols for PRRT
with 177Lu-DOTATATE have been proposed, the most commonly used treatment schedule
entails four cycles of 7.4 GBq 177Lu-DOTATATE, which is based on the Rotterdam Erasmus
MC protocol and also used in the NETTER-1 study [27,29]. The interval between cycles is
6 to 10 weeks. In case of toxicity, this interval can be extended up to 16 weeks [2,3,27]. In
parallel with the administration of 177Lu-DOTATATE, an amino acid solution of 2.5% arginine
and lysine in 1 L saline is co-infused in order to prevent renal toxicity. This infusion starts
approximately 30–60 min before the administration of 177Lu-DOTATATE with a total infusion
time of 4 h. The potential volume overload of the amino acid infusion in decompensated
carcinoid heart disease patients can generally be managed by a prolonged infusion period
or the administration of loop diuretics [62]. The amino acid infusion can cause nausea for
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which an antiemetic, typically ondansetron or granisetron, should be given prophylactically
before the start of the infusion. 177Lu-DOTATATE allows for post-therapy scintigraphy
with planar imaging or SPECT/CT. At patient discharge, the radiation exposure should be
measured and patients should receive tailored advice on the duration of radiation safety
precautions at home, to avoid a high radiation exposure to other people, particularly children
and pregnant women. Patients with NET-associated hormonal syndromes who have an
indication for continuation of SSA use should adjust the moment of the injections to the
PRRT cycles. Long-acting SSA should not be given within 4–6 weeks before a cycle of PRRT
because of interference with the radiolabeled SSA. Although there is conflicting evidence
from two limited single center studies whether continuation of SSA treatment is beneficial in
non-functioning NETs [63,64], this practice is often adopted. If the patient suffers from severe
hormonal symptoms, short-acting SSA can be used to bridge this period up till 24 h before
PRRT. Radiopharmaceuticals such as 177Lu-DOTATATE need to be administered at specialized
facilities by medical personnel trained in radiation safety. These facilities should adhere to
national and international regulations on the use of radiopharmaceuticals and be licensed by
the regulatory authorities. Depending on local protocol and exposure regulations, PRRT with
177Lu-DOTATATE can be given in an in-patient as well as an out-patient setting. In between
cycles, patients should be reviewed for adverse effects, including full blood count and renal
and liver function. Response evaluation by cross-sectional imaging is usually performed 2–3
and 6 months after the last cycle of PRRT. Long-term follow-up is determined on an individual
basis taking into account the tumor biology and therapeutic response [65]. Pseudo-progression
is a phenomenon that should be considered in the response evaluation when an increase in
tumor size is seen during or short after treatment with PRRT. Pseudo-progression is probably
based on localized, temporarily edema caused by inflammation as a response to PRRT and
does not show the actual tumor response to the therapy [58]. When pseudo-progression is
suspected, functional imaging (for example, PET/CT) can help differentiate between true
progression and pseudo-progression [31].

5. Salvage PRRT

In NET patients who showed tumor response at least 18 months after the first cycle of
177Lu-DOTATATE, re-treatment with PRRT (R-PRRT) with two additional cycles of 7.4 GBq
each after renewed PD has shown antitumoral effects. In a meta-analysis on the effect of
R-PRRT, the pooled median PFS was 14 months with a pooled median OS of 27 months.
Similarly, the pooled ORR was 17% with a disease control rate of 77%. Response rates,
PFS and OS were lower than for initial PRRT [66], nonetheless R-PRRT remains a potential
option for GEP-NET patients when other systemic treatment options are limited. The limited
efficacy of R-PRRT as compared to initial PRRT might be explained by the administration
of lower cumulative activity (i.e., generally half of the initial PRRT dosage) [51], the increase
in tumor bulk at baseline before R-PRRT and potential changes in the tumor biology, such
as a longitudinal increase in Ki-67. In the largest study to date by van der Zwan et al., no
difference in toxicity after R-PRRT as compared with initial PRRT was observed, particularly
no increased occurrence of nephrotoxicity or significant hematological disease [67]. In cases
where R-PRRT has provided additional benefit on tumor response and prolonged PFS, further
re-treatment at the time of progression can be considered [67].

