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In this paper, we investigate the optimal portfolio construction aiming at extracting the most
diversification benefit. We employ the diversification ratio based on the Value-at-Risk as the measure 
of the diversification benefit. With modeling the dependence of risk factors by the multivariate regularly 
variation model, the most diversified portfolio is obtained by optimizing the asymptotic diversification 
ratio. Theoretically, we show that the asymptotic solution is a good approximation to the finite-level 
solution. Our theoretical results are supported by extensive numerical examples. By applying our portfolio 
optimization strategy to real market data, we show that our strategy provides a fast algorithm for 
handling a large portfolio, while outperforming other peer strategies in out-of-sample risk analyses.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In order to mitigate risks in portfolios of financial investment, a common tool is the diversification strategy. Large insurance claims and 
asset returns have been empirically shown to be heavy tailed, i.e. the tail exhibits power-law decay; see, e.g. Loretan and Phillips (1994), 
Gabaix et al. (2003), Ibragimov et al. (2009) and Hofert and Wuthrich (2011). Moreover, dependence is known to widely exist in financial 
assets and insurance losses; see for example Embrechts et al. (2002) and Acharya et al. (2017). The benefit from a diversification strategy 
can be reflected in the reduction of dependent tail risks in a diversified portfolio. Value-at-Risk (VaR) has been widely applied to capture 
market risk as it quantifies the quantile of a loss for a given time horizon. In this paper, we investigate the optimal portfolio construction 
aiming at extracting the most diversification benefit for dependent extreme risks based on the VaR measure.

A key difficulty in evaluating the diversification benefit based on the VaR measure is that there is often no explicit formula for 
calculating the portfolio VaR. Since a portfolio is a linear combination of the underlying risky assets, only if the asset returns follow sum-
stable distributions such as the Gaussian distribution or the stable distributions, one can precisely calculate the distribution of the portfolio 
return, and derive the VaR therefrom. As an alternative, Extreme Value Theory (EVT), in particular, the multivariate regular variation (MRV) 
model, may provide an explicit approximation to the tail of the distribution of portfolio return; see e.g. Mainik and Rüchendorf (2010), 
Mainik and Embrechts (2013) and Zhou (2010). By inverting the approximation formula on the tail of the distribution, one may get an 
approximation for the VaR measure, when the probability level in VaR is considered to be close to 1. Therefore, the EVT approach opens 
a new door for investigating the diversification benefit based on the VaR measure.

Nevertheless, the approximation holds only in the limit when the probability level in VaR tending to 1. The approximation nature 
leaves two difficulties to be handled. Firstly, for heavy-tailed portfolio returns as assumed in the setup of the MRV, when the probability 
level in VaR tends to 1, the VaR converges to infinity. Consequently, the goal of VaR optimization turns to be minimizing “the VaR in 
the limit”, even if the limit is infinity. It is difficult to provide an economic interpretation for such a mathematical exercise. Secondly, the 
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practical goal for risk managers is to minimize VaR at a given probability level, such as 99% (Basel II) or 99.5% (Solvency II), while “the 
VaR in the limit” is not of their concern. And, it is not guaranteed that the optimal portfolio based on minimizing “ the VaR in the limit” 
is also close to the practical goal.

The first difficulty can be overcome by proper normalization. For example, one may compare the portfolio VaR to the VaRs of marginal 
risks. For that purpose, we employ the measure diversification ratio (DR), or sometimes with its alternative name: the risk concentration 
based on VaR; see, for example Degen et al. (2010) and Embrechts et al. (2009). The diversification ratio is defined as follows. Let 
X := (X1, . . . Xd)

T be a nonnegative random vector indicating the losses of d assets. The value of a portfolio is given by w T X , where the 
weights satisfy w = (w1, w2, . . . , wd)

T ∈ �d := {x ∈ [0,1]d : x1 + x2 + . . . + xd = 1
}

. For this portfolio, the diversification ratio (DR) based 
on VaR at level q ∈ (0,1) is defined as

DRw,q = VaRq(w T X)∑d
i=1 wiVaRq(Xi)

. (1.1)

The DR is a measure of diversification benefit in the following sense. Consider the comonotonic case where all assets are completely 
dependent. Then DR is a constant one regardless how the portfolio is allocated. This is a special case in which any diversification strategy 
would not reduce the portfolio risk. Consequently, in a general case, 1 − DRw,q can be regarded as the diversification benefit. In Cui et al. 
(2021), DR is applied to measure the effect of diversification in catastrophe insurance markets.

The first result in this paper is to show that the DR converges to a finite value for any portfolio as q → 1 under the MRV model. More 
specifically, by modeling the joint distribution of the random vector X by MRV, we can derive an explicit formula for

DRw,1 := lim
q↑1

DRw,q

with respect to the weight w and the two key elements characterizing the MRV model: the tail index of the marginals and the spectral 
measure for the tail dependence structure.1

This result overcomes the first difficulty regarding the interpretation: one may target minimizing the DR in the limit, which is at a 
finite level. We show that there exists a unique solution to the optimization problem

w∗ := arg min
w∈�d

DRw,1.

A portfolio that minimizes the DR is consequently extracting the most diversification benefit based on the VaR measure. It is also worth 
noticing that by taking the marginal VaRs in the denominator, the optimal portfolio based on the DR is mainly driven by the dependence 
structure across the risky assets, while is more robust to changes in marginal risks.

However, the second difficulty raised above remains valid after switching to minimizing DRw,1. Is the optimal solution based on 
minimizing DRw,1 close to the practical goal of minimizing DRw,q at a given probability level q? We formalize this question by the 
following notation.

Practically, with introducing the DR, risk managers aim at solving the following optimization problem:

arg min
w∈�d

DRw,q. (1.2)

Denote the solution to (1.2) by wq . Solving (1.2) directly is computationally intensive. With observations on the joint distribution of the 
random vector X , wq can be estimated by conducting a numerical grid search. However, such a searching algorithm suffers from the 
dimensionality curse: the computational burden increases exponentially with respect to the dimension d.

The second main result of this paper is to show how close the solution w∗ is from the solution of the original optimization problem 
wq . First, we show theoretically that

lim
q↑1

wq = w∗. (1.3)

The convergence in (1.3) ensures that one may use the solution to the optimization problem in the limit as an approximation to the 
solution to the original problem with a finite level q close to 1. Further, define the distance between wq and w∗ , measured by 

∥∥wq − w∗∥∥
with respect to an arbitrary norm as Dq . In other words, given a finite level of q close to 1, the solution wq is within an area defined as 
a Dq radius circle around w∗ . For a special case of MRV, the Farlie-Gumbel-Morgenstern (FGM) copula, we explicitly determine Dq .

Empirically, with observations on the joint distribution of the random vector X , one can estimate the two main components for the 
MRV: the marginal tail index and the spectral measure. By plugging in the estimates of these two elements, the solution w∗ can be 
estimated using conventional convex optimization method. We show the consistency of the estimator. Notice that the computational 
burden is much lower than the aforementioned numerical approach for solving wq .

We use a few numerical examples to support our theoretical results and also apply our method to empirical data. We find that portfolio 
constructed using our approach possesses the lowest DR and also suffers low losses in out-of-sample periods, compared to other portfolio 
optimization strategies.

Our proposed portfolio optimization strategy is comparable to other strategies based on tail risk. Mainik and Rüchendorf (2010), 
proposed to minimize the so-called extreme risk index (ERI),

1 As pointed out by Mainik and Embrechts (2013), under the MRV structure, when the tail index is great than 1, DRw,1 < 1. In other words, the VaR measure possesses 
subadditivity as q → 1. Hence, diversification is always optimal in this situation and the optimization problem (1.2) is well defined.
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.

ERI = arg min
w

lim
q↑1

VaRq(w T X)

VaRq(||X ||1) ,

which essentially is minimizing the portfolio VaR. This strategy is more sensitive to marginal tail risks and consequently load high on 
marginals with a low VaR. On the contrary, minimizing DR in (1.1) scales off the effect of marginals and focuses more on the dependence 
structure.

Another closely related strategy is the so called most diversified portfolio (MDP)

MDP = arg min
w

var(w T X)∑d
i=1 wivar(Xi)

,

proposed by Choueifaty and Coignard (2008). The MDP method shares the same structure with our approach: it considers the ratio 
between portfolio risk and the sum of individual risks measured by variances. Since variance is a measure of overall risk rather than 
focusing on the tail region, the MDP method may fail to capture the extreme risks.

One possible drawback of our portfolio optimization strategy (1.2) is that it only minimizes the risk without taking into account the 
upper side potential: portfolio returns. Given that the limit of DR is a convex function, it is in fact straightforward to consider the return 
components simultaneously. For example, consider the “safety-first” criterion proposed by Roy (1952), which aims at first constraining 
the downside risk to a given level and then maximizing the profit. This is equivalent to minimizing risk with a linear constraint on the 
returns. Comparing this optimization problem with the aforementioned unconstrained convex minimization problem, taking the return 
into consideration is just to impose an additional linear constraint. It is straightforward to verify that our current results remain valid for 
the constrained optimization problem. To avoid complicating the discussion, in this paper we opt to focusing on the optimization of DR 
without considering the return side.

The paper is organized as follows. In Section 2, we provide our main results on the convergence of optimal portfolios. Section 3
discusses the convergence rate of the optimal portfolio. In Section 4, we demonstrate the empirical performance of our strategy based on 
three numerical examples. Section 5 provides the application of our strategy to real market data. Section 6 concludes the paper and some 
of the proofs are relegated to Appendix A.

2. Convergence of optimal portfolios

2.1. Preliminaries

2.1.1. The multivariate regular variation model
A nonnegative random vector X is said to be multivariate regularly varying (MRV), if there exists a sequence bt → ∞ and a Radon 

measure ν on B
(

[0,∞]d \ {0}
)

such that ν
(

[0,∞]d \Rd+
)

= 0, and

νt = t Pr

(
X

bt
∈ ·
)

v−→ ν(·), t → ∞, (2.1)

where v−→ refers to the vague convergence. We additionally assume that the limit measure ν is nondegenerate in the sense that

ν
({

x ∈Rd+ : xi > 1
})

> 0,

for all i = 1, 2, . . . , d. For a full account of technical details related to the notion of MRV, the reader is referred to Resnick (2007) and Kulik 
and Soulier (2020).

For any arbitrary norm ‖·‖, let Sd−1+ = {s ∈Rd+ : ‖s‖ = 1
}

be the unit sphere. Under the polar transformation, it is equivalent to say 
that X is MRV if there exists a sequence bt → ∞, a positive constant c and a probability measure � on Sd−1+ such that for all x > 0,

νt = t Pr

(
‖X‖ > bt x,

X
‖X‖ ∈ ·

)
v−→ c · ρα((x,∞]) × �, t → ∞,

where the measure ρα((x, ∞]) = x−α and the vague convergence holds on (0, ∞) × Sd−1+ . The measure � is often called the spectral or 
angular measure. Throughout the paper, we denote that X is MRV with tail index α and spectral measure � by X ∈ MRVα(�). See Section 
6.5 of Resnick (2007), Section 2.2 of Kulik and Soulier (2020) and Soulier (2022) for more details on the spectral decomposition of MRV.

