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Abstract

Objectives: Turnaround time (TAT) is an essential per-
formance indicator of a medical diagnostic laboratory.
Accurate TAT prediction is crucial for taking timely
action in case of prolonged TAT and is important for
efficient organization of healthcare. The objective was
to develop a model to accurately predict TAT, focusing
on the automated pre-analytical and analytical phase.
Methods: A total of 90,543 clinical chemistry samples
from Erasmus MC were included and 39 features were
analyzed, including priority level and workload in the
different stages upon sample arrival. PyCaret was used
to evaluate and compare multiple regression models,
including the Extra Trees (ET) Regressor, Ridge Regression
and K Neighbors Regressor, to determine the best model
for TAT prediction. The relative residual and SHAP
(SHapley Additive exPlanations) values were plotted
for model evaluation.
Results: The regression-tree-based method ET Regressor
performed best with an R2 of 0.63, a mean absolute error
of 2.42 min and a mean absolute percentage error of
7.35%, where the average TAT was 30.09 min. Of the test
set samples, 77% had a relative residual error of at most
10%. SHAP value analysis indicated that TAT was mainly
influenced by the workload in pre-analysis upon sample
arrival and the number of modules visited.
Conclusions: Accurate TAT predictions were attained
with the ET Regressor and features with the biggest

impact on TAT were identified, enabling the laboratory
to take timely action in case of prolonged TAT and
helping healthcare providers to improve planning of
scarce resources to increase healthcare efficiency.

Keywords: machine learning; medical diagnostic labora-
tory; prediction; turnaround time.

Introduction

Turnaround time (TAT) is an essential performance
indicator of a medical diagnostic laboratory [1]. Accurate
TAT prediction enables laboratories to take timely ac-
tion in case of prolonged TAT and helps healthcare
providers to improve planning of scarce resources to
increase healthcare efficiency. Physicians can plan
their tasks according to the predicted TAT, while the
laboratory receives less inquiries by physicians about
availability of the test results, saving time of laboratory
technicians.

There are numerous studies on measuring TAT and
investigating factors affecting TAT, for example [2–5].
However, we found only one study on predicting TAT
for a specific sample, namely the time in post-analysis
between result generation and result reporting [6].

The diagnostic process is complex with different
test-mix and workload dependent processing times,
varying set-up, wait-to-batch and cycle times of the in-
struments, and sample prioritization. Therefore, TAT
prediction requires advanced algorithms. A machine
learning (ML) model may effectively learn the relation
between various features and TAT. ML is already used
extensively in other medical fields. For example, an
exponential increase in the number of studies using ML
in operating room planning has been observed [7].
However, there are very few studies on ML to predict TAT
or investigate factors affecting TAT in medical diagnostic
laboratories [5, 6].

The aim of this study was to develop a ML model to
accurately predict TAT in a medical diagnostic laboratory,
focusing on the automated pre-analytical and analytical
phase in the laboratory. Accordingly, this study identified
features with the biggest impact on TAT.
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Materials and methods

Setting

We considered TAT in the fully automated part of the clinical
chemistry laboratory of the Erasmus University Medical Center
Rotterdam (Erasmus MC) that consists of one cobas 8,100 and two
cobas 8,000 analyzer lines (c8100, c8000, Roche Diagnostics
International Ltd, Rotkreuz, Switzerland). Figure 1A provides a
schematic overview of the laboratory workflow.

The c8000 analyzer lines consist of four modules, ISE, c702,
c502 and e801, on which the actual diagnostic testing is performed.
At each module, the samples are pipetted, after which they are
transferred to the incubator disc of that module (Figure 1B). In the
incubator disc they are mixed with reagents. After the incubation
time, the results become available. In the meantime, after pipetting
is completed, the rack is routed to the next module on its route.
Incubation times are fixed per test. We define the TAT of a sample
as the time between the arrival at the c8100 for pre-analysis and
generation of results from both the collection tube and its aliquots.

Data extraction and preparation

Data were extracted from January to March 2019 from both the cobas
ITmiddleware (cITm, Roche Diagnostics International Ltd, Rotkreuz,
Switzerland) and the c8000 log files, containing the priority level,
required tests, and date and time of the various activities. Samples
with a duration of more than 40 min in the c8100 or the c8000 were
considered outliers and therefore removed from the analysis.

