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1 Introduction

Container transport allowed for global trade and trade has lifted the welfare and fostered the develop-

ment of nations worldwide (World Bank Group 2018). The exchange of goods required the movements

of those along a chain of parties and companies. The invention of the container in the 1970s reduced

transport insurance costs, increased operational efficiency of transport, and allowed for globalization

(Notteboom & Rodrigue 2008). Considering the journey of a container, this thesis focuses on inland

container transport, the first and end part of the trip, which connects production areas to ports and ports

to warehouses and last-mile distribution (Wilmsmeier et al. 2011, Notteboom & Rodrigue 2005). In the

inland, different modes of transport are used, either truck, train, or inland waterway vessels (barges),

each of which has different characteristics. While intercontinental container transport allowed for

global trade, the inland transport sector plays a critical role in the competitive performance of regions

and countries alike (Rietveld & Nijkamp 1992). Though, differently from the ocean transport market

which is consolidated around a few dozen companies, the inland transport market is harder to manage

due to its highly fragmented and competitive nature with thousands of players in the Netherlands only

(Fransoo & Lee 2013, Morder Intelligence 2021).

In recent years, supply chains and transport systems got under pressure to deliver an ever-increasingly

efficient system. First, globalization itself, the development of e-commerce, and the need to maintain

economic welfare required cheaper and cheaper transport solutions (The Economist 2021). Second,

the rising climate crisis led to public concerns about the sustainability of transport (IPPC 2014), which

motivated initiatives to shift towards more sustainable transport solutions. Finally, the COVID-19

pandemic with its effect on consumer demands and companies’ workforce, and the Suez canal blockage

led to unprecedented low records for the reliability of transport, which unveiled the fragility of current

transport systems (Berger 2022). These problems motivated policymakers, industry, and academia

alike to search for solutions to improve the performance of transport from several different perspectives

(Ballot et al. 2020, Tavasszy et al. 2010). This thesis addresses this challenge of improving transport

performance by focusing on the utilization of transport capacity given immutable transport demand,

technology, and infrastructure. A particular focus is on the plan of transport execution and its effect on
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the utilization of transport capacity. Aspects related to infrastructural expansions1, new technologies2,

or demand management problems3 are not considered here.

From the transport capacity utilization perspective, this thesis relates the above problems calling for im-

proved performance of inland container transport to three main issues of the inland container transport

sector: first, the heterogeneity and the large number of small companies offering transport services,

which hinder system performance by partitioning the overall transport problem into smaller ones; sec-

ond, the uncertainty of transport operations and limited operational visibility in the transport chain,

which lower transport reliability and increase costs; third, the traditional sourcing of transport supply

with high transaction costs, which leads to sub-optimal allocation of transport demand to suppliers

given the limited number of alternatives that can be explored.

A natural solution to the first issue is cooperation between transport companies. Indeed, pooling trans-

port capacity and demand hedges against the partitioning of the overall transport problem. Whether

cooperation itself is a valid solution depends on other factors, which are the focus of Chapter 2 and are

illustrated in Section 1.1 below.

The second issue, i.e., uncertainty of transport operations, is tackled nowadays by sourcing informa-

tion and updating transport plans manually as delays or disruptions occur. The problem with such

an approach is that it is hard to manage the reliability of transport before its execution and prepare

alternatives beforehand as these are costly. While reliability has become a major concern for transport

companies, the capability to make transport plans that are cost-efficient while guaranteeing a certain

level of reliability is missing in practice. Similarly, the understanding of the benefits of such an alter-

native planning approach is limited in the literature as well. This problem is focal in Chapter 3 and it

is explored further in Section 1.2 of this introduction.

To address the third issue, standardization of the sourcing of transport supply has been promoted by

both digital freight forwarders and digital transport marketplaces. The digitization of the information

exchange process allowed for a larger than usual pool of shippers to be exposed to a larger than usual

pool of carriers. This turned into a larger set of opportunities to match demand with a suitable transport

operator. Unfortunately, the ever-increasing pool sizes led to increasing frictions, not noticeable at

first, in finding a good party on the other side of the market and led to stationing growth for digital

platforms. A solution to this problem is the focus of Chapter 4 and is introduced in Section 1.3.

1such as the problem of where to locate terminals (Tran et al. 2017, Wang & Qi 2020).
2such as truck-platooning or autonomous trucks (Nasri et al. 2018, Bhoopalam et al. 2018).
3such as pricing of transport to nudge demand (Riessen 2018).
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The last work is motivated by and was the result of a cooperation with a company operating a digital

transport marketplace for bulk barge transport.

As a final remark, the three chapters addressing each issue can be read in any order without affecting

the understanding. Indeed, the arguments and theory developed in each chapter are independent of

those of the others.

1.1 Sensitivity analysis of inland transport cooperation

In transportation, the larger the capacity pool a company owns the higher the potential for efficient

operations. Indeed, more opportunities for optimization can be found given demand, because of a

larger set of alternatives and a larger operating area. As the inland transport market is made of a

myriad of small-medium-sized transport companies, the efficiency of the overall transport operation is

limited by this fragmentation of the supply side.

A natural way to address this limitation is to allow transport companies to pool transport demand and

capacity to achieve economies of scope, by vertical cooperation, and scale, by horizontal cooperation.

Vertical cooperation is achieved in practice by transferring containers from the transport means of

a company to those of another in a relay fashion. Horizontal cooperation, instead, happens when

companies share (part of ) their transport capacity and demands and act as a single one having larger

assets and demand (Cruijssen et al. 2007b).

Frisk et al. (2010) and Houghtalen et al. (2011) showed that the gains achieved by cooperation should

suffice to motivate companies to engage in this endeavor. Despite the potential gains, Basso et al.

(2019) showed that real-world cases of horizontal cooperation in ground transport are rare, and dis-

agreements regarding the division of benefits may prevent the formation of cooperation. With the main

problem being related to the fair share of the gains of cooperation. Though savings can be large, co-

operation tends to be unstable as self-interested parties compete to get the most benefits. In particular,

design issues in the early phase of the collaboration are critical for real cooperation, such as the case

of transport operators in the region of the port of Rotterdam (Ypsilantis & Zuidwijk 2019), or forestry

transportation in Sweden (Frisk et al. 2010).

A range of approaches to sharing the gains of cooperation have been proposed by applying the theory

of cooperative games (Cf. Nash 1953) to transport problems (Theys et al. 2008, Cruijssen et al. 2007a).

Instead of proposing a novel approach ourselves, a novel sensitivity analysis of the stability of coop-

eration is developed. Thus, an explanatory approach is followed with the aim of understanding under
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which conditions it is reasonable to expect that a cooperation is stable. This approach is based on the

recent theoretical results at the interface between cooperative and non-cooperative game theory. In par-

ticular, the proof by Pérez-Castrillo & Wettstein (2001) shows that a well-known approach to sharing

the gain of a collaboration, the Shapley value (Shapley 1953), is the result of the natural bargaining

between companies involved in a cooperation.