Theoretically, it does not matter which norm is chosen for the polar representation. For simplicity, in this paper we consider the 
�1-norm ‖·‖1. Then Sd−1+ = �d . Further, by constraining the measures νt and ν to the set A1 := {x ∈Rd+ : ‖x‖1 > 1

}
, the constant c is 

normalized to 1. With a proper choice of bt = F ←
R (1 − 1/t) and R = ||X ||1, the vague convergence in (2.1) implies the weak convergence 

on B (A1), as

νt(·) = P
(
t−1 X ∈ ·)

P (‖X‖1 > t)
w−→ ν(·)|A1 , t → ∞, (2.2)

where ν|A1 is the restriction of ν to the set A1. Note that νt in (2.1) can also be rewritten as a conditional probability P
(
t−1 X ∈ · | ‖X‖1 > t

)
On the one hand, MRV is a semi-parametric model by only assuming a limit relation in the tail region, which allows for a flexible 

dependence structure across several heavy-tailed random variables. For example, the multivariate student’s t-distributions, multivariate 
α-stable distributions, elliptical distributions with a regularly varying radial component, Archimedean copulas with regularly varying 
generator and marginals, among others. On the other hand, the nondegenerate MRV model requires all the marginal distributions are of 
the same level of heavy tailedness. This restriction challenges the application of the model in practice.
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2.1.2. Convergence of minimizers
In this subsection, we give a general result on the convergence of minimizers. This is the foundation to prove the main result in this 

paper. Throughout the paper, for a function g : S →R, we denote M(g) the set of all the minimizers of g . That is,

M(g) =
{

x ∈ S : g(x) = inf
y∈Z

g (y)

}
.

A minimizer of g is denoted by mg ∈ M(g).
The following result may be known in the literature but we cannot find a proper reference for it. For completeness, we include the 

proof here.

Lemma 2.1. Suppose that { fn} is a sequence of lower semi-continuous functions from a compact metric space S to R= [−∞, ∞], and fn converges 
uniformly to a function f . If, in addition, assume that f has a unique minimum point in Z , then

lim
n→∞m fn = arg min f . (2.3)

Proof. On the compact metric space S , we have that the sequence { fn} is equi-coercive and gamma-converges to f under the conditions 
of Lemma 2.1. The sequence { fn} is said to be equi-coercive if for any a ∈ R, there exists a compact set Ka of S such that the subsets 
{ fn ≤ a} ⊆ Ka for all n. The sequence { fn} is said to gamma-converge to f with respect to the topology of S if f + = f − , where

f +(x) = sup
U∈N(x)

lim sup
n→∞

inf
y∈U

fn(y)

and

f −(x) = sup
U∈N(x)

lim inf
n→∞ inf

y∈U
fn(y)

with N(x) being the set of all open neighborhoods of x in S . Then by Corollary 7.24 in Dal Maso (2012), the relation (2.3) holds. �
2.2. Main results

The first result regards the weak convergence of DRw,q as q ↑ 1, which is a direct consequence of known results in the literature.

Proposition 2.1. Suppose the nonnegative random vector X ∈ MRVα(�) with α > 0. Then for any w ∈ �d, we have

lim
q↑1

DRw,q = DRw,1,

where

DRw,1 = η
1/α
w∑d

i=1 wiη
1/α
ei

with ηw = ∫
�d (w T s)α�(ds) and ei = (0, ..., 1, ..., 0)T only the ith component being 1 for i = 1, .., d.

Proof. Note that

DRw,q = VaRq(w T X)/VaRq(‖X‖1)∑d
i=1 wiVaRq(Xi)/VaRq(‖X‖1)

. (2.4)

For X ∈ MRVα(�) with α > 0, it follows that

lim
q↑1

VaRq(uT X)

VaRq(‖X‖1)
= η

1/α
u , u ∈ �d, (2.5)

which can be found in e.g. Mainik and Rüchendorf (2010), Mainik and Embrechts (2013) and Zhou (2010). The proposition can be proved 
by letting u = w and u = ei in (2.5). �

In the following theorem, we develop the uniform convergence of DRw,q , which is essential for proving the convergence of minimizers. 
It is also an interesting result on its own. The proof is relegated to Appendix A.

Theorem 2.1. Suppose the nonnegative random vector X has a positive joint density function. Further assume that X ∈ MRVα(�) with α > 0. Then

lim
q↑1

sup
w∈�d

∣∣DRw,q − DRw,1
∣∣= 0. (2.6)

The main result of this section, in the following theorem, shows that the convergence of a sequence of optimal solutions of DRw,q to 
the unique minimizer of DRw,1.
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Theorem 2.2. Suppose the nonnegative random vector X has a positive joint density function. Further assume that X ∈ MRVα(�) with α > 1, and 
� 
({

x : aT x = 0
})= 0 for any a ∈Rd. Then w∗ = arg min DRw,1 exists and is unique. Moreover,

lim
q↑1

wq = w∗, (2.7)

where wq is a solution of minw∈�d DRw,q.

Proof. The existence w∗ is due to the continuity of DRw,1 and the compactness of �d . To show the uniqueness, first note that the 
minimization problem minw∈�d DRw,1 is equivalent to

min
w

η
1/α
w

s.t.
∑d

i=1 wiη
1/α
ei

= 1 with wi ≥ 0 for i = 1,2, . . . ,d.
(2.8)

Since the set of constraints in (2.8) is nonempty, closed and bounded, it is compact. By Theorem 2.4 of Mainik and Embrechts (2013), 
η

1/α
w is strictly convex when α > 1 and � 

({
x : aT x = 0

})= 0 for any a ∈Rd . Suppose w1 and w2 are two different minimal points of the 
optimization problem. Let w = (w1 + w2)/2. From the strictly convexity of the object function and compactness of the set of constraints, 
it follows that η1/α

w < η
1/α
w1 = η

1/α
w2 , which yields a contradiction. Thus, w∗ is unique.

Now we prove (2.7). In the proof of Theorem A.2, we showed that VaRq(w T X) is continuous with respect to w ∈ �d for q large. 
Then there exists q∗ > 0 such that DRw,q is continuous with respect to w ∈ �d for every q∗ < q < 1. The desired result follows from 
Theorem 2.1, the uniqueness of w∗ and Lemma 2.1. �
Remark 2.1. Assuming a positive joint density function for the random vector X is to ensure the distribution is strictly increasing, which 
is a technical condition needed in the proof.

A related problem to our setting is the utility maximization problem. By Berge’s Maximum Theorem, its maximizers are continuous on 
the parameters. However, this theorem is not applicable to our problem as it requires that DRw,q is continuous on w and q jointly. In 
fact, under the current conditions (see Theorem 2.2), the continuity of DRw,q on w and q separately does not lead to the continuity of 
DRw,q on w and q simultaneously. Hence, in the proof of Theorem 2.2, we need to rely on Lemma 2.1 to show the uniform convergence 
of DRw,q to DRw,1 when q is close to 1 as in Theorem 2.1.

2.3. Beyond the main theorem

In our main result, Theorem 2.2, some restrictions are imposed on the index α and spectral measure � to make sure that the opti-
mization problem is well defined. In fact, they are not necessary conditions. In the following through several special cases, we show that 
the conditions can be relaxed.

The condition � 
({

x : aT x = 0
})= 0 for any a ∈ Rd means that the spectral measure � does not concentrate on any linear subspace. 

It ensures the uniqueness of the solution w∗ of the limiting problem DRw,1. But it excludes the special cases such as independent or 
comonotonic structure of X . If X has independent structure with regularly varying marginals, then it is not hard to show that

DRw,1 =
d∑

k=1

wα
k .

By Jensen’s inequality, DRw,1 is minimized when wk = 1/d for k = 1, 2, ..., d, which is unique. Therefore, Theorem 2.2 holds for the 
independent case. If X is comonotonic, then DRw,q = 1 for any w or q. There is no optimization problem to consider.

If we restrict ourselves to elliptical distributions, then Theorem 2.2 holds for any α ∈R, without any restriction on �, or even without 
the MRV assumption. In the rest of the section, we focus on this special case.

A random vector X in Rd is elliptically distributed if it satisfies

X
d= μ + Y BU , (2.9)

where μ ∈Rd , B ∈Rd×d , U = (U1, ..., Ud)
T is uniformly distributed on the Euclidean sphere Sd

2, and Y is a nonnegative random variable 
that is independent of U . The matrix C := B B T is called ellipticity matrix of X . To avoid degenerate cases, we assume throughout the 
following that C is positive definite.

It is well known that if X is elliptically distributed, then X ∈ MRVα(�) if and only if Y ∈ RV−α ; for example, see Hult and Lindskog 
(2002). By Theorem 6.8 of McNeil et al. (2015), the subadditivity property of VaR always holds for 0.5 ≤ q < 1. It then follows that DRw,q ≤
1, which means that diversification is always optimal for 0.5 ≤ q < 1 no matter what distribution Y follows and thus the optimization 
problem is well defined. In the general MRV case, to have DRw,q ≤ 1 is ensured by restricting α > 1. In another word, if X is elliptically 
distributed and Y ∈ RV−α , then Theorem 2.2 holds without any restriction on α.

Actually, elliptical distributions lead to the explicit expressions of DRw,q and DRw,1. This enables us to further relax the assumption 
of MRV. As long as Y is unbounded, we are able to directly show the convergence of (2.7) without the assumption that Y is regularly 
varying. A direct calculation yields that

VaRq

(
w T X

)
= w T μ +

∥∥∥BT w
∥∥∥

2
F ←

Z (q) , (2.10)

where Z
d= Y U1. The diversification ratio for elliptical distributions can then be obtained as
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DRw,q = w T μ + ∥∥BT w
∥∥

2 F ←
Z (q)

w T μ +∑d
i=1 wi

∥∥BT ei
∥∥

2 F ←
Z (q)

. (2.11)

If the random variable Y is unbounded, then by F ←
Z (q) → ∞ as q ↑ 1, we obtain

lim
q↑1

DRw,q =
∥∥BT w

∥∥
2∑d

i=1 wi
∥∥BT ei

∥∥
2

:= DRw,1. (2.12)

In the following lemma, we first show that the convergence in (2.12) is indeed uniform, whose proof is postponed to the last section.

Lemma 2.2. For elliptically distributed X and w ∈ �d, if ‖μ‖1 < ∞, the induced norm ‖B‖2 = sup
x�=0

‖Bx‖2‖x‖2
< ∞ and random variable Y is unbounded, 

then the convergence in (2.12) is uniform for w ∈ �d. Moreover, the mapping w → DRw,1 is continuous.