Features

Table 1 describes the 39 features obtained from the dataset, with
t ∈ {2, 5, 10, 15, 20, 25, 30} minutes. The features Centrifuged, CO2-L,
HasBatchTest and Priority are binary, where a value of 1 means that
the sample was centrifuged at the c8100, requires the bicarbonate
(CO2-L) test, has a batch test or is a high priority sample, respectively.
The other feature values lie in a wider range of integers, such as the
number of samples that arrived in the past t ∈ {2, 5, 10, 15, 20, 25, 30}
minutes.

Methods

Python 3.9 with package PyCaret 2.2.0 was used to compare multiple
regression models for TAT prediction. PyCaret has 25 built-in regres-
sion models that fall into multiple categories depending on their
parameters (Table 2, [8]). The category Linear Models considers
regression problems where the target value is expected to be a linear
combination of the features. Linear Regression and Ridge Regression
use different loss functions for penalizing the difference between
the actual and predicted target value [9]. Kernel Ridge regression
combines Ridge regression and classification with the kernel trick,
therefore learning a linear predictor in the space induced by the
kernel [10]. Support VectorMachines construct a set of hyper-planes to
separate the samples, aiming to maximize the gap between a hyper-
plane and the nearest data points to decrease the generalization error
[9]. The K Nearest Neighbors Regressor predicts the target value of a
new instance on the basis of the target values of its K nearest neighbors
[9]. The Decision Tree Regressor builds a regression tree where the
default function to evaluate the quality of a split in PyCaret is themean

Figure 1: Schematic overviews.
(A) Schematic overview of the main sample flow in Erasmus MC. (B) Schematic overview of the sample flow in an analyzer module.
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squared error. Ensemble Methods combine the predictions of multiple
base predictors to improve model performance [10]. The Extra Trees
(ET) Regressor builds an ensemble of regression trees, where the
arithmetic average of the predictions of the individual trees is the

final prediction. At each node in the tree, a random subset of features
is considered, for which random feature values are generated. A
node is split based on the best feature and cut-point combination
in terms of variance reduction. The Gradient Boosting Regressor

Table : List of included features.

Feature Description Type

Centrifuged Whether the sample requires centrifugation on c or not. Binary
CO-L Whether the sample requires the bicarbonate test or not. Binary
HasBatchTest Whether the sample contains a batch test or not. Binary
Priority Sample priority Binary
InCEnteredAna-t Number of samples that entered the analyzer line the sample is allocated to in the last t minutes.a Integer
InCEnteredC-t Number of samples that entered the c during the last t minutes.a Integer
InCEnteredCAna-t Number of samples that entered the c during the last t minutesa which are allocated to the same

analyzer line.
Integer

InCEnteredPrePre-t Upon sample arrival in c, this is the number of samples that entered the p during the last
t minutes.a

Integer

InCWorkloadAna Upon sample arrival in c, this is the workload of the analyzer line the sample is allocated to. Integer
InCWorkloadC Workload c upon sample arrival. Integer
InCWorkloadCAna Number of samples in c upon sample arrival which are allocated to the same analyzer line. Integer
InCWorkloadPrePre Upon sample arrival in c this is the number of samples that are in the p. Integer
NumAliq Number of tubes. When only collection tube: NumAliq=. Integer
NumModule Number of c modules allocated to. Integer
Numtest Number of ordered tests. Integer

The type “integer” includes integer values of  and larger. (a) t ∈ {, , , , , , } minutes.

Table : Regression models built into PyCaret.

Model Category Subcategory

Linear Regression Linear Models Classic linear regressors
Lasso Regression Regressor with variable selection
Elastic Net
Least Angle Regression
Lasso Least Angle Regression
Orthogonal Matching Pursuit
Bayesian Ridge Bayesian regressor
Automatic Relevance Determination
Random Sample Consensus Outlier robust regressor
TheilSen Regressor
Huber Regressor
Ridge Regression Miscellaneous
Passive Aggressive Regressor
Kernel Ridge Kernel Ridge Regression
Support Vector Regression Support Vector Machines
K Neighbors Regressor Nearest Neighbors
Decision Tree Regressor Decision Trees
Random Forest Regressor Ensemble Methods
Extra Trees Regressor
AdaBoost Regressor
Gradient Boosting Regressor
MLP Regressor Neural Network Models Supervised models
Extreme Gradient Boosting Gradient Boosting Extension
Light Gradient Boosting Machine
CatBoost Regressor
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sequentially enhances the performance of a model by fitting an
additive model on the negative gradient of a chosen loss function
[10]. Neural Networks consist of several hidden layers containing
neurons, where each neuron transforms the values from the previous
layer into a new value based on aweighted summation of the previous
values followed by an activation function [9].