6. Patient Selection

PRRT with 177Lu-DOTATATE is registered for patients with GEP-NETs that are pro-
gressive on SSA treatment. Non-radiolabeled or ‘cold’ long-acting SSAs such as octreotide
LAR and lanreotide are generally considered the first-line systemic treatment option for
advanced and metastatic SSTR-positive GEP-NETs, particularly for tumors with a Ki-67
index below 10% [68]. Among the different second-line options in well-differentiated
panNETs, 177Lu-DOTATATE seems to compare favorably to targeted therapy (everolimus
or sunitinib) or chemotherapy [69]. In the randomized phase II OCLURANDUM trial,
PRRT with 177Lu-DOTATATE was associated with a higher median PFS of 20.7 months
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compared to 11.0 months for sunitinib treatment in patients with advanced, SSTR-positive,
progressive panNET [70]. Currently, the randomized phase III COMPETE trial is comparing
PRRT with 177Lu-edotreotide with everolimus in advanced, progressive GEP-NET patients.
A subset of GEP-NET patients present with extensive tumor bulk or high proliferative rate
(Ki-67 index of 10–55%). In these cases, treatment with octreotide LAR or lanreotide has
questionable antiproliferative effects [71]. Given its ORR of 39%, which increases to 55% in
panNETs [29], 177Lu-DOTATATE can be considered as first-line therapy if response is clini-
cally necessitated [72]. These response rates compare favorably to targeted therapy [73–75]
and for panNETs appear similar to capecitabine–temozolomide chemotherapy [76]. Poorly
differentiated neuroendocrine carcinomas (NECs) and well-differentiated grade 3 NETs
are high-grade NENs that display a more aggressive biological behavior than the more
common grade 1 and 2 NETs [77]. PRRT is currently not considered a standard treatment
option for high-grade NENs [68,78]. The rate of SSTR2 expression in grade 3 NETs ranges
from 67–92% and in NECs from 32–50%, compared to a positive expression rate in grade 1
and 2 NETs ranging from 67–96% [5,79–82]. In a meta-analysis of PRRT comprising four
studies, grade 3 NET patients had a median PFS of 19 months and median OS of 44 months
after PRRT. The median PFS was 11 and 4 months and the median OS was 22 and 9 months
for NEC with a Ki-67 of 21–55% and NEC with a Ki-67 above 55%, respectively [83]. Recent
studies implicated that PRRT could be considered in grade 3 GEP-NETs and GEP-NEC
with a Ki-67 of 21–55%. Importantly, to qualify for PRRT, uptake in all lesions is required
on somatostatin receptor imaging [83].

7. Eligibility Criteria for PRRT

There are several inclusion and exclusion criteria to decide if a patient is eligible for
treatment with PRRT. A key criterion for PRRT is the degree of uptake on SSTR imaging
which is scored by the Krenning score based on planar 111In-DTPA-octereotide imaging.
It was reported that 68Ga-DOTA-SSA PET/CT results in higher Krenning scores than
111In-DTPA-octereotide imaging [84]. The uptake of all tumor lesions should minimally
be equal to the physiological uptake in the liver (Krenning score grade 2) on 111In-DTPA-
octreotide scintigraphy or higher than the physiological uptake in the liver on 68Ga-DOTA-
SSA PET/CT for a patient to be eligible for PRRT. The latter functional imaging is more
accurate for detecting SSTR-positive primary tumors and metastases and therefore su-
perior for assessing the total extent of disease [85–87]. PRRT is only applicable for pa-
tients with a Karnofsky Performance Scale of at least 60 [27]. PRRT is contra-indicated
for patients who are pregnant or breastfeeding, patients with severe cardiac impairment
(NYHA III or IV) and those with a life expectancy less than 3 months [31]. Since PRRT
can induce toxicity, the following pre-treatment laboratory values are required: creatinine
clearance > 40 mL/min, hemoglobin levels ≥ 6 mmol/L, leukocytes > 2 × 109/L, platelet
count > 75 × 109/L, bilirubin, alanine aminotransferase (ALAT) and aspartate aminotrans-
ferase (ASAT) < 3 times the upper limit of normal and albumin > 3 g/dL [2,3].