Now we are ready to show that Theorem 2.2 holds in the most general setting of elliptical distributions by dropping the MRV assump-
tion.

Theorem 2.3. Under the conditions of Lemma 2.2, we have

lim
q↑1

arg min
w∈�d

VaRq(w T X)∑d
i=1 wiVaRq(Xi)

= arg min
w∈�d

∥∥BT w
∥∥

2∑d
i=1 wi

∥∥BT ei
∥∥

2

. (2.13)

Proof. By Lemmas 2.1 and 2.2, we only need to show that the solutions of the minimization problems on both sides of (2.13) exist and 
are unique. To achieve it, first note that the minimization problem

min
w∈�d

VaRq(w T X)∑d
i=1 wiVaRq(Xi)

is equivalent to a convex optimization problem

min
w

w T μ + ∥∥BT w
∥∥

2 F ←
Z (q)

s.t. w T μ +∑d
i=1 wi

∥∥BT ei
∥∥

2 F ←
Z (q) = 1 with wi ≥ 0 for i = 1,2, . . . ,d.

(2.14)

Similarly, the minimization problem

min
w∈�d

∥∥BT w
∥∥

2∑d
i=1 wi

∥∥BT ei
∥∥

2

is equivalent to

min
w

∥∥BT w
∥∥

2

s.t.
∑d

i=1 wi
∥∥BT ei

∥∥
2 = 1 with wi ≥ 0 for i = 1,2, . . . ,d.

(2.15)

Denote the constraint sets in (2.14) and (2.15) by C1 and C2. It is obvious that C1 and C2 are nonempty, closed, convex and bounded. 
Hence, they are compact by the Heine-Borel theorem. By the triangle inequality and positive homogeneity of ‖·‖2, the objective functions 
in (2.14) and (2.15) are convex over Rd , and they are continuous over the constraint sets C1 and C2; see Rochafellar (2015). By the 
compactness of the constraint set and continuity of the objective functions, the solutions to (2.14) and (2.15) exist due to the Weierstrass 
extreme value theorem.

Next, we show the uniqueness of the solution to (2.15). Due to the convexity, we have for any λ ∈ (0, 1),∥∥∥BT (λw1 + (1 − λ) w2)

∥∥∥
2
≤ λ

∥∥∥BT w1

∥∥∥
2
+ (1 − λ)

∥∥∥BT w2

∥∥∥
2
. (2.16)

The equality in (2.16) holds only when w1 = kw2 for k ∈R+ and w1, w2 nonzero. If both w1 and w2 belong to the constraint set C1 or 
C2, then k can only be 1. This means for any w1 �= w2, the strictly inequality in (2.16) holds. Therefore, the objective function in (2.15) is 
strictly convex. The uniqueness of the solution then follows from the similarly arguments in the proof of Theorem 2.2. �
3. The rate of convergence to the optimal portfolio: an example

In this section, we discuss how w∗ approximates wq by determining the convergence rate of (2.7) under some special dependence 
structure, such as the FGM copula.

The FGM copula was originally introduced by Morgenstern (1956) and investigated by Gumbel (1960) and Farlie (1960). The FGM 
copula is defined as

C(u, v) = uv(1 + θ(1 − u)(1 − v)), (u, v) ∈ [0,1]2, (3.1)
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where θ ∈ [−1, 1] is a dependence parameter. This model has been generalized in various ways, for example, from two dimensions to 
higher dimensions or with more general form of (1 − u)(1 − v) in (3.1); see Cambanis (1977), Fischer and Klein (2007), among others. 
Here we focus on a high dimensional generalized FGM copula proposed by Cambanis (1977), which is defined as

C(u1, . . . , un) =
n∏

k=1

uk

⎛⎝1 +
∑

1≤i< j≤n

aij(1 − ui)(1 − u j)

⎞⎠ , (u1, . . . , un) ∈ [0,1]n. (3.2)

The constants ai, j , 1 ≤ i < j ≤ n, are so chosen that C(u1, . . . , un) is a proper copula. A necessary and sufficient condition on ai, j ’s is that 
they satisfy a set of 2n inequalities

1 +
∑

1≤i< j≤n

εiε jai j ≥ 0 for all (ε1, . . . , εn) ∈ {−1,1}n.

A FGM copula defined as in (3.2) is asymptotically independent.
We intend to consider the random vector X following FGM copula with identical regularly varying marginals. For that purpose we 

need a second-order convergence in Proposition 2.1. This further requires the second-order expansion of tail probabilities of the weighted 
sum

F w T X (t) = Pr
(

w T X > t
)

,

where F w T X = 1 − F w T X is the distribution function of w T X . In the next subsection, we present this result.

3.1. Tail expansion for the weighted sum

Assume that the random vector X has a common marginal distribution function G = 1 − G . Further, assume G to be second-order 
regularly varying (2RV), denoted by G ∈ 2RV−α,ρ . That is, there exist some ρ ≤ 0 and a measurable function A(·), which does not change 
sign eventually and converges to 0, such that, for all x > 0,

lim
t→∞

G(tx)/G(t) − x−α

A(t)
= x−α xρ − 1

ρ
=: H−α,ρ(x). (3.3)

When ρ = 0, H−α,ρ(x) is understood as x−α log x.
To better understand the condition of 2RV, a simple example of G ∈ 2RV−α,ρ is G(x) = Ax−α(1 + Bxρ), where A > 0 and B ∈ R. The 

smaller ρ means G(x) behaves more like a power function Ax−α and hence the faster convergence rate in the asymptotic theory. This also 
explains the faster convergence rate of the optimal portfolio in Theorem 3.1 for smaller ρ .

For simplicity, here we only consider the case α > 1 which implies that X has a finite mean. The results for 0 < α ≤ 1 can be obtained 
in a similar way. The proof of the next lemma is collected in the appendix.

Lemma 3.1. Let X be a nonnegative random vector with identically distributed marginal with common distribution function G satisfying that G ∈
2RV−α,ρ with α > 1, ρ ≤ 0 and auxiliary function A(·). Assume that X follows an n-dimensional generalized FGM copula given by (3.2). Then as 
t → ∞, we have that

F w T X (t)

G(t)
−

d∑
k=1

wα
k =

⎧⎨⎩ αt−1μ∗
G(1 + o(1)), ρ < −1,

(1 + Q a)
∑d

k=1 H−α,ρ

(
w−1

k

)
A(t)(1 + o(1)), ρ ≥ −1,

(3.4)

where H−α,ρ(·) is given in (3.3), Q a =∑1≤i< j≤n aij , μG = ∫∞
0 xdF (x), μG2 = ∫∞

0 xdF 2(x), and

μ∗
G = (1 + Q a)μG

∑
k �=l

wα
k wl

+
∑
i< j

ai, j

⎛⎝ ∑
k,l=i, j

⎛⎝∑
l �=k

μG2 wα
k wl − μG wk

∑
m �=i, j

wα
m − 2μG wα

k wl − μG wα
k wl

⎞⎠⎞⎠
−
∑
i< j

ai, j

∑
k �=i, j

∑
l �=k,i, j

μG wα
k wl.

Further, the convergence in (3.4) is uniform for all w ∈ �d.

3.2. Convergence rate

We first show a general lemma regarding the convergence rate of minimizers under the setup of Lemma 2.1. Define the distance 
between fn and f as Dn = || fn − f ||∞ , where || · ||∞ is the supremum norm. The distance between m fn and arg min f is defined as 
||m fn − arg min f ||� for a norm || · ||� on the space Z . Since Z is a metric space, all the norms on Z are equivalent in the sense that there 
exist constants c1 and c2 such that
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c1||x||� ≤ ||x||� ≤ c2||x||�, x ∈ Z ,

for any two norms || · ||� and || · ||� on Z . In case no confusion arises, the norm index ∞ or � is dropped in the rest of the paper.

Lemma 3.2. Under the assumptions of Lemma 2.1, we have for n large

||m fn − arg min f || < C
√

Dn,

where Dn = || fn − f ||∞ and C is a constant.

Lemma 2.1 shows that m fn , the minimizer of function fn , can be approximated by the minimizer of the limiting function f , which is 
usually much easier to calculate. The result in Lemma 3.2 further explores how good the approximation is. In practice, if we can determine 
Dn , which is related to the second-order expansion of fn , then the error of the approximation can be determined.

Now we are ready to determine the convergence rate of the optimal portfolio under the FGM copula.

Theorem 3.1. Under the conditions of Lemma 3.1, we have that as q ↑ 1,

(1 − q)(−1∨ρ)/α
∥∥∥wq − d−1

∥∥∥= O (1),

where wq is a solution of minw∈�d DRw,q, and d−1 = (1/d, ..., 1/d)T .

Proof. In this proof, all the limits are taken as q ↑ 1. We first derive the second-order expansion of DRw,q . Similar to the proof of Theorem 
4.6 in Mao and Yang (2015), we have that

U

(
1

F w T X (F ←
w T X

(q))

)
= G←(q) + o(A(G←(q))),

where U (·) is the tail quantile function of G defined as U (·) = (1/G)←(·) = G←(1 − 1/·). For simplicity, denote t = F ←
w T X

(q). It is easy to 
see that t → ∞ as q ↑ 1. Then noting that U (1/G(t)) = t + o(A(t)) and by the uniform convergence of (3.3), it follows that

DRw,q = F ←
w T X

(q)

G←(q)
= U (1/G(t))

U (1/F w T X (t))
+ o(A(t))

=
(

F w T X (t)

G(t)

)1/α

+ H1/α,ρ/α

(
F w T X (t)

G(t)

)
α−2 A(U (1/F w T X (t)))(1 + o(1))

=

⎧⎪⎨⎪⎩
(∑d

k=1 wα
k

)1/α
(

1 + μ∗
G

(∑d
k=1 wα

k

)−1/α−1
(G←(q))−1 (1 + o(1))

)
, ρ < −1,(∑d

k=1 wα
k

)1/α
(1 + τα A(G←(q))(1 + o(1))) , ρ > −1.

(3.5)

where

τα =
(1 + Q a)

∑d
k=1 H−α,ρ

(
w−1

k

)
α
∑d

k=1 wα
k

+
(∑d

k=1 wα
k

)ρ/α

ρα
.

This gives the second-order expansion of DRw,q .
Immediately from (3.5), the limiting function is

lim
q↑1

DRw,q =
(

d∑
k=1

wα
k

)1/α

= DRw,1.

By Jensen’s inequality, DRw,1 is uniquely minimized at d−1 = (1/d, ..., 1/d)T . If ρ < −1, then

DRw,q −
(

d∑
k=1

wα
k

)1/α

= μ∗
G

(
d∑

k=1

wα
k

)−1

(G←(q))−1 (1 + o(1)).