PyCaret was used to split the data, and train, evaluate, compare,
and tune these models. The dataset was divided into two sets, a
training set, and a test set, by random splitting. Several ratios for
splitting the data were tested, namely 95–5%, 90–10%, 80–20% and
70–30%, respectively, to determine the best one for our experiment.
When comparing the models and tuning the parameters, the average
performance measures obtained from 10-fold cross validation on
the training set were considered to get a more accurate view of
model performance. The tuned model was then fit on the whole
training set and its performance was evaluated on the test set.

The ML model was trained to predict the time until pipetting
is completed, namely TATpipet,i. For TAT prediction, the largest in-
cubation time out of all ordered tests of a sample was added to the
prediction, i.e., TATi = TATpipet,i + max{incubation time sample i}.

Performance of amodelwas quantified in terms ofmean absolute
error (MAE), mean absolute percentage error (MAPE), and R2 value:

MAE =
∑N

i=1

⃒⃒⃒⃒⃒
⃒⃒TATpipet, i − T̂ATpipet, i

⃒⃒⃒⃒⃒
⃒⃒

N
,

MAPE = 100
N

∑N
i=1

⃒⃒⃒⃒⃒
⃒⃒TATpipet, i − T̂ATpipet, i

⃒⃒⃒⃒⃒
⃒⃒

TATpipet, i
,

R2 = 1 −
∑N

i=1(TATpipet, i − T̂ATpipet, i)
2

∑N
i=1(TATpipet, i − TATpipet, i)

2 ,

where TATpipet,i denotes the actual value for sample i, T̂ATpipet, i
denotes its predicted value and

TATpipet, i = 1
N

∑
N

i=1
TATpipet, i

denotes the mean of the actual values. Of these performancemeasures,
R2 is the most informative in terms of how often did the model correctly
predict TAT [11]. It can be interpreted as the proportion of the variance
in TAT that is predictable from the features [11]. MAE and MAPE are
commonly used measures in ML [9] and provide a more natural and
intuitive measure of model performance [12, 13].

Default model parameters in PyCaret were used to compare the
models in Table 2. After model selection, the parameters of the best
model were tuned to increase model performance. PyCaret uses
random grid search (RGS) for parameter tuning. RGS selects a pre-
defined number of parameter combinations according to some prob-
ability distribution, for which the model performance is evaluated,
after which the best parameter combination is selected [14]. PyCaret
tunes the values of the mainmodel parameters and various additional
parameters.

Model evaluation

The relative residual plot was used to visualize the distribution of
the prediction error. It considers the relative difference between the
actual and predicted value for each sample i in the test set:

Relative residuali = TATpipet, i − T̂ATpipet, i

TATpipet, i
.

SHAP (SHapleyAdditive exPlanations) values [15] were plotted to
interpret how the selected model makes predictions, i.e., to analyze
how and to what extent the features influence TATpipet. SHAP value
analysis is particularly useful when the relation between the features
and predictions is not straightforward, such as when using ensemble
methods. Let f denote the original prediction model, x an individual
observation and G the set of all features. In our case f(x) = TATpipet.
To evaluate the predictions made by f when only a subset of the
features S ⊆ G is included we calculate

E[f(x)|xS],

which corresponds to the conditional expected value of the prediction
given that only the attribute values corresponding to the features in
S are known. SHAP values were calculated with the trained model.
For each sample in the test set, the contribution of each feature to the
prediction was determined, thus the value of adding a feature i to S
was evaluated. The SHAP value for feature i and observation x is
calculated as follows [15]

ϕi(f , x) = ∑
S⊆G\{i}

(|S| + 1) ! (|G| − |S|)!
|G|! (E[f(x)|xS∪{i}] − E[f(x)|xS]).