With the methodology developed in Chapter 2, a first step is made in understanding whether a coop-

eration is stable or not, and to what extent, depending on the number of cooperating companies, the

heterogeneity of their operations, and the type of cooperation (either vertical or horizontal). Moreover,

a measure of rational stability of cooperation is introduced as a tool to explore instability and further

the understanding of this problem. Overall, with this study, the hope is to progress the understanding

of cooperation in inland transport and contribute to their success.

1.2 Booking a reliable flow in a stochastic network

The inland journey of a container is subject to several uncertainties. Being moved like the baton

(the stick) in a relay race from one company to the next one, this journey is affected by delays due to

congestion at terminals, on the road, or the railway, technical failures, and weather. All affect the timing

of the operations required to either move or transfer it from one company to the other. In this situation

where multiple and different stakeholders are responsible for such a journey, visibility on the actual

status of the journey is limited as it needs to be sourced from multiple companies at the right time. As a

result, during the inland journey of a container is rare to find a single party that is aware of all the steps

(Konrad 2022). In the past, the negative effect of uncertainty and limited operational visibility were not

of main concern as cost-efficiency considerations prevailed. Nowadays, the COVID-19 pandemic and

Suez canal blockage prompt the world’s attention to the unreliability of container transport systems,

and made reliable transport operations a requirement for carriers (Hapag-Lloyd 2021, Vernimmen et al.

2007, Berger 2022).

With the need to improve reliability, uncertainties are currently being addressed by companies ei-

ther, when delays arise, by manually adjusting the disrupted transport plan, or by introducing buffer

times to hedge for possible future delays. Sector-wide stakeholders as policymakers or port authorities

addressed, instead, the limited operational visibility by fostering digitization in the sector. Despite con-

tainers being monitored within the scope of each company’s operations, this information is not shared

outside of the same company with the overall visibility not improving. This leads to a complex situa-

tion that is hard to solve. Indeed, limited operational visibility reduces the value of planning ahead, as
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the quality of information affects the quality of planning, and reactive or static planning practices pre-

vent parties from sharing operational information, as providing additional information would lead to

either drastic changes or earlier reactions which might hurt the party sharing operational information.

A possibility for breaking this vicious cycle is to find an alternative planning approach that takes

advantage of improved operational visibility while reducing costs and improving the reliability of

transport. Among the many alternatives one might consider, the investigation of Chapter 2 aligns with

initiatives such as Synchromodality, a joint Dutch industry-academia born concept,4 and the Physical

Internet, an international logistics-wide endeavor for a deep concept-shift in logistics,5 which pointed

at the value of adaptation in face of uncertainties as an opportunity to improve planning performance.

If the academic literature is surveyed, models for adaptive planning received only limited attention in

transport (Perera et al. 2017, Spivey & Powell 2004) and considered only one of the two dimensions

of either time (and reliability) or cost, or both but in specific contexts. From a general point of view,

the trade-off between capacity reservation and the possibility to adapt during the execution needs to

be captured. Indeed, as capacity needs to be reserved prior to the execution, the possibility to adapt to

uncertainties is limited by the capacity reservations made prior to the execution of transport. Moreover,

if adapting requires preparing costly alternatives ahead of time, this means that adapting might cost

more than not adapting, and the gains in terms of planning reliability might be outrun by increased

costs.

Chapter 2 addresses this knowledge gap by proposing an abstract model for adaptive decisions which

captures the main decision trade-off between costs and reliability. This model builds upon the stochas-

tic shortest path problem (Opasanon & Miller-Hooks 2006, Wang et al. 2016, Miller-Hooks & Mah-

massani 2003, 2000, Chen et al. 2016) and recent developments in the public transport literature on

adaptive passenger routing to the case of freight transport (Rambha et al. 2016, Keyhani et al. 2017).

The model proposed takes the perspective of a planner that has visibility of a transport network and can,

upon payment, reserve capacity on scheduled services to organize transport for multiple containers.

This focal problem is addressed by developing a mathematical model which includes both static and

adaptive decisions. Using Graph Theory -to represent transport networks- and Markov Decision Pro-

cesses -to represent adaptive decisions-, it is shown that a single optimization model can be built to

capture the two types of decisions at once (Ahuja et al. 1993, Puterman 2005). The model is then

tested through simulations on a large set of realistic instances. Crafting realistic transport networks is

a difficult task as many parameters need to be tuned carefully. By sourcing empirical data on freight

4Synchromodality (Tavasszy et al. 2017, Giusti et al. 2019)
5The Physical Internet (Sternberg & Norrman 2017, Montreuil et al. 2012, Montreuil 2011).
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transport networks from the literature on Complex Network Analysis (Lin & Ban 2013, Boccaletti

et al. 2006), a generator of random instances which follows the realistic parameter distributions is built

to obtain simulation results of realistic value. Where the empirical literature does not support the ex-

perimental design, a space-filling design6 approach is followed to hedge against manual choices and

improve the quality of the experiment design (Joseph 2016, Santner et al. 2018). Finally, the source

code of the model and the instances generated for the testing phase are made available publicly in the

hope to further the understanding of adaptive planning.

1.3 Online learning for two-sided sequential matching markets

Traditionally, transport capacity is sourced by shippers via phone calls or emails to suppliers (either

carrier or freight forwarder) which often implies a limited number of parties can be contacted. Simi-

larly, suppliers have little overview of the larger transport market they operate in. As a result, matching

in the current transport market is a time-consuming and, to some extent, inefficient process based on

traditional business relations (Brancaccio et al. 2021). This situation hinders the efficient utilization of

capacity as supply and demand of transport match with a limited overview of the range of possibilities.

Recently, digitization improved matching in the transport market by standardizing communication

processes. Digital transport marketplaces made a step further in this direction by standardizing the

whole transactions on the market end-to-end. On those digital platforms, the two sides of the market

are exposed to a larger-than-traditional set of alternatives and different dynamics (Miller et al. 2020).

Similar to dating platforms, such as Tinder or Bumble, digital platforms in transportation grew with

their customer base being positively affected by a larger network of alternatives (Ríos et al. 2020). As

the user base increased so did the number of alternatives and searching for the right partner became

more difficult. In many cases, this resulted in plateauing growth or changes in the company’s strategy

(Cullen & Farronato 2021).

Li & Netessine (2020) shows that the design of the marketplace plays a fundamental role in supporting

matching. Indeed, the information and the set of alternatives presented impact users’ decisions and

the overall matching rate. The question becomes then how to choose what to show to which user to

improve the overall marketplace performance. Answering this question requires knowing what are the

preferences of the users in terms of transported material and operating area, for instance. To extract

this knowledge from data, one needs to realize that both the availability of observations on a given

6A space-filling design approach is one where the parameters used in a simulation are generated in such a way to cover well the
region of interest in the space of parameters (cf. ibid.)
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user and the set of alternatives evaluated by that same user impacts the estimated preference. This

problem of learning has been formalized in the so-called multi-armed bandit framework (Lattimore

& Szepesvári 2020) which models the sequential decisions of an agent that needs to choose between

a set of alternatives of unknown reward. After making a choice, the agent collects an observation

on the outcome of that choice which can be used to drive future decisions. A key contribution of

this framework is the realization that, at each decision, there is a trade-off between exploring new

alternatives for which no or little observations have been collected and exploiting, i.e., opting for,

those alternatives for which abundant information has been collected. If this concept is translated to the

marketplace problem, it is understood that the set of alternatives each user is presented affects what one

can learn about the preference of that user. Thus, the owner of the marketplace has the opportunity to

leverage the alternatives they present to users to learn user preferences and cater interesting alternatives

to improve the overall matching rate.