By Lemma 3.1, the above convergence is uniform. Hence, we have that for some constant C > 0∣∣∣∣∣∣DRw,q −
(

d∑
k=1

wα
k

)1/α
∣∣∣∣∣∣< C (G←(q))−1 .

By Lemma 3.2, we get that

(1 − q)−1/α
∥∥∥wq − d−1

∥∥∥= O (1).
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Similarly, if ρ > −1, then

DRw,q −
(

d∑
k=1

wα
k

)1/α

=
(

d∑
k=1

wα
k

)1/α

τα A(G←(q))(1 + o(1)).

Since for any w ∈ �d

τα ≤ (1 + Q a)ρd(α−1)2/α + dρ(1−α)/α

ρα
,

we obtain that for some constant C > 0∣∣∣∣∣∣DRw,q −
(

d∑
k=1

wα
k

)1/α
∣∣∣∣∣∣< C A(G←(q)).

By Lemma 3.2 we get that

(1 − q)ρ/α
∥∥∥wq − d−1

∥∥∥= O (1).

This completes the proof. �
4. Numerical examples

In this section, we conduct three numerical examples to examine our theoretical results. The first two examples are elliptical distribu-
tions involving 2- and 3-dimensional Student’s t-distributions, while the third one is a non-elliptical distribution.

Consider X follows a bivariate Student’s t-distribution2 tα(μ, �), where μ = (1, 2)T and the scale matrix � is 
(

1 r
r 1

)
. Then both 

marginals follow Student’s t-distribution with the degree of freedom α but with different shifts 1 and 2.
We construct portfolios as a linear combination of the two risk factors from X defined above. As discussed in Section 2.3, both DRw,q

and DRw,1 can be explicitly expressed for elliptical distributions as in (2.11) and (2.12), which are used in this example. In Fig. 1, we plot 
the diversification ratio of such portfolios for various values of q against the weight w1. For the parameters, we choose α and r at α = 2, 4
and r = 0.3, 0.7, and plot the results for different pairs of (α, r) in the four subfigures in Fig. 1. The level of q is set to 0.95, 0.99, 0.999
and 0.9999. For each q level, we indicate the optimal portfolio weight on w1 by a vertical line, which is given at the lowest point of the 
convex diversification ratio curve. Notice that due to the different shifts, the optimal portfolio at a finite q level tends to load higher on 
the first dimension with a lower mean. However, as q → 1, the difference in the mean plays no role in the limit of the diversification 
ratio. Therefore, due to symmetry, the optimal portfolio for q = 1 load equal weights on the two dimensions. We indicate this optimal 
solution for the limit diversification ratio by a thick vertical line located at 0.5.

First, we observe that wq converges to w1 as q ↑ 1. This verifies our theoretical result as established in Theorem 2.2. Second, the 
absolute difference between wq and w1 remains at a low level across all subfigures. For example, when focusing on approximating the 
optimal portfolio based on diversification ratio at q = 0.99 level, if one takes the optimal weight for the limit diversification ratio 0.5
as an approximation, then she makes an error for loading 2% less on the first dimension. Third, given the level of dependence (r), the 
heavier the marginal tails reflected in a lower α, the faster the convergence rate. This is in line with Theorem 3.1’s finding: α plays a 
role in the speed of convergence, the higher the α, the slower the speed of convergence. Lastly, when fixing the level of heavy-tailedness 
(α), the more dependence reflected in a higher r, the slower the convergence rate in the limit relation wq → w1. Nevertheless, the slow 
convergence is not of a concern in practice. With a strong dependence in the first place, the room for diversification benefit is limited. 
As a result, the diversification ratio is in general at a high level and is less sensitive to the variation of the weights. Therefore, with a 
strong dependence, although the solution in the limit (0.5, 0.5)T might not be close to the optimal solution at a finite q, investing in the 
portfolio (0.5, 0.5)T would not result in a large increase in diversification ratio at a finite q level, compared to the actual optimal portfolio.

We now proceed to a 3-dimensional example with the portfolio constructed as a linear combination of the three risk factors from X

following a 3-dimensional Student’s t-distribution tα(μ, �), where μ = (1, 2, 3)T and the scale matrix � is 

⎛⎝ 1 r r
r 1 r
r r 1

⎞⎠. We choose the 

same parameters as above, that is α = 2, 4 and r = 0.3, 0.7. Fig. 2 shows the contour plots of DR of such portfolios for various values of 
q and weights w1 and w2. More specifically, in the uppermost graph of Fig. 2a, the circles represent the contours of DRw,q having the 
same value as DRw0.95,0.95. The location of w0.95 is marked by the “cross” sign and w1 = (1/3, 1/3, 1/3)T is marked by the “star” sign in 
the graph. The values of DRw0.95,0.95 and DRw1,0.95 are reported in the legend. In the remaining graphs of Fig. 2a, the contours are plotted 
at DRw0.99,0.99, DRw0.999,0.999 and DRw0.9999,0.9999, respectively. The shaded bar on the right of Fig. 2a shows the values of DR represented 
by different shades. Similar conclusions can be obtained for the 3-d example. Comparing with the 2-d example, the convergence speed of 
the 3-d case is not significantly slower.

Next, we study a different numerical example based on a non-elliptical distribution. We construct the example using linear combi-
nations of heavy-tailed random variables. Let Y1 and Y2 be two i.i.d. random variables with regularly varying tails. A random vector 
X = (X1, X2)

T is then defined as

2 The left tail of a Student’s t-distribution does not play a role in our analysis. It can be understood as a truncated Student’s t-distribution with a mass point at 0.
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Fig. 1. Optimal portfolio based on 2-d elliptical distribution risk factors. The portfolios are constructed as a linear combination of two risk factors from a bivariate Student’s 
t-distribution tα(μ, �) with μ = (1, 2)T and � is 

(
1 r
r 1

)
. The DRw,q of such portfolios for various values of q against the weight w1 are plotted for different pairs of (α, r)

with α = 2, 4 and r = 0.3, 0.7 in the four subfigures. The levels of q are set to 0.95, 0.99, 0.999 and 0.9999. For each q level, the optimal portfolio weight on w1 is indicated 
by a vertical line of different style. The optimal solution for DRw,1 is indicated by a thick vertical line.

X = AY , A :=
(

1 0
r

√
1 − r2

)
, (4.1)

where r ∈ (−1, 1). Such random vector follows a non-elliptical distribution. In the case that the variance of Y1 and Y2 exists, r is the 
correlation coefficient between X1 and X2 Under this structure, the diversification ratio DRw,1 can be explicitly calculated. Following 
Mainik and Embrechts (2013), we have that

ηw

ηe1

= (w1 + w2r)α +
(

w2

√
1 − r2

)α
,

and

ηw

ηe2

=
(w1 + w2r)α +

(
w2

√
1 − r2

)α
rα + √

1 − r2α .

Hence,
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Fig. 2. Optimal portfolio based on 3-d elliptical distribution risk factors. The portfolios are constructed as a linear combination of three risk factors from a 3-dimensional 

Student’s t-distribution tα(μ, �) with μ = (1, 2, 3)T and � is 
⎛⎝1 r r

r 1 r
r r 1

⎞⎠. Contours of DR at DRwq ,q of q = 0.95, 0.99, 0.999 and 0.9999 are plotted for different pairs of 

(α, r) with α = 2, 4 and r = 0.3, 0.7 in the four subfigures. The location of wq is marked by the “cross” sign and w1 is marked by the “star” sign. The values of DRwq ,q and 
DRw1,q are reported in the legend. The shaded bar on the right of each subfigure shows the values of DR represented by different shades.

DRw,1 =

⎛⎜⎜⎝w1

(
(w1 + w2r)α +

(
w2

√
1 − r2

)α)− 1
α + w2

⎛⎜⎝ (w1 + w2r)α +
(

w2
√

1 − r2
)α

rα + √
1 − r2α

⎞⎟⎠
− 1

α

⎞⎟⎟⎠
−1

.

We use this formula to determine DRw,1. Since the expression for DRw,q is less explicit, its calculation is based on simulations.
Consider a special case where Y1 and Y2 follow a standard Student’s t-distribution with degree of freedom α > 1. By choosing α = 2, 4

and r = 0.3, 0.7, in Fig. 3 we plot the calculated diversification ratios DRw,q against the loading on X1, w1 for various values of q: 0.95, 
0.99, 0.999 and 0.9999. The optimal weight for each q level is again marked by a corresponding vertical line, with thick vertical line 
indicating the optimal weight for the limit case q = 1.

All four observations in the elliptical case remain qualitatively valid for the non-elliptical case. Quantitatively, the distance between the 
optimal solutions for finite q and the limit case can be far apart. For example, in the worst case scenario when the lower tail index meets 
the stronger dependence (right bottom subfigure), the distance between the optimal weight for q = 0.99 and that for q = 1 is around 0.25. 
In this case, the optimal portfolio in the limit is not a good approximation for that based on a finite q. To summarize, we recommend 
using the optimal portfolio based on the limit diversification ratio particularly for the case with low cross-sectional dependence and heavy 
marginal tails.

5. Empirical study

In the numerical examples, the limit diversification ratio DRw,1 can be calculated explicitly. With real data application, we need to 
estimate this function using historical data, and then consider the optimal portfolio based on the estimated diversification ratio. Next, 
we first discuss the estimation methodology for DRw,1. Then we apply our estimation method and the optimal portfolio construction 
procedure to real market data.

5.1. Estimation of the diversification ratio

When the DR optimization strategy with MRV structure is applied in practice, the estimations of MRV structure and DRw,1 are required. 
In this subsection, we propose an estimation procedure and show the consistency of the estimators. Our estimation method is also 
consistent with that of Mainik and Rüchendorf (2010).

Assume X ∈ MRVα(�) with α > 1. Let X1, . . . Xn be an i.i.d. sample of X . By Theorem 2.1, we propose the following estimation 
procedure.
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Fig. 3. Optimal portfolio from non-elliptical distribution risk factors. The portfolios are constructed as a linear combination of two risk factors from a vector X defined in (4.1)
with Y1 and Y2 following a standard Student’s t-distribution with degree of freedom α > 1. The DRw,q of such portfolios for various values of q against the weight w1 are 
plotted for different pairs of (α, r) with α = 2, 4 and r = 0.3, 0.7 in the four subfigures. The levels of q are set to 0.95, 0.99, 0.999 and 0.9999. For each q level, the optimal 
portfolio weight on w1 is indicated by a vertical line of different style. The optimal solution for DRw,1 is indicated by a thick vertical line.

1. Estimate the tail index α by an estimator α̂.
2. Estimate the spectral measure � by an estimator �̂.
3. Estimate ηw by

η̂w =
∫
�d

(w T s)α̂�̂(ds).