Results

The initial dataset contained 96,126 samples. After data
cleaning, 90,543 samples remained, while 5.8% of the
initial dataset was considered as outliers and discarded.
The historical average TAT and TATpipet were 29.96 and
19.30 min, respectively. The distributions of the duration
in the c8100, the duration in the c8000, TATpipet and TAT
were right-skewed (Supplementary Figure 1).

Out of the regression models in PyCaret, the ET
Regressor [16] performed best in terms of MAE, R2 and
MAPE (Table 3). The top 7 performing models in terms
of MAE were also the top 7 performing models in terms
of R2 and MAPE. The mean TATpipet in the training set
was 19.29 min. Testing the different ratios for splitting
the dataset showed that splitting the data into a 95%
(86,015 samples) training set and a 5% (4,528 samples)
test set performed best in terms of MAE, R2 and MAPE.

Parameter tuning

The ET Regressor has three main parameters to tune: the
number of trees generated (T ), the number of features
randomly selected at each node (F ), and the minimum
number of samples for splitting a node (nmin) [15]. Their
default values are T=100, F = all features, and nmin=5.

Additional parameters considered by PyCaret
include the minimum number of samples allowed in a
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leaf node and the maximum tree depth. Using the tuned
values of the three main parameters and the default
values of the other parameters gave better model per-
formance than setting all parameters to their tuned value
(Table 4).

Figure 2 shows the behavior of model performance
when varying the values of T, F or nmin, while using
default values for the other parameters. MAPE shows
similar behavior to MAE (Supplementary Figure 2). The
training time increases linearly as T and F increase,
while it decreases exponentially as the nmin increases
(Supplementary Figure 2).

We found a non-monotone relation between the per-
formance of the model in terms of the number of features
randomly selected at each node and the minimum number
of samples for splitting a node. Furthermore, the model
performance does not greatly improve after T=350, while
the training time increases linearly. Therefore, we set T to
350, while varying F between 4 and 15, and nmin between 2
and 6.

Table 4 shows the parameter combination that resulted
in the highest R2 value and the combination resulting in
the lowest MAE and MAPE. We selected the parameter
settings that resulted in the highest R2 value as this ex-
plains a higher fraction of the variation of TAT by the
features.

Model evaluation

The ET Regressor was fit on the entire training set and
its performance was evaluated on the test set. This resulted
in R2 of 0.52, MAE of 2.42 min and MAPE of 11.71%, where
the historical average TATpipet over the test set was
19.41 min. Accordingly, for predicted TAT (TATi = TATpipet,i
+ max{incubation time sample i}), we obtained R2 of 0.63,
MAE of 2.42 min and MAPE of 7.35%, where the historical
average TAT over the test set was 30.09 min. The model
takes 0.38 s to predict TAT for all the test set samples.

The relative residual plot for TATpipet (Figure 3) shows
that 59.5% of samples had a relative residual between −0.1
and 0.1, and 88.2% of samples had a relative residual
between −0.25 and 0.25. For predicting TAT, 76.6% of
samples had a relative residual between −0.1 and 0.1, and
95.7% of samples had a relative residual between −0.25
and 0.25. Using a myopic prediction policy in which each
TAT is predicted to be themean TAT, 42.6% of the samples
had a relative residual between −0.1 and 0.1, and 84.8%
had a relative residual between −0.25 and 0.25. Thus,
the model had sufficiently small errors for predicting
TAT and had 1.8 times (76.6 vs. 42.6%) more samples with
a relative residual between −0.1 and 0.1 as compared to
using the myopic policy.

Table : Performance of regression models in the model compari-
son phase for predicting TATpipet.

Model MAE, min R MAPE (%)

Extra Trees Regressor . . .
Random Forest Regressor . . .
CatBoost Regressor . . .
Extreme Gradient Boosting . . .
Light Gradient Boosting Machine . . .
K Neighbors Regressor . . .
Gradient Boosting Regressor . . .
MLP Regressor . . .
Ridge Regression . . .
Bayesian Ridge . . .
Linear Regression . . .
Automatic Relevance Determination . . .
Least Angle Regression . . .
TheilSen Regressor . . .
Orthogonal Matching Pursuit . . .
Support Vector Regression . . .
Elastic Net . . .
Lasso Regression . . .
Huber Regressor . . .
Lasso Least Angle Regression . . .
Decision Tree Regressor . −. .
Random Sample Consensus . −. .
Passive Aggressive Regressor . −. .
AdaBoost Regressor . −. .
Kernel Ridge Insufficient memory

Reported values are average cross validation scores on the training
set.