Chapter 4 focuses on this problem of improving the matching rate on a marketplace for inland waterway

transport by devising a model for learning while catering assortments of alternatives to the two sides

of the market. The main challenge, in this case, is to understand to what extent can such a novel

approach improve the matching rate. By building upon the two-sided assortment model of Ashlagi

et al. (2019b), and the application of multi-armed bandits to the one-sided assortment of Agrawal et al.

(2019), a model of incremental assortment decisions is developed. A parameterized class of heuristics

is proposed as a solution approach that addresses the realistic case of the company involved in this

research. The algorithm developed is based on the principle of optimism in face of uncertainty, which

suggests favoring unexplored over explored alternatives (Lattimore & Szepesvári 2020). In a realistic

simulation of a heterogeneous marketplace, three different policies with different degrees of optimism

are evaluated against the theoretically best decision. Such an evaluation approach estimates the value

of this model against the best possible outcome and provides insight into whether this approach can be

valuable in practice.

1.4 Overview of research objectives and methodology

As a final overview of this thesis, the research objectives and methodologies developed in the remainder

of this work are summarized. The following research objectives are addressed:

1. To understand under which conditions cooperation between transport operators is stable depend-

ing on topology and saturation of inland container transport (cf. Chapter 2).
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2. To understand whether adaptive planning can reduce transport costs and improve transport reli-

ability by devising a model for transport planning that handles fixed capacity booking decisions

and adaptive routing decisions (cf. Chapter 3).

3. To understand whether the matching rate in growing digital transport marketplaces can be im-

proved by limiting what either side of the market can evaluate while learning carrier and shipper

preferences (cf. Chapter 4).

Each objective has been considered using a specific methodology and led to a specific methodological

contribution:

1. The first objective is investigated using a blend of the theory of cooperative games and the

theory of parametric optimization. The first provides a framework for investigating the stability

of cooperation while the second allows the development of a novel approach for sensitivity

analysis of the stability of the cooperation itself.

2. The second objective is studied from the lens of dynamic optimization as it provides a framework

for modeling adaptive and sequential decisions. By building upon models for adaptive routing on

stochastic networks, a novel model capturing a-priori capacity booking decisions and adaptive

routing for a flow of containers is devised. This model is applied to hundreds of realistic instances

generated from empirical observations on the structure of real freight transport networks.

3. The third objective is addressed by combining models for two-sided matching markets and as-

sortment optimization with multi-armed bandit models. While the first provides a theoretical

framework to describe the interactions between users on two sides of the market, assortment

optimization models focus on the problem of the company operating the marketplace, and the

multi-armed bandit framework captures the process of learning users’ preferences and balancing

between exploitation of current information and exploration of alternative actions. The combi-

nation of those frameworks leads to a novel model of the operations of a digital marketplace.

The last chapter of the thesis, Chapter 5, concludes this thesis and provides an outlook on future

research.
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2 An analysis of the stability of hinterland container

transport cooperation

2.1 Introduction

Cooperation in transportation has the potential to reduce total costs, at the risk of exposing companies

to the failure of the cooperation itself. Cost reductions have a direct positive impact on profits. Failure,

in contrast, threatens the companies’ market position and generates additional costs and losses (Park

& Ungson 2003). Therefore, prior to engaging in a cooperation, managers need to be able to evaluate

the conditions under which the cooperation will endure. While achieving cost savings motivates the

formation of a cooperation, the division of these savings among participating companies may lead to

failure. As highlighted by Basso et al. (2019), real-world cases of horizontal cooperation in ground

transport are rare and disagreements regarding the division of benefits may prevent the formation of

a cooperation. Design issues in the early phase of the collaboration are critical for real cooperations,

such as the case of transport operators in the region of the port of Rotterdam (Ypsilantis & Zuidwijk

2019), or forestry transportation in Sweden (Frisk et al. 2010). Thus far, only limited guidelines exist

to show how a transport setting affects the stability of a collaboration. This leads to the following

question: Given the size of the cooperation as well as the transport network, costs, capacities, and

orders, is it possible to predict whether a cooperation will be stable or not?

We focus on hinterland container transport, although we believe that our results are applicable to other

transport domains as well.

The hinterland of a sea-port is the inland region of locations that can be served by transportation

services from (import) or to (export) the sea terminals. (Notteboom & Rodrigue 2007). On its way

from the terminals at the port to a warehouse (or vice versa), a loaded container is moved through a

sequence of transshipment and transport operations that might involve road, rail, and inland waterway

transport. Terminal operators – both at the port and inland – and transport operators as well as other

stakeholders are involved in the organization of container transport in the hinterland.
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In this industry, very low margins and a strong pressure on the performance of transport chains drive

companies to cooperate. Hinterland costs account for 40% to 80% of the overall door-to-door container

transport costs (Notteboom 2004). Moreover, hinterland accessibility has become a mayor success

factor for ports (Langen 2004). Shippers, the cargo owners, increasingly require reliability of their

hinterland transport chains (Port of Rotterdam 2018). Point-to-point connections between port and

inland terminals, called corridors, are seen as an opportunity to alleviate the downsides of visiting

congested port areas, and arise naturally in the development of ports (Notteboom & Rodrigue 2005).

To make hinterland regions accessible, transport corridors between ports and inland terminals have to

be formed by cooperating transport operators (Wilmsmeier et al. 2011). A successful example in the

Netherlands is that of Brabant Intermodal, where barge operators cooperated to consolidate their visits

to port terminals (Veenstra et al. 2012).

We study transport cooperation in which orders and transport capacity are shared. Companies strive

to minimize the costs of their joint transport plans. Cost savings will then be divided following an

agreed-upon mechanism, where the individual interests of each company ideally are advanced. Unfor-

tunately, even if an agreement is reached, the cooperation is still exposed to the risk of failure. Indeed,

self-interested negotiations do not take into account the interests of groups of companies, which might

have incentives, as a subcoalition, to drop out (Park & Ungson 2003). The economic literature has es-

tablished that the Shapley value (Shapley 1953) provides a reasonable prediction for the cost allocation

when players engage in a noncooperative bargaining process (Gul 1989, Pérez-Castrillo & Wettstein

2001). For this reason, we focus on the Shapley value as the cost allocation concept in this paper. Thus,

the question is under what conditions the Shapley value helps establish a stable coalition.