4. Estimate DRw,1 by

D̂Rw,1 = η̂
1/α
w∑d

i=1 wi η̂
1/α
ei

.

With the estimated diversification ratio, we can obtain an optimal portfolio by minimizing D̂Rw,1. Denote the optimal portfolio weights 
following this procedure as ŵ∗ .

More specifically, in the first two steps, we use standard estimators for α and � as follows. Let (R, S) and (Ri, Si) denote the polar 
coordinates of X and X i with respect to || · ||1. That is,
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(R, S) =
(

||X ||1, X

||X ||1
)

. (5.1)

Assume in this section that the distribution function of R is continuous. Choose an intermediate sequence k such that

k (n) → ∞,
k (n)

n
→ 0.

We use the observations corresponding to the top k order statistics of R1, . . . , Rn for estimating α and �. Denote the k upper order 
statistics of R1, . . . , Rn by R(1) ≥ . . . ≥ R(k) . The tail index α is estimated by some usual estimator as a function of these order statistics:

α̂ = α̂
(

R(1), . . . , R(k)

)
.

When α > 0, many estimators can be applied here such as Hill estimator (Hill (1975)), Pickands estimator (Pickands (1975)), the maximum 
likelihood estimator (e.g. Smith (1987)), and the moment estimator (Dekkers et al. (1989)). Improvements of the aforementioned standard 
estimators have been proposed to be better applied in practice, for example bias-reduced Hill estimator (e.g. Peng (1998) and Caeiro et al. 
(2005)), estimation for tail index with covariates (e.g. Wang and Tsai (2009) and Daouia et al. (2013)), estimation of tail index for non-iid 
samples (e.g. Drees (2000) and Einmahl et al. (2016)), among others. They all possess consistency and asymptotic normality.

Next, let π (1) , . . . , π (k) denote the indices corresponding to R(1), . . . , R(k) in the original sequence R1, . . . , Rn . These indices are used 
to identify each “angle” Sπ( j) corresponding to R( j) . The spectral measure � is estimated by the empirical measure of the angular parts 
Sπ(1), . . . , Sπ(k) ,

�̂ = 1

k

k∑
j=1

δSπ( j) , (5.2)

where δπ( j) (·) is the Dirac measure. See Chapter 9 of Resnick (2007) for more details. Other estimation methods of the spectral measure, 
especially for the bivariate case, can be found in e.g. Einmahl et al. (2001), and Chapter 9 of Beirlant et al. (2004), Chapter 7 of De Haan 
and Ferreira (2007), and Einmahl and Segers (2009), and Eastoe et al. (2014).

Lemma 5.1. Let X1, . . . , Xn be an i.i.d. sample of X ∈ MRVα(�) with α > 1. Assume that the distribution function F R of R in (5.1) is continuous. If 
the estimator ̂α is consistent almost surely, then the estimator D̂Rw,1 is consistent uniformly in w ∈ �d, i.e.,

sup
w∈�d

∣∣D̂Rw,1 − DRw,1
∣∣→ 0, a.s. (5.3)

Combining Theorem 2.1 and Lemma 5.1, we obtain the consistency in the optimal portfolio weights in the following theorem.

Theorem 5.1. Under the conditions of Theorem 5.1 and � 
({

x : aT x = 0
})= 0 for any a ∈Rd, the estimator ŵ∗ and the estimated value D̂Rw∗,1 are 

consistent almost surely, i.e.,

ŵ∗ → w∗, a.s.; D̂Rw∗,1 → DRw∗,1, a.s.

Here we only established consistency. Under some additional conditions, further asymptotic properties for the estimator of DRw,1 can 
be established in a straightforward way. For example, Theorem 4.5 of Mainik and Rüchendorf (2010) shows that, under some additional 
conditions, for any w ∈ �d , 

√
k (η̂w − ηw ) converges to a multivariate Gaussian distribution G w . Then by the functional delta method (e.g. 

Theorem 20.8 in Van der Vaart (2000)), it is easy to show that 
√

k
(
D̂Rw,1 − DRw,1

)
converges to a Gaussian distribution as well. However, 

to establish the convergence in an uniform way is difficult and may be left for future research. Without a uniform asymptotic property on 
D̂Rw,1 we cannot further investigate the asymptotic property of the optimal portfolio weights.

5.2. Real data analysis

The dataset consists of underlying stocks in the S&P 500 index that have a full trading history throughout the period from January 2, 
2002 to December 31, 2015. This results in 425 stocks. We construct the continuously compounded loss returns of these stocks. That is, if 
the price of asset i at time t is denoted by Pi(t), then the log loss at time t for asset i, denoted by Xi(t) is given by

Xi(t) = − log

(
Pi(t)

Pi(t − 1)

)
.

We conduct three empirical studies. Firstly, we demonstrate the difference between the optimal portfolio constructed based on min-
imizing a diversification ratio at a finite q level and that based on minimizing the limit diversification ratio. Secondly, we show that 
our proposed methodology has the advantage of bearing less computational burden. Lastly, we evaluate the out-of-sample performance 
between our portfolio optimization procedure and those existing in the literature.

The first empirical study is set up as follows. To avoid dimensional curse in the numerical search strategy (see below), we select 10 
stocks from the dataset that share a similar level of tail index. Notice that having the same marginal tail index is a necessary condition 
for MRV. We estimate the tail indices of the 425 stocks using the Hill estimator (Hill (1975)) as

α̂ = k∑k log
(

R /R
) .
n=1 (n) (k+1)
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Table 1
Tail index estimates for the 10 selected stocks.

Stock C FRT HST LM L RF TMK VTR VNO XEL

α̂ 1.989 2.000 2.002 2.007 2.012 2.014 2.019 2.036 2.036 2.040
std 0.168 0.169 0.169 0.170 0.170 0.170 0.171 0.172 0.172 0.172

Note: The table shows the tail index estimates for 10 selected stocks within the S&P 500 index based 
on their daily returns in the period from January 2, 2002 to December 31, 2015. The tail indices are 
estimated using the Hill estimator (Hill (1975)). The second row reports the standard deviations of the 
estimates.

Fig. 4. The impact of k on estimating the tail index α and the diversification ratio �. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

We select 10 stocks with the lowest estimates that are not significantly different from each other. Here, to test whether the 10 stocks 
have significantly different tail indices, we employ the test constructed in Moore et al. (2013) for testing tail index equivalence. In other 
words, we select 10 stocks with the lowest estimates while not being rejected by this test. The reason for selecting stocks with lower α
follows from the numerical example: the approximation works better when α is lower. The selected stocks are given in Table 1, where 
the estimate of α and its standard deviation (std) for each stock are provided. From Table 1, we observe that the point estimates of the 
tail index range from 1.989 to 2.040.

Our empirical analysis is based on daily data in each five-year window, namely, 2002–2006, 2003–2007, etc. Within each window, for 
a given q level, we first construct the optimal portfolio that minimizes DRw,q by a numerical search. This is achieved by assigning weights 
to the 10 stocks on a grid spanning the set �10, evaluating DRw,q at each grid point and taking the weights that corresponds to the 
minimum diversification ratio. Then we construct the optimal portfolio based on minimizing the estimated DRw ,1 using the procedure 
laid out in Section 5.1.

The numerical search strategy gives a numerical optimal while our portfolio optimization strategy gives an approximation to that. To 
evaluate the difference between the two optimal portfolios, we use ||wq − w∗||1/10. This distance indicates the average error made on 
the weight for one stock. We conduct this analysis for nine different windows and four different levels of q: 0.95, 0.975, 0.99 and 0.999.

In the estimation procedure, we need to select the intermediate sequence k. It should be chosen by balancing the bias and variance 
of the estimation. In Fig. 4a the tail index estimated by the Hill estimator for each of the selected 10 stocks is plotted against various k. 
When k = 4%, the estimations of the tail indices are the closest to each other. Hence, we choose k to be 4% for estimating α. In Fig. 4b, 
by having α being estimated at 4%, the values of DRw,1 are plotted against various k at which the spectral measure � is estimated. We 
choose k to be 10% for estimating the spectral measure �̂. Moreover, since we only consider the loss, the estimator for ηw is slightly 
modified to

η̂w = 1

k

∑(
w T Sπ( j)

)α̂
.

Table 2 shows the results on the error made using our optimization procedure. We observe that the distance is decreasing as q
increases. This is in line with our theoretical result.

Next, we turn to analyzing the computation time for obtaining the optimal portfolio. For this analysis, we use only data in the most 
recent six windows and only consider q = 0.95. To show that the computational burden for the numerical search strategy largely depends 
on the number of stocks, we also perform the numerical search when using fewer stocks, namely the first 3, 5, and 8 stocks in Table 1. 
In contrast, we perform our portfolio optimization strategy always based on 10 stocks. The computation time of all the experiments run 
in Matlab 2013a on a Thinkpad T430 (dual core, 2.6 GHz CPU, 4 GB of memory) computer is reported in Table 3. We observe that as the 
number of stocks increasing, the computation time for w95% increases significantly. On the contrary, our portfolio optimization strategy 
for 10 stocks takes even less time than that using the numerical search for 3 stocks.
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Table 2
Average error made on the weight for each stock.

q 02-06 03-07 04-08 05-09 06-10 07-11 08-12 09-13 10-14

95% 0.1348 0.1091 0.125 0.0673 0.0868 0.0967 0.1447 0.1426 0.0941
97.50% 0.0838 0.0978 0.0967 0.0638 0.0795 0.0663 0.0985 0.0668 0.0802
99% 0.0837 0.0861 0.0858 0.0573 0.0636 0.0476 0.0834 0.0642 0.0731
99.9% 0.0442 0.0582 0.0688 0.0444 0.0397 0.0435 0.0435 0.0538 0.044

Note: Within in each five-year window, for a given q level, two portfolios are constructed. The numerical 
search strategy provides the first optimal portfolio that minimizes DRw,q . This is achieved by assigning 
weights to the 10 stocks on a grid spanning the set �10 , evaluating DRw,q at each grid point and taking 
the weights that corresponds to the minimum diversification ratio. The second optimal portfolio mini-
mizes the estimated DRw,1 using the procedure laid out in Section 5.1. The numbers reported are the 
distance calculated by ||wq − w∗||1/10 between the two portfolios.

Table 3
Computation time.

Strategy 05-09 06-10 07-11 08-12 09-13 10-14

Numerical search 3 Stocks 0.350 s 0.310 s 0.261 s 0.249 s 0.231 s 0.235 s
Numerical search 5 Stocks 0.483 s 0.402 s 0.417 s 0.391 s 0.570 s 0.612 s
Numerical search 8 Stocks 1.226 s 1.265 s 1.594 s 0.861 s 1.463 s 1.397 s
Numerical search 10 Stocks 2.418 s 2.799 s 3.673 s 2.022 s 2.016 s 2.383 s
Minimizing DRw,1 10 Stocks 0.218 s 0.189 s 0.164 s 0.175 s 0.304 s 0.166 s

Note: Within each five-year window, the numerical search strategy is performed for minimizing the 
DR with q = 0.95 based on 3, 5, 8 and 10 stocks. The computation time is reported in the first four 
rows. The last row reports the computation time when performing the portfolio optimization strategy 
minimizing DRw,1 based on 10 stocks.