8. PRRT-Related Toxicity

Adverse events related to PRRT are frequently mild and include nausea, abdominal pain
and asthenia [27,50]. Increased hair loss is observed in up to 60% of patients treated with
177Lu-DOTATATE, but this is temporary and seldom leads to baldness [88]. Besides these
mild adverse events, PRRT can induce more severe toxicities which can be dose-limiting and
adjustments to the treatment schedule might be required [89]. When the toxicity has subsided
within 16 weeks after the last dose, guidelines advise to administer half of the original activity
of 177Lu-DOTATATE during the next cycle. PRRT should be discontinued when the toxicity
persists after 16 weeks or recurs after the half dose [3]. In the NETTER-1 trial, 7% of the
patients received a reduced dose because of dose-limiting toxicities [27]. The kidneys and the
bone marrow are the critical organs for dose-limiting toxicities.
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8.1. Hematological Toxicity

PRRT can induce hematological toxicity through bone marrow radiation. The vast
majority of patients only have mild and reversible hematological toxicity with a nadir at
4–6 weeks after administration of PRRT [27,36,50]. However, grade 3 or 4 neutropenia,
thrombocytopenia or leukopenia have been observed in, respectively, 1%, 2% and 1% of
the patients treated with 177Lu-DOTATATE in the NETTER-1 trial [27]. PRRT-induced
severe lymphopenia is the most common hematological toxicity [27,29], but it has not been
associated with increased susceptibility for infections [90]. Thrombocytopenia is the most
common cause of dose reduction in PRRT, whereas bleeding complications are rare [27].
Caution should be taken in patients with widespread bone metastases (Figure 2A), due
to the risk of persistent cytopenia. In the absence of alternative treatment options, PRRT
should preferably be initiated at half the regular activity (3.7 GBq) 177Lu-DOTATATE in
these patients. Additionally, there is a relevant long-term risk of 2% for the development
of myelodysplastic syndrome (MDS) and 1% for acute myeloid leukemia (AML) after
PRRT [27,29,91]. Little is known about the pathophysiology of persistent hematological
toxicity, but a role for clonal hematopoiesis has been postulated [92]. Known risk factors
for severe hematological toxicity include decreased renal function, pre-existent cytopenias,
extensive tumor mass, age over 70, extensive bone metastases and pre-treatment with
myelotoxic chemotherapy [91,93,94]. Additionally, women are at higher risk for developing
subacute grade ≥ 2 thrombocytopenia than men, which was independent from other risk
factors in a multivariable analysis [89].