2.1.1 Illustrating example

As an illustrating example, consider three operators P1, P2, and P3 that offer transport between a

port and its hinterland. Their networks partially overlap, which allows the formation of a corridor that

serves demand from the port s to a common inland terminal t as shown in Fig. 2.1. The unit transport

cost faced by each operator for transport from origin to destination are given in Table 2.1. We assume

that each operator chooses to share 15 units of orders and 30 units of capacity out of their total orders

and capacity. The orders correspond to demand for transport from the port s to the terminal t. Capacity

is mapped to each operator’s arc in the graph GT in Fig. 2.1. Either individually or as a cooperation, all

orders are transported at minimum cost from node s to node t in GT . Individually, operator Pi would

face a cost equal to 15ci by using only her arc, which leads to a minimum total cost of 1125 without
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s

t

Geographical network

s t

P1

P2

P3

Transport problem

GT

Figure 2.1: Example of a collaborative transport net-
work, where s is the port and t an inland location up to
which the transport networks of the operators overlap.

P1 P2 P3

ci 30 25 20
Φi 387.5 350 237.5

Table 2.1: Parameter setting for the ex-
ample. Per unit cost ci and Shapley value
cost allocation Φi.

cooperation. When the three operators form a cooperation, the pooled orders are transported using

pooled capacities and a minimum total cost of 975 can be achieved, which corresponds to about 10%

savings. We can test whether the operators are able to form a stable cooperation if the cost allocation is

based on a bargaining outcome. Assuming that the bargaining process follows Gul (1989), the Shapley

value cost allocation Φi to each operator is reported in Table 2.1. The value Φi represents the share of

the total cost of 975 that operator Pi would agree to pay after the bargaining phase. Despite reaching

such an agreement, it can be observed that operators P1 and P3 have an incentive to drop out of the

cooperation: without operator P2, they would face a cost of 600 for transporting their orders using

only their arcs P1 and P3, which is lower than their allocated cost share of Φ1 +Φ3 = 625 in the three-

way collaboration. Therefore, the cooperation would fail. Interestingly, if only a few orders more (18

rather than 15 units) were shared by each operator, or less capacity were pooled (25 rather than 30

units), no breakaway subcoalition would form and the cooperation would not suffer from failure (cf.

Appendix 2.8.1). Had the operators been guided by these insights ahead of bargaining, a more durable

cooperation could have been designed.

2.1.2 Our contribution

In the literature, it has been observed that sharing demand and capacity in a collaborative transport

network leads to cost reductions, but may or may not result in a stable cooperation (cf. Frisk et al. 2010,

Houghtalen et al. 2011). Most existing findings, however, are based on purely numerical observations.
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There is a lack of theoretical results and mathematical characterization for the structure of this problem.

In this paper, we attempt to fill this gap.

To this end, we propose a novel methodology that combines cooperative game theory with parametric

optimization to characterize the stability of cooperation in transport networks. Specifically, we first

provide a mathematical characterization of the stability of the Shapley value as a function of a cost

parameter, and then derive a closed-form characterization of whether the bargaining outcome (i.e., the

Shapley value allocation) is stable for a special case with identical players. The obtained closed-form

solutions are then extended in order to formally analyze the same setting on a richer network structure.

For general cases, we develop a parametric optimization-based algorithm to efficiently evaluate the

stability of cooperation. Furthermore, in the event that the Shapley value allocation is not stable, we

introduce a measure of instability of cooperation, which is inspired by the concept of the ε-Core in

Shapley & Shubik (1966) and is similar to ε-stability in Karsten et al. (2015). We measure instabil-

ity by computing the maximum gap between the Shapley value allocation to a coalition and the cost

generated by this coalition: the larger the gap, the more willing that coalition is to drop out of the

cooperation. Under mild conditions, we further prove that this measure is bounded whenever no sub-

coalition achieves higher cost savings than does the group of companies taken as a whole. To the best

of our knowledge, we are the first to perform a sensitivity analysis of cooperative game solution con-

cepts in transport networks that permits analytical results in conjunction with a general computational

approach that exploits the structure of the game. Our results provide a systematic understanding about

how demand, capacity, and operating costs impact the stability of cooperation.

The remainder of this paper is organized as follows: Section 2.2 reviews the literature on collaborative

transport, and Section 2.3 provides an overview of basic concepts of cooperative game theory used in

the paper. The mathematical model is formulated in Section 2.4. Our analytical results are presented

in Section 2.5, and the numerical study is reported in Section 2.6. Section 2.7 concludes the paper.

2.2 Literature review

Our work contributes to the literature on collaborative transport, which has been gaining traction over

the past years. In this section, we review the studies most relevant to our work. For a broader overview,

we refer interested readers to the comprehensive survey in Guajardo & Rönnqvist (2016) and to an

overview of practical challenges in collaborative transport in Basso et al. (2019). The main problem

considered in this stream of research is to find a suitable mechanism (or solution concept) to allocate

the total costs or profits generated between collaborating companies. In this paper, we take a different
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angle by asking whether or not a cooperation would be stable if the cost shares were determined by a

reasonable bargaining outcome. As mentioned earlier, we adopt the Shapley value as the bargaining

outcome as per the theoretical foundation by Gul (1989).

Collaborative operational planning problems have been considered by Houghtalen et al. (2011) and

Frisk et al. (2010), who base their models on network flow problems (Ahuja et al. 1993). Houghtalen

et al. (2011) develop a capacity exchange pricing mechanism to drive self-interested behavior in a co-

operative setting towards social optimum, and they observe numerically that overcapacity undermines

the stability of cooperation. Frisk et al. (2010) perform a real-world case study on cooperative truck

transport in the forestry industry in Sweden. The Shapley value is found to be difficult to accept by

practitioners, despite being able to capture synergies between companies more effectively than other

solution concepts. Along this line, Cruijssen et al. (2007a) explain that simple rules to divide the gains

in horizontal cooperation cannot precisely capture the contribution of each individual player. The net-

work flow problem considered in our paper is similar to those studied in Houghtalen et al. (2011) and

Frisk et al. (2010); nevertheless, we complement their work by systematically analyzing the impact of

overcapacity on the stability of cooperation given that the cost allocation is determined by a bargaining

outcome. Among other results, we theoretically validate the numerical finding of Houghtalen et al.

(2011) under certain conditions.

Other papers have considered tactical decision problems in cooperative settings, focusing on a very

different scale than in our work. Lozano et al. (2013) study horizontal cooperation between shippers

that jointly determine weekly transit frequencies of transport connections to satisfy pooled demand.

Agarwal & Ergun (2010) and Zheng et al. (2015) address a network design problem in a partially

decentralized setting related to maritime container transport, where service frequency and cargo flow

have to be defined.

In broader contexts, the Shapley value has been applied by Engevall et al. (2004) and Özener et al.

(2013) to estimate cost-to-serve customers in oil distribution networks and vendor-managed inventory

settings, respectively. In Cruijssen et al. (2010), the Shapley value is used to decide the order in which

a logistic service provider should approach new customers to provide increasing benefits to already

confirmed ones.

Methodologically, our work is related to literature on parametric optimization. In particular, our al-

gorithm is based on work from Eisner & Severance (1976), which solves a parametric linear problem

without requiring an implementation of the simplex method for linear programs. The parametric set-

ting of our model is further related to the work of Carstensen (1983), which constructively show that
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exponentially many points might be required to describe the solution of a linear parametric network

flow problem. We contribute to this stream of literature by identifying an application of parametric

optimization in cooperative game theory.