Fig. 5. Out-of-sample diversification ratio. Within each five-year window, the optimal portfolio based on the 10 selected stocks in Table 1 is constructed by minimizing 
DRw,1. These weights are held for one year. The diversification ratio at 95% is reported using the one-year out-of-sample data and named as DR(Limit) in the figure. The 
same procedures are repeated for five other strategies, the numerical search strategy for minimizing DRw,95% (DR(NS)), global minimum variance (GMV; see, e.g. Merton 
(1972)), the MDP, the ERI, and equal weight strategy (Equal).

Finally, we perform an out-of-sample analysis comparing our portfolio optimization strategy with those in the literature. Within each 
five-year window, we perform our strategy to construct the optimal portfolio based on the 10 selected stocks in Table 1. Then we hold 
this portfolio for one year, and calculate the diversification ratio at 95% and the 95% VaR using the one-year out-of-sample data. We focus 
on q = 95% here because one-year loss data (roughly 250 daily observations) do not permit an accurate estimation of tail risk measures 
with a higher probability level. With a similar setup, we also apply the numerical search strategy laid out in the first empirical study 
which minimizes the DRw,95% within each five-year window, and evaluates the out-of-sample performance of this strategy. In addition, 
we apply four other strategies as competitors for out-of-sample performance, namely, the ERI, the MDP, global minimum variance (see, 
e.g. Merton (1972)), and lastly a simple equal weight strategy.

Fig. 5 shows the results on the out-of-sample diversification ratios. Our strategy produces consistently the lowest diversification ratio 
only except in 2009, where our strategy yields a diversification ratio slightly above that derived from the MDP, and in 2010 slightly higher 
than that derived from the numerical research strategy. This shows that our strategy is stable to achieve the tail diversification benefit in 
the out-of-sample experiments.

Fig. 6 shows the results on the out-of-sample VaR. Our portfolio optimization strategy produces the lowest VaR in 2007 and 2008, but 
not in the other years. Nevertheless, the VaR of the optimal portfolio from our strategy is never largely above ERI, which minimizes VaR 
among the six strategies. Furthermore, it matters the most to get an optimal portfolio with the lowest risk in the period ahead of the 
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Fig. 6. Comparison of portfolio risks. Within each five-year window, the optimal portfolio based on the 10 selected stocks in Table 1 is constructed by minimizing DRw,1. 
These weights are held for one year. The 95% VaR is reported using the one-year out-of-sample data and named as DR(Limit) in the figure. The same procedures are repeated 
for five other strategies, the numerical search strategy for minimizing DRw,95% (DR(NS)), global minimum variance (GMV; see, e.g. Merton (1972)), the MDP, the ERI, and 
equal weight strategy (Equal).

crisis. Therefore, we conclude that our strategy also achieves good out-of-sample performance in terms of low portfolio risk, especially 
during the crisis period.

From all three empirical studies, we conclude that the computation burden of our portfolio optimization strategy is much lower than 
the numerical search. Although there is a moderate discrepancy between the optimal portfolios obtained from our limit DR optimization 
strategy and the numerical search strategy, it turns out in the out-of-sample analysis that our strategy outperforms. It is therefore worth 
bearing the errors on the weights while using the faster and better performed algorithm derived from our limit DR optimization strategy.

6. Conclusion

This paper aims at constructing optimal portfolios by extracting the most diversification benefit, measured by the DR measure based 
on the VaR. Practically, risk manager is interested in an optimal portfolio weights wq = arg min

w∈�d
DRw,q . Recognizing it was computationally 

intensive to solve this problem directly, we proposed to approximate the optimal portfolio by seeking w∗ = arg min
w∈�d

DRw,1. When the 

underlying loss vector X followed MRV, we theoretically shown that limq↑1 wq = w∗ , in which the convergence ensures that one may 
use w∗ as an approximation to wq with a finite level q close to 1. Moreover, for a special case of MRV, the FGM copula, we explicitly 
determined the distance between wq and w∗ . Numerically, through 2-d and 3-d Student’s t-distributions, we examined the theoretical 
results that wq indeed converges to w∗ as q getting close to 1. Using observed stock data, we empirically examined the out-of-sample 
performance of our optimal portfolio and compared it with other portfolio optimization strategies such as optimizing ERI, MDP, global 
minimum variance and equal weight strategies. Our DR strategy has much lower computation burden than the numerical search and 
it outperforms other strategies during the crisis period by producing the lowest loss. Possible future work includes adding the profit 
component to the DR strategy, which only takes the downside risk into consideration in the current form.
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Appendix A

In this section, we first prove Theorem 2.1, which is the key and the most difficult part in the proof of Theorem 2.2, in two steps as 
Sections A.1 and A.2. Then the very last section contains all the proofs of lemmas from previous sections.
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A.1. Uniform convergence in Radon measures

Define a family of mappings from A1 = {x ∈Rd+ : ‖x‖1 > 1
}

to R+ as

M =
{

f w(x) = 1

1 + w T x
: w ∈ �d , x ∈ A1

}
. (A.1)

Note that the construction of the mappings in M is not unique. Let A w,1 denote the events where the portfolio loss w T X exceeds 1, 
namely for w ∈ �d ,

Aw,1 =
{

x ∈Rd+ : w T x > 1,
}

.

Theorem A.1. If X ∈ MRVα(�) with α > 0, then

lim
t→∞ sup

w∈�d

∣∣νt
(

Aw,1
)− ν

(
Aw,1

)∣∣= 0, (A.2)

where νt and ν are defined in (2.2).

Proof. Since Aw,1 ∈ B (A1), by (2.2) we have that νt
(

Aw,1
)

converges weakly to ν
(

Aw,1
)
. To further show the uniform convergence, 

we apply Theorem 3.4 of Rao (1962). That is we need to verify the following three conditions. (1) The mappings in M defined in (A.1)
are continuous mappings from a separable metric space to R+ . (2) The family M is relative compact; that is every sequence in M on 
a compact subset of A1 has a subsequence that converges uniformly. (3) v f −1

w has a continuous marginal distribution for each f w ∈ M , 
where v f −1

w is a measure on B(R+) such that v f −1
w (E) = v 

(
f −1

w (E)
)

for any E ∈ B(R+). Next, we prove them separately.

(1) By Theorem 1.5 of Lindskog (2004), there exists a metric ρ such that (A1, ρ) is a locally compact, complete and separable metric 
space. It is easy to see that each f w ∈ M is continuous.

(2) Note that for x, y ∈ A1, we have w T x, w T y>0. Then, by Cauchy-Schwarz inequality,

| f w(x) − f w(y)| =
∣∣∣∣ w T (x − y)

(1 + w T x)(1 + w T y)

∣∣∣∣≤ √
d ‖x − y‖2 .

For arbitrary ε > 0, we can choose δ < ε/
√

d, which is independent of f , x and y, such that when ‖x − y‖2 < δ, we have 
| f w (x) − f w (y)| < ε. This shows that M is equicontinuous at each x ∈ A1. Moreover, M is uniformly bounded as for each x ∈ A1,

sup
f w ∈M

{ f w(x)} = sup
w∈�d

{
1

1 + w T x

}
<

1

2
.

Therefore, from the Arzelà-Ascoli theorem, we know M is relatively compact.
(3) From (2), f w < 1

2 for any f w ∈ M . Then for any 0 < y < 1/2, we have

v f −1
w ((0, y)) =

∫
�d

∫
R+

1{
r w T s> 1

y −1
}ρα(dr)�(ds)

=
(

1

y
− 1

)−α ∫
�d

(
w T s

)α
�(ds),

which is obviously continuous for any 0 < y < 1/2. Furthermore, by definition we have ν(A1) = 1.
So far, we have verified the three conditions. By the weak convergence in (2.2) and Theorem 3.4 of Rao (1962), we obtain

lim
t→∞ sup

w∈�d

∣∣νt
(

Aw,1
)− ν

(
Aw,1

)∣∣= 0,

where the supremum is taken over all sets Aw,1 of the form Aw,1 = {x ∈Rd+ : f w (x) < 1
2

}= {x ∈Rd+ : w T x > 1
}

with w ∈ �d . �
Next corollary is a natural rewriting of relation (A.2). It yields a uniform convergence of the ratio Pr

(
w T X > t

)
/ Pr (‖X‖1 > t) to ηw . 

However, only the weak convergence of it is known in the literature.

Corollary A.1.

lim
t→∞ sup

w∈�d

∣∣∣∣∣Pr
(

w T X > t
)

Pr (‖X‖1 > t)
− ηw

∣∣∣∣∣= 0, (A.3)

where

ηw =
∫
�d

(w T s)α�(ds).

Further, the mapping w �→ ηw : �d → (0, 1) is uniform continuous.
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Proof. First note that Aw,t = t Aw,1. Since Aw,1 ⊂ B (A1) for w ∈ �d , we have that

νt
(

Aw,1
)= Pr

( X
t ∈ Aw,1

)
Pr (‖X‖1 >t)

= Pr
(

X ∈ Aw,t
)

Pr (‖X‖1 >t)
.

Moreover ν
(

Aw,1
)

is actually

ν
(

Aw,1
)= ∫

�d

(w T s)α�(ds) = ηw .

The desired result (A.3) then follows. Lastly, since ηw is continuous on the compact set �d , it implies the uniform continuity of ηw on 
�d . �
A.2. Uniform convergence in quantiles

In order to show that the convergence in (2.5) is indeed uniform, we first prepare a key lemma. For notational simplicity, we denote

l(w,q) := VaRq(w T X)

VaRq(‖X‖1)
= F ←

w T X
(q)

F ←‖X‖1
(q)

, (A.4)

where F w T X is the distribution function of w T X and F ←
w T X

(q) = VaRq(w T X).