8.2. Nephrotoxicity

Due to SSTR expression in the kidneys and the renal excretion of radiolabeled SSAs, the
kidneys receive a high radiation dose during PRRT. Following glomerular filtration, SSAs are re-
absorbed in the proximal tubuli of the renal cortex because of active transport mechanisms [95].
By saturating this re-uptake mechanism through the use of lysine and arginine, re-absorption of
radiolabeled peptides can be significantly reduced. This results in less radiation-induced nephro-
toxicity by a reduction of the absorbed kidney dose up to 40% [96,97]. However, nephrotoxicity
after PRRT still occurs such as tubulointerstitial scarring, atrophy and thrombotic microan-
giopathy [98]. In the NETTER-1 study, grade ≥ 3 renal toxicity was observed in 5% of the
177Lu-DOTATATE group and in 4% of the control group [30]. Bergsma et al. reported an overall
creatinine clearance loss of 3.4% 1 year after PRRT. No subacute grade ≥ 3 renal toxicity was
seen and 1.5% of the patients showed grade 3 renal toxicity in the long term. However, all these
patients had a creatinine clearance of <60 mL/min at baseline [99]. A reduced kidney function
can lead to a delayed renal excretion of 177Lu-DOTATATE and this has also been associated with
a higher risk of hematological toxicity [95]. Risk factors associated with renal toxicity include
age > 60 years, hypertension, diabetes mellitus, pre-existing renal disease, cumulative radiation
dose to the kidneys, previous nephrotoxic chemotherapy, tumor or metastases close to the
kidney and previous PRRT with 90Y-DOTATOC [100]. Post-renal obstruction can be observed in
some GEP-NET patients, particularly in those with retroperitoneal or pelvic metastases, but this
can also be caused by the primary tumor, nephrolithiasis and abdominal or retroperitoneal fi-
brosis [101]. Post-renal obstruction can lead to reduced renal excretion of 177Lu-DOTATATE and
thereby increase the exposure of radiation to the kidneys, risking (permanent) deterioration of
renal function (Figure 2B) [102,103]. In these patients, it is necessary to correct the hydronephro-
sis of a functional kidney before the start of PRRT to lower the risk of radiation-induced toxicity,
for instance with a double J urethral stent or percutaneous nephrostomy [101,104].
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Figure 2. Potential complicated clinical situations for PRRT. (A) 68Ga-DOTATATE PET scan of ex-
tensive bone metastases of SI-NET. R-PRRT with reduced activity of 3.7 GBq 177Lu-DOTATATE
induced hematoxicity. (B) Hydronephrosis (1) due to obstruction by peritoneal tumor deposit
of metastatic panNET (2), leading to accumulation of radioactivity in renal medulla. (C) 68Ga-
DOTATATE PET scan showing extensive liver metastases of panNET before treatment with 3.7 GBq
177Lu-DOTATATE, which was well tolerated by the patient. (D) Bone metastasis of panNET with
epidural extension at Th12 on MRI. Post-PRRT edema can lead to infringement of the spinal cord.
(E) Patient with small bowel NET and metastatic mesenteric mass with desmoplastic reaction, result-
ing in venous congestion, bowel wall thickening and ascites. The patient suffered from intermittent
abdominal pain with temporary aggravation of complaints during PRRT. (F) Contrast enhanced CT
scan of peritoneal metastases of a multifocal NET of a patient who developed a paralytic ileus or
‘frozen abdomen’ after PRRT.
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8.3. Hepatotoxicity

Mild and severe hepatotoxicity has been observed in, respectively, 12% and 0.4–2.5% of
patients after PRRT [28,33]. Based on clinical experience, liver failure after PRRT can occur
in cases of severe (>90%) liver involvement of NET metastases (example of a patient with
severe liver involvement with an enlarged risk of liver failure in Figure 2C). Moreover, there
is a concern about the cumulative hepatotoxicity in patients treated with a combination of
PRRT and radioembolization. In the HEPAR phase I trial, one patient died of liver failure
after treatment with a dose of 80 Gy 166Ho-radioembolization [105]. No liver failure was
observed in 67 patients undergoing 90Y-radioembolization after PRRT [106,107]. Adherence
to eligibility criteria is crucial and in borderline cases a first trial infusion with 3.7 GBq 177Lu-
DOTATATE is advised. There was no relevant hepatotoxicity reported in the NETTER-1
trial [27]. Grade 3 and 4 toxicity of aminotransferases was observed in 3% in the phase II
trial by Brabander et al. Three of these patients had persisting toxicity after 3 months, but
no hepatic failure was observed [29].

9. Hormonal Crisis Due to PRRT

A hormonal crisis can be triggered by PRRT due to excessive release of metabolically
active amines or peptides from the tumor. A PRRT-induced hormonal crisis was observed
in 1% of patients and can occur during the infusion of the radiolabeled SSA up to 48 h after
infusion [108]. Risk factors for a hormonal crisis include CS, elevated 5-hydroxyindoleacetic
acid (5-HIAA) and CgA levels, metastatic disease, high tumor burden, higher age and
histamine release due to medication as β2 agonist bronchodilators. Prophylactic measures
consist of controlling the CS before initiation of PRRT, having a good nutritional status
and reducing the time without non-radiolabeled SSAs. When a hormonal crisis occurs,
symptom control is necessary. The treatment should be hormone-specific and may also
include general measures such as monitoring of vital parameters, saline infusion, correction
of electrolyte disturbances and inpatient observation if needed. SSAs can be restarted
safely 1 h after infusion of 177Lu-DOTATATE and should be considered in severe cases of
SSA-responsive CS, gastrinoma, insulinoma and VIPoma. Post-infusion administration of
corticosteroids can be considered in patients at risk for carcinoid crisis or those presenting
with hormonal crisis [109].