2.3 Basic concepts

In this section, we recall basic concepts of cooperative game theory that are used throughout the paper.

In contrast to its non-cooperative counterpart, cooperative game theory studies the bargaining process

in a cooperative setting under complete information where contracts might be enforced (Nash 1953).

Cooperative games can be represented as transferable utility games (TU games) in characteristic form.

Given a set N = {1, 2, . . . , n} of companies (or players), the cost structure of the cooperation is

described by a cost vector c = (cS)S⊆N ∈ R2n

, where the component cS represents the cost generated

by coalition S ⊆ N (Serrano 2004). Games are characterized in terms of their properties. A game is

called subadditive if cS + cT ≥ cS∪T for all S, T ⊆ N with S ∩ T = ∅, and convex if cS∪T + cS∩T ≤

cS + cT for all S, T ⊆ N . Subadditivity implies that joining forces does not increase costs. Convexity,

on the other hand, represents an advantageous situation where the incentive to join the cooperation

grows with the cooperation size (Shapley 1971).

An allocation vector (xi)i∈N ∈ Rn describes the cost xi allocated to each player i ∈ N , corresponding

to the agreed outcome of the bargaining.

A solution concept Ψ represents a cost sharing mechanism and maps TU games to allocation vectors,

i.e., Ψ ∶ T Un → Rn with Ψ(c) = (xi)i∈N , where T Un is the set of n-person TU games and c =

(cS)S⊆N ∈ T Un. Certain properties are sought: efficiency requires the total generated cost cN to

be completely allocated to the players (∑i∈N xi = cN ), while individual rationality mandates that

individual players do no worse under cooperation (xi ≤ ci for each i ∈ N ). We focus on the Shapley

value Φ ∈ Rn (Shapley 1953), with the component Φi for a player i ∈ N defined as follows:

Φi =
1
n
∑

S⊆N∖{i}
(n − 1
∣S∣
)
−1

(cS∪{i} − cS) . (2.1)

The allocation Φi is a weighted average of the marginal cost of player i to any coalitions she can

join. Results from the so-called Nash-program proved that the Shapley value is the outcome of a non-

cooperative game that models bargaining (Serrano 2004). Thus, (2.1) provides an explicit form for

the bargained cost division. Pérez-Castrillo & Wettstein (2001) show that the Shapley value coincides



2.4 Model definition 17

with the perfect subgame equilibrium outcomes of a non-cooperative game. Engevall et al. (2004)

show that, whenever the game needs to be constructed, the computation time for the Shapley value is

negligible.

The concept of the core describes the set of allocation vectors that do not give any subcoalition an

incentive to leave the cooperation (Gillies 1959). Formally, the core is the set C ⊆ Rn defined as

C ∶= {(xi)i∈N ∈ Rn ∶ ∑
i∈N

xi = cN ,∑
i∈S

xi ≤ cS ∀S ⊆ N}. (2.2)

The inequalities in (2.2) capture the so-called coalitional rationality of an allocation vector. It requires

a given allocation (xi)i∈N not to assign a total cost ∑i∈S xi to a coalition S that is higher than the

cost cS that coalition would generate by itself. If such a case occurs, the players in S would form a

subcoalition and abandon the larger game. Shapley (1971) shows that, if a game is convex, the Shapley

value is within the core.

2.4 Model definition

The current approach in the literature to test the properties of a collaboration is to sample the parameter

space of a transport setting, generate one game for each sample, and then test the desired properties.

We instead propose an evaluation of the stability of the Shapley value that uses parametric solutions of

the problem and results in a parametric sensitivity analysis.

We start by defining the transport problem and the resulting cooperative game in a classical sense, later

expanding them to the parametric case.

Let N = {1, . . . , n} be the set of companies that jointly operate the transport network given by the

directed graph G = (V, R), with node set V and arc set R. The set of potentially shared services need

not constitute the whole network operated by each company. All transport demand originates at the

source node s ∈ V , for example a sea port, and must be transported to a single inland destination node

t ∈ V , where s ≠ t (uniqueness of the destination is without loss of generality, see Appendix 2.8.3

[Online]). The single-source problem describes a scenario where demand originates either from a

single terminal or from multiple, tightly-grouped terminals. It is assumed that all transport demand can

be transported on time with pooled services, which allows us to exclude the time element from explicit

consideration and represents a realistic assumption when considering time-insensitive cargo. For each

company i ∈ N , let Ri ⊆ R and ki ∈ N≥0 be the set of services owned and the amount of demand

shared by i, respectively. We assume that no arc is owned by multiple companies, i.e., Ri ∩Rj = ∅
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for i ≠ j, and that all arcs are assigned to companies, i.e., ∪i∈N Ri = R. Transport of containers in

the hinterland of a port is done either by truck, train, or barge, which are distinguished here in terms

of capacity and unit transport cost. For each service r ∈ R, let ur ∈ N≥0 be its shared capacity and

cr ∈ N≥0 the unit transport cost on service r. We assume that companies share only part of their total

vehicle or barge capacity per service. Capacities of transport means vary from a few TEUs (Twenty-

feet Equivalent Units, a standard in container size) for trucks to hundreds for barges and trains, which

justifies discreteness of flow1.

Given a group of operators S ⊆ N , let RS ∶= ∪i∈SRi and kS ∶= ∑r∈S ki be the set of services

controlled and the amount of demand pooled by S, respectively. We concentrate only on total transport

costs, requiring each coalition S to find a feasible flow allocation (fr)r∈RS transporting kS units of

flow from s to t on the graph GS ∶= (V, RS) such that fr ≤ ur for all r ∈ RS , that minimizes the total

transport cost ∑r∈RS crfr . If we denote by δ+(v) and δ−(v) the set of outgoing and incoming arcs

of node v ∈ V , respectively, we can define the following integer programming formulation P S for this

problem:

cS ∶=min ∑
r∈RS

cr fr (2.3a)

s.t. fr ≤ ur ∀r ∈ RS (2.3b)

∑
r∈δ−(v)

fr − ∑
r∈δ+(v)

fr = 0 ∀v ∈ V ∖ {s, t} (2.3c)

∑
r∈δ+(s)

fr = kS (2.3d)

∑
r∈δ−(t)

fr = kS (2.3e)

fr ∈ N≥0 ∀r ∈ RS (2.3f)

Here, (2.3b) ensures that transportation orders per service do not exceed the available capacity, (2.3c)

ensures that incoming and outgoing flow at each node v ≠ s, t are equal, (2.3d) and (2.3e) require that

flow demand at source and sink nodes is met, and (2.3f) forces integrality of the flow (fr)r∈RS . It

is well-known that constraint (2.3f) can be relaxed whenever capacities and demands are integer. An

integer optimal solution can then be found by solving the LP relaxation of P S whenever a feasible

solution exists (cf. Ahuja et al. (1993)). Assuming that problem P S is feasible for each S ⊆ N , the

cooperative game c = (cS)S⊆N is obtained by solving the problems {P S}S⊆N .
1By assuming that capacity and demand are integral, we might consider continuous flows. This is in contrast with Agarwal &

Ergun (2010), who assume continuity of flow variables due to homogeneity and bigger transport capacity.
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In order to obtain insight into the dependence of the stability of the cooperation on costs, we perturb

one of the players’ arc costs by an additive parametric term λ ∈ Λ ⊆ R+. Let ip ∈ N be the company

owning service rλ ∈ Rip having parametric unit transport cost crλ(λ) = crλ + λ, where crλ is the

original unit transport cost on arc rλ. We assume that Λ is such that crλ(λ) ≥ 0 for all λ ∈ Λ. The

choice of company ip ∈ N is arbitrary. The introduction of the parameter λ requires an update to the

objective function (2.3a) in problem P S , which now takes the form ∑r∈RS cr fr + λfrλ . Clearly, this

change affects only the cost cS of the coalitions S ⊆ N for which ip ∈ S and leads to the parametric

version P S(λ) of problem P S .