Lemma A.1. Suppose the nonnegative random vector X is continuously distributed with a positive joint density function. Further assume that X ∈
MRVα(�) with α > 0. Given w ∈ �d, for any ε > 0 there exist 0 < q̃ < 1 and δ such that for all q̃ < q < 1 and z ∈ �d satisfying ‖w − z‖ < δ, we 
have

|l(w,q) − l(z,q)| < ε. (A.5)

Proof. We start by showing that for any ε1 > 0, there exist t0(ε1) and δ(ε1) such that for all t > t0 and all w, z ∈ �d with ‖w − z‖ < δ, 
we have∣∣F w T X (t) − F zT X (t)

∣∣< ε1 F w T X (t). (A.6)

Note that ηw > 0 for every w ∈ �d . Since �d is compact, there exists η > 0 such that ηw > η > 0. Further, ηw is uniform continuous on 
�d by Corollary A.1. That is, for any ε1 > 0, there exists δ(ε1) such that for all w, z ∈ �d with ‖w − z‖ < δ, we have

|ηw − ηz| <
η

6
ε1. (A.7)

Again, by Corollary A.1, there exists t0(ε1) such that for all t > t0 and all w ∈ �d∣∣∣∣∣ F w T X (t)

F ‖X‖1(t)
− ηw

∣∣∣∣∣< η

6
ε1 ∧ η

2
, (A.8)

which implies that

F w T X (t)

F ‖X‖1(t)
> ηw − η

2
>

η

2
. (A.9)

Then, combining (A.7), (A.8) and (A.9), for all t > t0 and all w, z ∈ �d with ‖w − z‖ < δ,∣∣∣∣∣ F w T X (t) − F zT X (t)

F w T X (t)

∣∣∣∣∣=
∣∣∣∣∣ F w T X (t) − F zT X (t)

F ‖X‖1(t)

∣∣∣∣∣ · F ‖X‖1(t)

F w T X (t)

≤
(∣∣∣∣∣ F w T X (t)

F ‖X‖1(t)
− ηw

∣∣∣∣∣+ |ηw − ηz| +
∣∣∣∣∣ηz − F zT X (t)

F ‖X‖1(t)

∣∣∣∣∣
)

· F ‖X‖1(t)

F w T X (t)

<

(
η

6
ε1 + η

6
ε1 + η

6
ε1

)
2

η
= ε1,

which yields (A.6).
Next, for the chosen t0(ε1), denote q0 = supz∈�d F zT X (t0(ε1)). Then for any q0 < q < 1 and all z ∈ �d ,

F ←
zT X (q) ≥ F ←

zT X (q0) ≥ t0. (A.10)

By (A.6) and (A.10), it leads to that for all q > q0 and ‖w−z‖ < δ,∣∣F w T X (F ←
T (q)) − (1 − q)

∣∣< ε1(1 − q).
z X
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By the monotonicity of F ←
w T X

(q), we obtain

F ←
w T X (q(1 + ε1) − ε1) < F ←

zT X (q) < F ←
w T X (q(1 − ε1) + ε1) . (A.11)

Finally we handle |l(w,q) − l(z,q)| in (A.5). We only discuss the upper bound of l(w, q) − l(z, q) in this step as the lower bound can 
be derived in a similar way. By (A.11),

l(w,q) − l(z,q)

≤ F ←
w T X

(q)

F ←‖X‖1
(q)

− F ←
w T X

(q(1 + ε1) − ε1)

F ←‖X‖1
(q)

=
(

F ←
w T X

(q)

F ←‖X‖1
(q)

− F ←
w T X

(q(1 + ε1) − ε1)

F ←‖X‖1
(q(1 + ε1) − ε1)

)
+ F ←

w T X
(q(1 + ε1) − ε1)

F ←‖X‖1
(q(1 + ε1) − ε1)

(
1 − F ←‖X‖1

(q(1 + ε1) − ε1)

F ←‖X‖1
(q)

)
:=I1 + I2,

where

I1 = l(w,q) − l(w,q(1 + ε1) − ε1),

and

I2 = l(w,q(1 + ε1) − ε1)

(
1 − F ←‖X‖1

(q(1 + ε1) − ε1)

F ←‖X‖1
(q)

)
.

We show that I1 < ε/2 and I2 < ε/2.
For I1, note the random vector X is continuously distributed with a positive joint density function. By using the change of variables, 

the density functions for random variables ‖X‖1 and w T X can be shown to be positive as well, which implies that F‖X‖1 (t) and F w T X (t)
are strictly increasing in t . By Proposition 1 (7) in Embrechts and Hofert (2013), we have that F ←‖X‖1

(q) and F ←
w T X

(q) are both continuous 

in q for any fixed w . Moreover, from (2.5), l(w, 1) can be continuously defined as η1/α
w . Thus, given w , l(w, q) is uniformly continuous in 

q when q ∈ [1/2, 1]. That is, there exists λ1(w, ε) such that when 1/2 ≤ p, q ≤ 1 and |p − q| < λ1, we have

|l(w,q) − l(w, p)| < ε

2
.

Then, for |q − (q(1 + ε1) − ε1)| < λ1 or q > 1 − λ1/ε1, we obtain that I1 < ε/2.
For I2, we first show that l(w, q(1 + ε1) − ε1) is bounded. Since limq→1 l(w, q) = l(w, 1), there exists λ2(w) such that when 1 −

(q(1 + ε1) − ε1) < λ2 or 1 > q > 1 − λ2/(1 + ε1), we have

|l(w,q(1 + ε1) − ε1) − l(w,1)| < 1.

Denote M0 = supw∈�d l(w, 1). We obtain

l(w,q(1 + ε1) − ε1) < M0 + 1, for q > 1 − λ2/(1 + ε1). (A.12)

Finally, we consider 1 − F ←‖X‖1
(q(1+ε1)−ε1)

F ←‖X‖1
(q)

in term I2. It is known that if X ∈ MRVα(�) then ‖X‖1 ∈ RV−α ; e.g. see Basrak et al. (2002). 
Thus,

lim
q→1

F ←‖X‖1
(q(1 + ε1) − ε1)

F ←‖X‖1
(q)

= (1 + ε1)
1/α.

By Proposition B.1.10 of De Haan and Ferreira (2007), there exists q3(ε) < 1 such that for all q > q3(ε) we have∣∣∣∣∣ F ←‖X‖1
(q(1 + ε1) − ε1)

F ←‖X‖1
(q)

− (1 + ε1)
1/α

∣∣∣∣∣< 1

M0 + 1

ε

4
.

Moreover, when ε1 is so chosen that∣∣1 − (1 + ε1)
1/α
∣∣< 1

M0 + 1

ε

4
, (A.13)

it leads to that∣∣∣∣∣ F ←‖X‖1
(q(1 + ε1) − ε1)

F ←‖X‖1
(q)

− 1

∣∣∣∣∣< ε

2 (M0 + 1)
, for q > q3(ε). (A.14)

Combining (A.12) and (A.14), I2 < ε/2 for q > 1 − λ2/(1 + ε1) ∨ q3(ε).
To sum up, given w , for arbitrary ε > 0, and for any ε1 so chosen that (A.13) holds, there exist δ, q0, λ1, λ2, and q3 such that for all 

z ∈ �d with ‖w−z‖ < δ and for all q satisfying that
320



H. Cui, K.S. Tan, F. Yang et al. Insurance: Mathematics and Economics 106 (2022) 302–325
1 > q > q0 ∨
(

1 − λ1

ε1

)
∨
(

1 − λ2

1 + ε1

)
∨ q3,

we have l(w, q) − l(z, q) < ε. The other side of the inequality can be derived similarly. �
Now we are ready to show that the convergence in (2.5) is uniform.

Theorem A.2. Suppose the nonnegative random vector X is continuously distributed with a positive joint density function. Further assume that 
X ∈ MRV−α(�) with α > 0. Then

lim
q↑1

sup
w∈�d

∣∣∣∣VaRq(w T X)

VaRq(‖X‖1)
− η

1/α
w

∣∣∣∣= 0. (A.15)

Proof. Consider the decomposition for some v ∈ �d∣∣∣l(w,q) − η
1/α
w

∣∣∣≤ |l(w,q) − l (v,q)| +
∣∣∣l(v,q) − η

1/α
v

∣∣∣+ ∣∣∣η1/α
v − η

1/α
w

∣∣∣ , (A.16)

where l(w, q) is defined as in (A.4). By properly choosing v , if the three terms can be shown to be arbitrarily small for any w ∈ �d as q
close to 1, then (A.15) is proved. In the following we show how v can be determined.

By Lemma A.1 and the uniform continuity of ηw on �d , for any ε > 0, there exist δ(w) > 0 and 0 < q̃(w) < 1 such that for any 
w, z ∈ �d satisfying ‖w − z‖ < δ(w) and all q ≥ q̃(w), we have

|l(w,q) − l(z,q)| < ε, (A.17)

and ∣∣∣η1/α
w − η

1/α
z

∣∣∣< ε. (A.18)

That is, δ(w) is so chosen that both (A.17) and (A.18) hold. Now we are ready to determine v in (A.16) by constructing open coverings. 
Let B w,δ(w) denote the open ball of w ; that is B w,δ(w) = {z ∈ �d : ‖w−z‖ < δ(w)}. Then the collection of all the sets B w,δ(w) for each w
is an open cover of �d . By the compactness, there exists a finite subcover denoted by B w1,δ(w1), . . . , B wm,δ(wm) . For each selected w i , by 
the limit relation in (2.5), there exists 0 < qi < 1 such that∣∣∣l(w i,q) − η

1/α
w i

∣∣∣< ε,

for all qi ≤ q < 1. Let q∗ = max
{

q̃(w1), . . . , q̃(wm),q1, . . . ,qm
}

. For any w ∈ �d , one can find i such that w ∈ B w i ,δ(w i) , which means 
‖w−w i‖ < δ(w i). This w i is the proper choice of v in (A.16) since each term on the right-hand side of (A.16) is smaller than ε for all 
q∗ ≤ q < 1. This completes the proof. �

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Since the convergence limq↑1 VaRq(Xi)/VaRq(‖X‖1) = η
1/α
ei

is independent of w , applying Theorem A.2 to the 
rewriting in (2.4) we obtain the desired result. �
A.3. Proofs of lemmas

Lastly, we present the proofs of lemmas from previous sections.

Proof of Lemma 2.2. To prove DRw,q
unif−→ DRw,1, we need to show for any given ε > 0, there exists a number q0 such that ∣∣DRw,q − DRw,1

∣∣< ε for every q > q0 and for every w in �d . Note the rewriting

∣∣DRw,q − DRw,1
∣∣=
∣∣∣∣∣∣

w T μ
(∑d

i=1 wi
∥∥BT ei

∥∥
2 − ∥∥BT w

∥∥
2

)
(

w T μ +∑d
i=1 wi

∥∥BT ei
∥∥

2 F ←
Z (q)

)∑d
i=1 wi

∥∥BT ei
∥∥

2

∣∣∣∣∣∣ .
For every w ∈ �d , since ‖μ‖1 < ∞, there exists N1 > 0 such that w T μ < ‖μ‖1 < N1. Since ‖B‖2 < ∞, there exists N2, N3 > 0 such that

0 <

d∑
i=1

wi

∥∥∥eT
i B
∥∥∥

2
<

d∑
i=1

∥∥∥BT ei

∥∥∥
2
< d ‖B‖2 < N2,

and ∥∥∥BT w
∥∥∥

2
< ‖B‖2 < N3.