10. Nervous System Location or Compression

GEP-NETs rarely metastasize to the central nervous system, with an incidence of brain
metastases of 1.5–5% in NET patients [110,111]. More frequently, vertebral bone metastases
can compress the spinal cord or its nerve roots (Figure 2D) [112]. PRRT can reduce tumor
volume and metabolic activity of central nervous system metastases, thereby reducing pain
and spinal compression [113]. The radiation-induced damage by PRRT can be accompanied
by temporary edema, leading to increased compression of surrounding vital structures
and potentially (worsening of) neurological symptoms. In cases of brain metastases or
for those patients at risk of spinal cord or nerve compression, prophylactic therapy with
corticosteroids can be considered to prevent or minimize treatment-induced edema. Some
expert centers have used a one-week regimen of 4 mg dexamethasone two times a day.
Caution is required with this treatment since it is possible that the use of corticosteroids
negatively influences the uptake of SSA [114].

11. Mesenteric Fibrosis and Mesenteric or Peritoneal Metastases

Another midgut NET-related complication is the presence of mesenteric fibrosis, which
occurs in up to half of the patients with a small intestinal NET metastatic to the mesenteric
lymph nodes. Mesenteric metastases can induce local fibrosis by the secretion of serotonin
and other mediators, inducing a desmoplastic reaction, which subsequently can lead
to intestinal obstruction and ischemia (Figure 2E) [115,116]. Peritoneal metastases can
lead to adhesions between the abdominal wall and the bowel which can cause intestinal
immobility, bowel obstruction or ‘frozen abdomen’ (Figure 2F) [117]. The proportions
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of patients treated with PRRT who had mesenteric and/or peritoneal metastases ranged
from 6–51% [27,117,118]. In a retrospective study of 132 NET patients with a mesenteric
mass, 177Lu-DOTATATE resulted in an ORR of this mass in only 4% of the patients [119].
In an analysis of NET patients with mesenteric or peritoneal disease, 23% of patients at
high risk for complications experienced at least one episode of bowel obstruction within
three months of PRRT. These patients were treated with corticosteroids, surgery and total
parenteral nutrition [117]. Although a direct causal relationship has not been established,
treating physicians should be aware that PRRT seems to be ineffective in reducing the size
of a mesenteric mass while there may be an increased risk of abdominal complications
in patients with extensive peritoneal disease or desmoplastic changes associated with
mesenteric metastases. A post-infusion trial of corticosteroids can be considered in patients
at high risk of these complications [117].

12. Conclusions and Future Directions

PRRT with 177Lu-DOTATATE is a widely applicable therapy for patients with ad-
vanced and metastatic NETs. It is clear that PRRT contributes to reduction of tumor growth
and stabilization of the disease in a significant proportion of these patients. Next, PRRT
improves QOL and reduces symptoms [27,29]. Despite the successes, it is important that
clinicians treating NET patients are aware of the toxicities (mainly renal and hematological)
associated with PRRT and discuss every patient in a multidisciplinary team where careful
selection, preparation and management of these patients before and during therapy with
this unique radiopharmaceutical can be discussed. Despites its successes, there still is
room for improvement of the efficacy and safety of PRRT. Ongoing research projects are
exploring how to improve the current strategies. A combination therapy with radiosen-
sitizers is a way to increase the effect of PRRT. This can be conducted by the inhibition
of poly ADP-ribose polymerase (PARP)-1 which is essential for the repair of SSBs [120]
or inhibition of heat shock protein 90 (HSP90), a chaperone molecule that plays a role in
cell protection and maintenance [121]. Other radionuclides are being studied for poten-
tial use in PRRT, such as actinium-225, lead-212 and bismuth-213. These alpha-emitting
radionuclides can potentially cause more damage to the tumor cells compared to PRRT
with 177Lu-DOTATATE and thus increase treatment efficacy [122–124]. Altogether, PRRT
with 177Lu-DOTATATE is a very potent treatment modality for patients with progressive
well-differentiated (grade 1–2) GEP-NET and there are many different strategies currently
being explored that can contribute even to better patient care.
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