Thus, rather than the optimal value cS , the cost curve cS(λ) will be computed as a function of λ.

Given λ ∈ Λ, the cost cS(λ) is the optimal objective value of P S(λ). In our case, the cost curve is a

piecewise linear, non-decreasing, concave function (Gal 1994). A parameter value λ at which the slope

of the cost curve cS(λ) changes is called a breakpoint. We denote the set of breakpoints of cS(λ) by

BS . The number of breakpoints is a natural measure of problem complexity, as the set of optimal so-

lutions changes exactly at the breakpoints. As shown by Carstensen (1983), the number of breakpoints

can be exponential in the instance size. Our parametrization also changes the definition of the cooper-

ative game. Indeed, unlike a classical cooperative game in characteristic function form, we let the cost

functions cS(λ) be the cost curves for the parametric problems P S(λ). We denote the cost functions

by c(λ) ∶= (cS(λ))S⊆N and the parametric minimum cost flow cooperative game by (N, c(λ)). How-

ever, in order to simplify notation, we usually identify the game (N, c(λ)) with c(λ) when the set of

players is clear from context.

Solution concepts themselves are now parametrized. For company i ∈ N , the Shapley value alloca-

tion Φi changes from (2.1) to the following expression:

Φi(λ) =
1
n
∑

S⊆N∖{i}
(n − 1
∣S∣
)
−1

(cS∪{i}(λ) − cS(λ)) . (2.4)

The core C(λ) ⊆ Rn of the game c(λ) is now defined as

C(λ) = {x ∈ Rn ∶ ∑
i∈N

xi = cN(λ),∑
i∈S

xi ≤ cS(λ) ∀S ⊆ N}. (2.5)

Overall, we set up a parametric description of the transport problem and apply this to the overlaying

cooperative game and solution concepts. Given an interval of interest Λ = [λ, λ] with λ < λ, our

next step is to tackle the problem of describing the set of values λ ∈ Λ for which Φ(λ) ∈ C(λ). It is

clear that this will depend on the problem instance, so capacity, demands, and costs will appear in the
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description of this set of values, which will describe the transport settings leading to stability of the

cooperation.

Two basic properties need to be tested: subadditivity of the game and non-emptiness of the core.

Proposition 1. The parametric minimum cost flow game c(λ) is subadditive and has a non-empty

core for all λ ∈ Λ.

Proof. The proof is given in Appendix 2.8.4 [Online].

Subadditivity implies that formation of the grand-coalition is optimal for the cooperation and that

the Shapley value is individually rational, while non-emptiness of the core implies that testing the

membership Φ(λ) ∈ C(λ) is a non-trivial problem for all λ ∈ Λ. Moreover, the Shapley value is not

guaranteed to belong to the core in general as shown by the example provided in Section 2.1.

2.5 Results

In this section, we lay out the mathematical properties supporting our proposed sensitivity analysis

(Section 2.5.1). These properties are exploited to characterize stability of cooperation in a stylized cor-

ridor setting in Section 2.5.2, which is extended to a more involved network structure in Section 2.6.3.

We define the ε-distance to measure instability of cooperation in Section 2.5.3.

2.5.1 Sensitivity analysis

For any given value λ ∈ Λ, we have Φ(λ) ∈ C(λ) if and only if

∑
i∈N

Φi(λ) = cN(λ) (2.6)

and

ΦS(λ) ≤ cS(λ) ∀S ⊆ N, (2.7)

where ΦS(λ) ∶= ∑i∈S Φi(λ) is the total marginal cost of the players in coalition S. While (2.6)

is always satisfied as the Shapley value is an efficient solution concept (Shapley 1953), (2.7) is not

guaranteed to hold. For a given coalition S, both sides of the inequality in (2.7) are piecewise linear

functions of λ. Indeed, the Shapley value is obtained as a linear combination of piecewise linear

functions. Let B be the set of all breakpoints of the cost functions, i.e., B ∶= ∪S⊆NBS . Each set BS is
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finite since ∣BS ∣ ≤ urλ for all S ⊆ N , and non-empty as we add the points λ and λ. We further assume

that the breakpoints in B are sorted in increasing order, so B = {λ0 = λ, λ1, λ2, . . . , λl, λl+1 = λ}

with λi < λi+1, i = 1, . . . , l. It follows that, for i ∈ {0, . . . , l} and λ ∈ [λi, λi+1], the functions on both

sides of (2.7) are linear. Linearity implies that for each S ⊆ N , the inequality ∑i∈S Φi(λ) ≤ cS(λ) is

either valid for all λ ∈ [λi, λi+1] , there exists no λ ∈ [λi, λi+1] for which it holds, or there exists λS
i ∈

[λi, λi+1] for which the inequality is valid on exactly one of the subintervals [λi, λS
i ] and [λS

i , λi+1]

(see Fig. 2.2).

cS(λ)

ΦS(λ)

λ λ1 λS
1

λ2 λ3 λ4 λ

λ

Figure 2.2: Evaluating the inequality ΦS(λ) ≤ cS(λ) to analyze the stability of the Shapley value .

It follows that the Shapley value transitions from inside the core to outside, or vice-versa, at most

once between breakpoints, and that we can find those points by checking intersections between lines.

Furthermore, the observations above result in the following point-wise stability tests of the cooperation:

instability at one sample value extends to a neighborhood that can be computed explicitly.

Proposition 2. If there exists λ̂ ∈ Λ and Ŝ ⊂ N such that ΦŜ(λ̂) > cŜ(λ̂), then

∀ε ∈ (0,
ΦŜ(λ̂) − cŜ(λ̂)

2K
) ∶ Φ(λ) ∉ C(λ) ∀λ ∈ (λ̂ − ε, λ̂ + ε), (2.8)

where K ≥ 0 is a Lipschitz constant of the functions {cS(λ)}S⊆N and {ΦS(λ)}S⊆N , i.e, ∀λ′, λ′′ ∈ Λ,

∣cS(λ′) − cS(λ′′)∣ ≤K ⋅ ∣λ′ − λ′′∣ and ∣ΦS(λ′) −ΦS(λ′′)∣ ≤K ⋅ ∣λ′ − λ′′∣ for all S ⊆ N .2

Proof. The proof is given in Appendix 2.8.5.