Table : Results of parameter tuning.

Method nmin T F Values other parameters MAE, min R MAPE, %

PyCaret    Tuned . . .
   Default . . .

Manual    Default . . .
   Default . . .

Method = PyCaret: Performance ET Regressor using PyCaret parameter tuning. Method = manual: Parameter combination resulting in the
highest R value and the combination resulting in the lowestMAE andMAPE from selection of parameters based on Figure. Reported values are
average cross validation scores on the training set.
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The SHAP values of the top 20 features that influenced
the model are shown in Figure 4. Computation time of
theSHAPvalueswasapproximately3.5 daysona 16GBRAM
computer cluster. The most important three features were
the number of modules a sample is allocated to, the work-
load in pre-analysis (the c8100) upon sample arrival, and
whether the sample requires the CO2-L test or not.

Discussion

In this paper, we presented a method to accurately predict
TAT of clinical chemistry samples (R2=0.63, MAE=2.42,
MAPE=7.35%, historical average TAT=30.09 min) and
identified features with the biggest impact on TAT. This
is the first TAT prediction study for predicting the time

Figure 2: Relation between the parameters and model performance in terms of MAE and R2.
When varying one parameter, the default values of the other parameters were used: number of features randomly selected at each node = 39,
number of trees generated = 100,minimumnumber of samples for splitting a node = 5. Reported values are average cross validation scores on
the training set.
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from the start of the automated pre-analytical phase
until the end of the analytical phase for medical diag-
nostic laboratories. The proposed methodology is widely
applicable for TAT prediction in medical diagnostic
laboratories and potentially beyond.

Our study showed that the top three features for
predicting TATpipet were the number of modules a sample
is allocated to, the workload in pre-analysis upon sample
arrival, and whether the sample requires the CO2-L test
or not. The more modules a sample is allocated to, the
higher TATpipet due to an increase in waiting, travel, and
setup time in the c8000. The higher the workload in pre-
analysis upon sample arrival, the higher thewaiting times
in the c8100. Samples requiring the CO2-L test are proneFigure 3: Distribution of the relative residual for predicting TATpipet.

Figure 4: SHAP values of the top 20 features, sorted in decreasing order of importance, based on the tuned model and applied to samples in
the test set.
The x-axis indicates whether the feature value resulted in an increase (left) or decrease (right) in the prediction of TATpipet, and to what extent.
Each dot represents a sample, while the color indicates whether the feature value was high (red) or low (blue) for this sample. The features are
ordered from highest to lowest mean absolute value of the SHAP values.
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to a higher TAT as they are not allowed to be uncapped
for too long before analysis. After centrifugation, these
samples wait in the c8100 for a laboratory technician to
pick them up and manually uncap them before being
inserted into a c8000. Understanding which features
prolong TAT can help laboratories to reduce TAT.

Our study has similarities and differences as
compared with [6], who predicted the post analysis TAT.
The authors included the requesting department name,
weekday of the events starting from specimen collection
to delivery of report to the patient, and the hour of the day
these events occurred, as features. Our study showed that
the workload upon sample arrival is important for TAT
prediction. In the absence of workload information, the
arrival weekday and hour of the day are good proxies
for the workload, e.g., it is typically busier at 10 a.m. on
a Wednesday than 10 a.m. on a Sunday. Using the work-
load for TATprediction is especially important if the arrival
pattern of the samples is not monotone. We also included
sample characteristics and test-mix related features,which
are expected to be more important for TAT prediction in
pre-analysis and analysis than for post-analysis.

We defined 39 features to be used in TAT prediction
models. One of the feature choices we made is the value
of t, to determine the number of samples that arrived in
the past t minutes at a particular phase or instrument
in the testing process. In general, the behavior of TAT
lags behind the behavior of the workload. Furthermore,
samples arriving within a short time before a sample have
a bigger influence on TAT of this sample as compared
to samples that arrived much earlier and may almost
be finished. It is possible to do feature selection before
running the ET Regressor to reduce the number of included
features. As the ET Regressor is a tree-based algorithm and
as tree-based algorithms naturally filter out less significant
features, applying a priori feature selection is not necessary.