Since Y is unbounded, there exists 0 < q0 < 1 such that
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F ←
Z (q) >

N1 (N2 + N3)

N2
2ε

− N1

N2
,

for every q > q0. Combining the above analysis, the desired result 
∣∣DRw,q − DRw,1

∣∣< ε for every q > q0 and for every w in �d follows.
Next, we show that DRw,1 is continuous. For w, v ∈ �d , we have that∣∣DRw,1 − DRv,1

∣∣
≤
∣∣∣∣∣∣
∥∥BT (w − v)

∥∥
2

∑d
i=1 vi

∥∥BT ei
∥∥

2 + ∥∥BT v
∥∥

2

(∑d
i=1 vi

∥∥BT ei
∥∥

2 −∑d
i=1 wi

∥∥BT ei
∥∥

2

)
(
∑d

i=1 wi
∥∥BT ei

∥∥
2)
(∑d

i=1 vi
∥∥BT ei

∥∥
2

)
∣∣∣∣∣∣

≤ ‖B‖2 ‖w − v‖1
∑d

i=1 vi
∥∥BT ei

∥∥
2

(
∑d

i=1 wi
∥∥BT ei

∥∥
2)
(∑d

i=1 vi
∥∥BT ei

∥∥
2

) +
∥∥BT v

∥∥
2 ‖w − v‖1 max

1≤i≤d

∥∥BT ei
∥∥

2

(
∑d

i=1 wi
∥∥BT ei

∥∥
2)
(∑d

i=1 vi
∥∥BT ei

∥∥
2

)
=‖w − v‖1

‖B‖2
∑d

i=1 vi
∥∥BT ei

∥∥
2 + ∥∥BT v

∥∥
2 max

1≤i≤d

∥∥BT ei
∥∥

2

(
∑d

i=1 wi
∥∥BT ei

∥∥
2)
(∑d

i=1 vi
∥∥BT ei

∥∥
2

) .

Since ‖B‖2 < ∞ and B BT is positive definite, the fraction in the last step is bounded. Therefore for fixed w , when ‖w − v‖1 is small 
enough, we have 

∣∣DRw,1 − DRv,1
∣∣< ε. This proves the mapping w → DRw,1 is continuous. �

Proof of Lemma 5.1. First note that

sup
w∈�d

∣∣∣D̂Rw,1 − DRw,1

∣∣∣
= sup

w∈�d

∣∣∣∣∣∣ η̂
1/α
w
∑d

i=1 wiη
1/α
ei

− η
1/α
w
∑d

i=1 wi η̂
1/α
ei(∑d

i=1 wi η̂
1/α
ei

)(∑d
i=1 wiη

1/α
ei

)
∣∣∣∣∣∣

≤ sup
w∈�d

∣∣∣∣∣∣
(
η̂

1/α
w − η

1/α
w

)∑d
i=1 wiη

1/α
ei(∑d

i=1 wi η̂
1/α
ei

)(∑d
i=1 wiη

1/α
ei

)
∣∣∣∣∣∣+ sup

w∈�d

∣∣∣∣∣∣
η

1/α
w

(∑d
i=1 wiη

1/α
ei

−∑d
i=1 wi η̂

1/α
ei

)
(∑d

i=1 wi η̂
1/α
ei

)(∑d
i=1 wiη

1/α
ei

)
∣∣∣∣∣∣ . (A.19)

Thus, to show that (A.19) converges to 0 almost surely, the key is the strong consistency of η̂w uniformly in w . This is ensured by Theorem 
4.1(a) of Mainik and Rüchendorf (2010) if

lim
q↑1

sup
w∈�d

∣∣�q f w,α − � f w,α

∣∣= 0, (A.20)

where �q is the conditional angular distribution of S|F R(R) > q for q ∈ (0,1) and f w,α(s) = (w T s)α . Now we show that (A.20) holds 
under the current conditions. Note that for any s ∈ �d , we have

0 < (w T s)α ≤ w T s ≤ w T 1 = 1.

For any s1, s2 ∈ �d , it follows that∣∣ f w,α(s1) − f w,α(s2)
∣∣= |(w T s1)

α − (w T s2)
α |

≤ |(w T s1) − (w T s2)|d
≤ d|s1 − s2|,

where in the second step we used the polynomial expansion formula. This means that the function class 
{

f w,α : w ∈ �d
}

is uniformly 
Lipschitz for any α > 1. Then by Remark A.5 of Mainik and Rüchendorf (2010), the uniform convergence in (A.20) holds. Hence, η̂w

converges to ηw uniformly in w ∈ �d almost surely. Further, by the continuity of the mapping η̂w �−→ η̂
1/α
w , we have

sup
w∈�d

∣∣∣η̂1/α
w − η

1/α
w

∣∣∣→ 0, a.s.,

and

sup
w∈�d

∣∣∣∣∣
d∑

i=1

wiη
1/α
ei

−
d∑

i=1

wi η̂
1/α
ei

∣∣∣∣∣= sup
w∈�d

∣∣∣∣∣
d∑

i=1

wi

(
η

1/α
ei

− η̂
1/α
ei

)∣∣∣∣∣→ 0, a.s.

Further notice that 
∑d

i=1 wiη
1/α
ei

and 
∑d

i=1 wi η̂
1/α
ei

are uniformly bounded away from 0 because both the empirical measure �̂ and the 
limit measure � are non-degenerated. Combining all these, we obtain that (A.19) converges to 0 almost surely, which yields the desired 
result. �
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Proof of Lemma 3.1. In this proof the limit is taken as t → ∞. For t > 0, denote the region St = {(x1, . . . , xd) ∈ Rd+ :∑d
i=1 wi xi ≥ t}. We 

can split F w T X (t) as

F w T X (t) =
∫
St

d

(
d∏

k=1

Gk(xk)

)
+
∑
i< j

ai, j

∫
St

d

(
(1 − Gi(xi))

(
1 − G j(x j)

) d∏
k=1

Gk(xk)

)

= I(t) +
∑
i< j

ai, j J i, j(t),

where Gk(x) = G(x/wk) for k = 1, ..., d. The term I(t) can be understood as the survival distribution function of w1 X∗
1 +· · ·+ wd X∗

d , where 
X∗

1, . . . , X∗
d are i.i.d. with common distribution function G . For I(t), it follows from Theorems 4.7 of Mao and Ng (2015) that,

I(t)

G(t)
=

d∑
k=1

wα
k +

d∑
k=1

H−α,ρ

(
w−1

k

)
A(t)(1 + o(1)) + αt−1μG

∑
k �=l

wα
k wl(1 + o(1)).

For J i, j(t)’s, note that it suffices to study J1,2(t) by symmetry. Then we have

J1,2(t)=I(t) −
∫
St

d

(
G2

1(x1)

d∏
k=2

Gk(xk)

)
−
∫
St

d

⎛⎝G2
2(x2)

∏
k �=2

Gk(xk)

⎞⎠
+
∫
St

d

(
G2

1(x1)G2
2(x2)

n∏
k=3

Gk(xk)

)

=I(t) − J (1)
1,2(t) − J (2)

1,2(t) + J (3)
1,2(t).

Note that Gk(x) = G(x/wk) ∼ wα
k G(t) and G2

1(t)/G1(t) → 2. Since α ≥ 1, by regarding G2
1(·) as a distribution function, Proposition 3.7 of 

Mao and Ng (2015) leads to

J (1)
1,2(t)

= (2wα
1 + wα

2 + · · · + wα
d

)
G(t) + o

(
G(t)A(t)

)
+ αt−1

⎛⎝2wα
1

d∑
k=2

wkμG + w1μG2

d∑
k=2

wα
k +

∑
k,l≥2,k �=l

wα
k wlμG

⎞⎠G(t)(1 + o(1)).

Similarly,

J (2)
1,2(t)

= (wα
1 + 2wα

2 + · · · + wα
d

)
G(t) + o

(
G(t)A(t)

)
.

+ αt−1

⎛⎝2wα
2

∑
k �=2

wkμG + w2μG2

∑
k �=2

wα
k +

∑
k,l �=2,k �=l

wα
k wlμG

⎞⎠G(t)(1 + o(1)),

and

J (3)
1,2(t) = (2wα

1 + 2wα
2 + · · · + wα

d

)
G(t) + o

(
G(t)A(t)

)
+ αt−1

⎛⎝2
2∑

l=1

∑
k �=l

wα
l wkμG2 + 2

2∑
l=1

d∑
k=3

wα
l wkμG

⎞⎠G(t)(1 + o(1))

+ αt−1

⎛⎝ 2∑
l=1

d∑
k=3

wα
k wlμG2 +

∑
k,l≥3,k �=l

wα
k wlμG

⎞⎠G(t)(1 + o(1)).

Combining all the asymptotics for I(t), J1(t), J2(t) and J3(t) yields that

F w T X (t)

G(t)
−

d∑
k=1

wα
k = (1 + Q a)

I(t)

G(t)
+
∑

i< j ai, j

(
− J (1)

i j (t) − J (2)
i j (t) + J (3)

i j (t)
)

G(t)
−

d∑
k=1

wα
k

=
⎧⎨⎩ αt−1μ∗

G(1 + o(1)), ρ < −1,

(1 + Q a)
∑d

k=1 H−α,ρ

(
w−1

k

)
A(t)(1 + o(1)), ρ ≥ −1.
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This completes the proof of (3.4).
The uniform convergence of (3.4) follows immediately from checking that for the limit relations in Proposition 3.7 and Theorems 4.7 

of Mao and Ng (2015). The details are omitted here but are available upon request. �
Proof of Lemma 3.2. In this proof we denote arg min f by m f for notational simplicity. By the definition of Dn , for any n, | fn(m f ) −
f (m f )| < Dn . It follows that

fn(m fn ) ≤ fn(m f ) < f (m f ) + Dn.

Again, by | fn(m fn ) − f (m fn )| < Dn we have

f (m fn ) < fn(m fn ) + Dn < f (m f ) + 2Dn.

Deriving the similar inequalities for the other side yields that

| f (m fn ) − f (m f )| < 2Dn. (A.21)

By the Taylor’s theorem, for any x in a small neighborhood of m f we obtain that

f (x) = f (m f ) + 1

2
(x − m f )

T ∇2 f (m f )(x − m f ) + o
(
||x − m f ||22

)
, (A.22)

where we used the multi-index notation and ∇2 f (m f ) is the Hessian matrix of f at m f . Since Dn → 0 as n → ∞ by Lemma 2.1, m fn is 
in a small neighborhood of m f for large n. It then follows from the expansion in (A.22) that

| f (m fn ) − f (m f )| > c

2
||m fn − m f ||22, (A.23)

where c is the smallest eigenvalue of ∇2 f (m f ). Combining (A.21) and (A.23) leads to the desired result. �
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