2In this case, the constant K can be chosen as the highest slope of all functions.
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2.5.2 Corridor with identical players

We start by analyzing stability of the collaboration in the case of cooperation on a corridor with identi-

cal companies. The closed-form solutions we obtain here align with insights for complex problems in

the literature (Agarwal & Ergun 2010, Houghtalen et al. 2011).

In a corridor, each company i ∈ {1, . . . , n} offers a transport connection ri between the port s to a

single inland terminal t (see Fig. 2.3). For company i, we denote the amount of pooled demand by ki.

For service ri, we denote its capacity by ui and its unit cost by ci. The amount of demand ki, the

capacity ui, and the per unit cost ci of arc ri are assumed to be independent of i, i.e., ki = k, ui = u,

and ci = c0 for all i ∈ {1, . . . , n} ∖ {ip}. Company ip, however, is assigned a parametric arc cost

cip = c0 + λ.

ts

r1

r2

. . .

rn−1

rn

Figure 2.3: Transport network for corridor cooperation.

To characterize stability of the cooperation, we need to solve the set of inequalities (2.7) for the problem

just defined. We provide a constructive proof where the cost game and the Shapley value Φ(λ) are

explicitly computed and the inequalities ΦS(λ) ≤ cS(λ) are solved for all S ⊆ N .We note that the

cases k
u
= 0 or k

u
= 1 are trivial, meaning that the Shapley value is in the core for those cases.

Theorem 1. In the case of cooperation on a corridor with identical players, whether the Shapley value

is in the core or not depends on the value of the ratio k
u

compared to the size n = ∣N ∣ ≥ 2 of the grand
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coalition as follows:

Φ(0) ∈ C(0) for all 0 ≤ k

u
≤ 1, (2.9a)

Φ(λ) ∈ C(λ) ∀λ > 0 if and only if
(2n − 1)(n − 2)

2n2 − 3n
≤ k

u
≤ 1 (2.9b)

Φ(λ) ∈ C(λ) ∀ = −c0 ≤ λ < 0 if and only if 0 ≤ k

u
≤ 2n − 2

2n2 − 3n
. (2.9c)

Proof. Proof. We provide an intuitive explanation of the proof, which is given in Appendix 2.8.6.

Here, we focus on the case λ > 0, the other cases are treated similarly.

The proof is based on a decomposition of the minimum cost flow game c(λ) as a linear combination of

two simpler, non-parametric games c0 and c+, and on linearity of the Shapley value on the vector space

of N -person games (Shapley 1953). This decomposition means that cS(λ) = c0
S + λc+S for all S ⊆ N ,

so linearity of the Shapley value implies that Φ(c(λ)) = Φ(c0+λc+) = Φ(c0)+λΦ(c+). This implies

that each inequality ∑i∈S Φi(λ) ≤ cS(λ) for S ⊆ N can be rewritten as follows:

∑
i∈S

Φi(λ) ≤ cS(λ)

⇔ ∑
i∈S
(Φi(c0) + λΦi(c+)) ≤ c0

S + λc+S

⇔ ∑
i∈S

Φi(c0) + λ∑
i∈S

Φi(c+) ≤ c0
S + λc+S

⇔ λ∑
i∈S

Φi(c+) ≤ λc+S (as we prove that∑
i∈S

Φi(c0) = c0
S)

⇔ ∑
i∈S

Φi(c+) ≤ c+S (as λ > 0)

This greatly simplifies the problem at hand by removing the dependency on λ and allowing for a direct

calculation of the solutions of the last inequality.

In the following, we denote the terms (2n−1)(n−2)
2n2−3n

in (2.9b) and 2n−2
2n2−3n

in (2.9c) by f+(n) and f−(n),

respectively. We note that these expressions are asymptotic, for large values of n, to the simpler

expressions n−1
n

and 1
n

, respectively. Moreover, as can be seen in Fig. 2.4, these values and the

respective asymptotes are close for n ≥ 3 as well. Indeed, the shaded areas are obtained by the actual

bounds and the dotted lines represent the simpler expressions.
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Figure 2.4: Theorem 1. Stability of cooperation on a corridor with identical players depends on the
sign of λ and the demand-over-capacity ratio k/u.

In this case, stability is insensitive to the absolute value of the cost parameter λ, but depends on its sign,

the network saturation, and the number of players as detailed in conditions (2.9). Mathematically, this

independence of the absolute value of λ is explained by linearity of the Shapley value, as can be seen

from the proof provided above. Dependency on the sign of λ follows, instead, from the impact a sign

change has on the flow allocation between players. Indeed, for λ < 0, the arc of player ip becomes

the cheapest and will be used first, while it is the most expensive arc (and, thus, will be used last)

for λ > 0. This dependence of the stability on the cost parameter λ holds only for this case, as shown

by the numerical experiments of Sec. 2.6.

Our result shows explicitly that overcapacity hinders the stability of a cooperation when λ > 0, i.e.,

when a single player’s cost exceeds that of the others: for low values of the demand-over-capacity

ratio k
u

, the cooperation is unstable. Moreover, our result shows that the overcapacity threshold is a

function of the number of companies only. The threshold value k
u
= (2n−1)(n−2)

2n2−3n
= f+(n) can be

interpreted by looking at its asymptote n−1
n

, which corresponds to the amount of orders leading to

a saturation of n − 1 companies’ transport capacity. As f+(n) < n−1
n

, cooperation is achieved just

before reaching saturation of n − 1 companies. For λ > 0, we face the situation where company ip has

a transport cost that is higher than that of any other company. For k
u
≥ n−1

n
, all companies with the

lowest cost have their capacity fully utilized. Despite company ip’s shared capacity being used last, the

cost reduction this company achieves is spread among the other companies, reducing their total cost.
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A symmetric observation holds when λ < 0, i.e., when a single player operates transport at a lower unit

cost than that of all others. Indeed, for λ < 0, the cooperation is stable in the over-capacitated regime

of low values of the demand-over-capacity ratio k
u

. The threshold f−(n) is just greater than 1
n

, which

corresponds to the amount of orders that can be transported by a single player, ip in this case. This

means that the cooperation is stable when all the orders of the cooperation can be executed by a single

company.

In summary, by considering stylized corridors, we obtain closed-form solutions that characterize the

transport setting leading to stability. While being in line with Agarwal & Ergun (2010) and Houghtalen

et al. (2011), who show how overcapacity is related to instability, we extend their work by providing

an exact threshold that quantifies the overcapacity level leading to instability.

In the same setting of Theorem 1, we further support practitioners in deciding an acceptable number

of partners to seek to obtain a stable cooperation:

Corollary 1. Given demand k and capacity u > 0 such that k ≤ u, the maximum size of a stable

cooperation on a corridor with identical players when λ > 0 is n̄+ ∶= ⌊ 5u−3k−
√

9u2−14uk+9k2

4(u−k) ⌋. In

case λ < 0, the maximum size of a stable cooperation on a corridor with identical players is n̄− ∶=

⌊ 2u+3k+
√

9k2−4ku+4u2

4k
⌋.