The ET Regressor has several advantages. It is suitable
for problems with a high dimensional feature space as
considered in this paper, due to the generated ensemble
of diverse trees [17, 18]. In this research, for example, the
feature InC8100EnteredC8100-30 had a minimum value
of 1 sample and a maximum value of 340 samples and
the feature InC8100WorkloadPrePre had a minimum
value of 0 samples and a maximum value of 365 samples.
The ET Regressor is also computationally efficient [16].
Furthermore, the high level of randomization of the ET
Regressor drastically reduces the variance [16], and thus
the probability of overfitting. At the same time, to mini-
mize bias, the ET Regressor uses the full original training
set instead of bootstrap replicas [16].

We tuned the threemainparameters of theETRegressor
to find the best performing combination for our study. The

described parameter tuning approach is widely applicable,
while the best parameter settings depend on the study.
The best choice for T (number of generated trees) is a trade-
off between computation time and accuracy, i.e., the more
trees generated, the better the accuracy but the higher
the computation time [16]. The smaller F (number of fea-
tures evaluated at a node), the stronger the randomization
of the trees and theweaker the dependence of the structure
of the trees on TAT values of the training set samples [16].
When F=1, “totally randomized trees” are generated
in which the feature and feature values are chosen
completely independent of the target variable [16].
When F = all features, then the randomization of the
algorithm is only through the randomly selected feature
values [16]. Our study used F=6, meaning that the trees
have a high level of randomization, while still allowing
the model some freedom to select relevant features. The
noisier the output, the higher the optimal value of nmin

(minimum number of samples for splitting a node) to
minimize overfitting by creating smaller trees [16]. Our
study shows that for our case the optimal value of nmin

is 2, which is lower than the default value 5. Comparing
the average cross-validation scores on the training set
with performance on the test set, we observed thatmodel
performance is similar. Therefore, we expect to have a
good estimate of the performance of the model on an
unseen dataset.

Samples with an unexpectedly high duration in the
c8100 or c8000 were discussed with the laboratory tech-
nicians. These high delays were not explainable under
regular circumstances and with our feature set. Possible
explanations are short termmachinemaintenanceorhuman
interaction due to a potential error. A cut-off value was
chosen that is a trade-off between removing too many
samples and leaving in samples that could skew the results
due to unexplainable factors. We pragmatically chose a
cut-off value that is a multiple of 10 min and that resulted
in removing approximately 5% of the samples, resulting in
removing samples with a duration of more than 40 min in
the c8100 or c8000 (5.81%).

The relative residual plots showed that our model
is more likely to overpredict than underpredict TAT. This
conservative prediction is preferred as the laboratory
rather reports a higher than actual TAT to the post-analysis
staff and physicians than a lower than actual TAT.

A limitation of this study is that the data is right-
skewed. This is generally not an issue for non-parametric
methods [18] such as the ET Regressor. Performance of the
parametric methods could have been improved by first
transforming the data to have a Gaussian distribution.

A direction for future research is to study whether
model performance can be improved by techniques such
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as bagging, boosting, and stacking. Other directions for
future research are to broaden the scope of TAT and use
these predictions to improve healthcare efficiency. Ideally,
we predict the time between phlebotomy and result
reporting. For this, one would also need the time spent
between the p471 and c8100. The time spent between
arrival at the p471 and arrival at the p612 typically takes
less than 2 min, therefore not having a big contribution
to TAT. However, samples are manually transported
between the p612 and c8100, making accurate TAT pre-
dictions challenging. One can obtain insights into the
time spent between the p612 and c8100 by including
the staffing levels at the time the sample leaves the p612.
One would also need data on result reporting. As the vast
majority of Erasmus MC test results are automatically
confirmed and reported, the result generation timestamp
differs typically only a few seconds from the result
reporting timestamp. To optimize sample routing, when
a sample can be tested on multiple analyzer lines, the
laboratory can assign the sample to the analyzer line with
the shortest predicted TAT.

Conclusions

The diagnostic process is complex with various factors
affecting TAT. ML techniques allow for accurate laboratory
TAT predictions and the identification of features with
the biggest impact on TAT, enabling the laboratory to
take timely action in case of prolonged TAT and helping
healthcare providers to improveplanningof scarce resources
to increase healthcare efficiency.
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