Proof. By solving the inequality k
u
≥ (2n−1)(n−2)

2n2−3n
in (2.9b) for n, one obtains n ≤ 5u−3k−

√
9u2−14uk+9k2

4(u−k) .

Rounding down is necessary as n is integer. Similarly, by solving k
u
≤ 2n−2

2n2−3n
for n in (2.9c), one ob-

tains the result after rounding down.

2.5.3 The ε-distance

Stability of the Shapley value is determined by testing the inequalities ∑i∈S Φi(λ) ≤ cS(λ). If one

is invalid, subcoalitions will form. Should a coalition S ⊆ N be allocated a total share ∑i∈S Φi(λ)

greater than the cost cS(λ) it generates, it may drop out of the grand-coalition N to take advantage of

the lower cost cS(λ) instead of ∑i∈S Φi(λ). Clearly, the magnitude of the gap ∑i∈S Φi(λ) − cS(λ)

is ignored from this perspective. To address this shortcoming, we define a measure of instability based

on the concept of the ε-Core (Shapley & Shubik 1966). The ε-Core is the set of efficient pay-off

allocations where coalitional rationality is relaxed by a given threshold that can be interpreted as a

cost for dropping out of the grand-coalition, or an incentive to stay (Shapley & Shubik 1966). For the
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parametric game (λ) and ε ∈ R, the ε-Core Cε(λ) is defined as follows:

Cε(λ) ∶= {x ∈ Rn ∶ ∑
i∈N

xi = cN(λ) and ∑
i∈S

xi ≤ cS(λ) + ε ∀∅ ≠ S ⊊ N} . (2.10)

We measure the instability of the Shapley value as its maximum deviation from coalitional rationality,

and define the following distance.

Definition 1. Given a parametric cooperative game c(λ), the ε-distance εΦ(λ) of the Shapley value

Φ(λ) is given by

εΦ(λ) ∶=max
S⊆N
{∑

i∈S
Φi(λ) − cS(λ)} . (2.11)

Efficiency of the Shapley value implies that εΦ(λ) ≥ 0, and, if Φ(λ) ∈ C(λ) then εΦ(λ) = 0. If

Φ(λ) ∉ C(λ), it follows that εΦ(λ) > 0 is the smallest ε-value for which the Shapley value belongs to

the ε-Core. Moreover, if Φ(λ) ∉ C(λ), then Φ(λ) ∈ CεΦ(λ), showing that stability has been violated

by an amount εΦ(λ).

Our definition of ε-distance is comparable to that of ϵ-stability introduced by Karsten et al. (2015). In

their case, for a vector ϵ ∈ Rn, an allocation x for a game (N, c) is ϵ-stable if ∑i∈S xi ≤ cS +∑i∈S ϵi

for all ∅ ≠ S ⊆ N . Note that if x is ϵ-stable, then x ∈ C∑i∈N ϵi and the ε-distance εx for the allocation

x would satisfy εx ≤ ∑i∈N ϵi.

If we define the synergy σS(λ) for coalition S ⊆ N as the cost reduction generated by the cooperation

between companies in S, i.e.,

σS(λ) ∶=∑
i∈S

ci(λ) − cS(λ), (2.12)

it follows that the ε-distance and the synergy are related by the following result.

Theorem 2. Given a subadditive parametric cost game c(λ) and an individually rational and efficient

solution concept Ψ(λ), the following holds:

σS(λ) ≤ σN(λ) ∀S ⊆ N ⇒ Ψ(λ) ∈ CσN (λ) ∀λ ∈ Λ, (2.13)

where CσN (λ) is the ε-Core for ε = σN(λ).

Proof. Proof. The proof is given in Appendix 2.8.7 .

This general result shows that if the synergy σS(λ) of each coalition S ⊆ N is lower than the grand

coalition’s synergy σN(λ), then the gain from dropping out for any coalition is at most σN(λ). Given
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a fixed value of the parameter λ, high values of synergy σS(λ) stand for high reductions of transport

costs generated by the cooperation. Indeed, the total cost without cooperation ∑i∈S ci(λ) is lowered

by the cost cS(λ) generated under cooperation. Subadditivity of the game ensures that σS(λ) ≥ 0,

while additivity would lead to σS(λ) = 0 for all S ⊆ N .

Note that σS(λ) is defined independently of any solution concept. A similar notion of synergy of a

coalition S is given in Lozano et al. (2013), who define it as: Synergy(S) ∶= ∑i∈S ci−cS

cS
. In contrast,

we do not rescale by the total cost generated by the coalition.

Corollary 2. Given a parametric minimum cost flow game c(λ), it follows that

Φ(λ) ∈ CσN (λ) ∀λ ∈ Λ. (2.14)

Proof. Proof. The proof is given in Appendix 2.8.8.

Interpreting the value of the ε-distance might be difficult since incentives are reported in absolute

terms. To overcome this problem, we define the relative ε-distance ε̄Φ(λ) as the ε-distance relative to

the total cost generated by the subcoalition:

ε̄Φ(λ) ∶=max
S⊆N
{∑i∈S Φi(λ) − cS(λ)

cS(λ)
} . (2.15)

Efficiency of the Shapley value implies that ε̄Φ(λ) ≥ 0. Moreover, ε̄Φ(λ) > 0 if and only if Φ(λ) ∉ C(λ).

In case εΦ(λ) > 0, each coalition S maximizing (2.15) is unstable, i.e., ∑i∈S Φi(λ) − cS(λ) > 0.

Such a measure quantifies the magnitude of the incentive to form subcoalitions relative to the total

cost generated by each subcoalition itself. Clearly, from the value ε̄Φ(λ) it cannot be concluded if

Φ(λ) ∈ Cε̄Φ(λ).

The computation of the relative ε-distance ε̄Φ(λ) requires deriving the solution concept, i.e., the Shap-

ley value Φ(λ). In case this operation is complex or expensive, we provide the following upper bound

that is defined by the coalitional costs cS(λ) only.

Corollary 3. Given a parametric minimum cost flow game c(λ), it follows that

ε̄Φ(λ) ≤
σN(λ)

min
S⊊N ∶∣S∣≥2

cS(λ)
∀λ ∈ Λ. (2.16)
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Proof. Proof. From Corollary 2, we obtain that ∑i∈S Φi(λ) − cS(λ) ≤ σN(λ) for all coalitions

S ⊆ N . Division by the smallest cost of a coalition that can violate coalitional irrationality yields the

claimed upper bound on (2.15).

The previous result shows that the maximum relative deviation from stability is bounded by the coop-

eration synergy relative to the cost generated by the cheapest coalition.

2.6 Generalizations

Obtaining a closed-form expression (in terms of the parameters of the game c(λ) ) for the solution set

of Φ(λ) ∈ C(λ) is a challenging task. This holds especially since the costs cS(λ) (S ⊆ N ) are optimal

solutions to an optimization problem. Therefore, as soon as we generalize the transport setting, we opt

for a numerical approach that exploits the Eisner-Severance method (Eisner & Severance 1976) for the

construction of the cost curves (see Appendix 2.8.2 for a detailed description). Once the parametric

game c(λ) has been constructed, the Shapley value is obtained numerically by working directly with

the piecewise linear cost curves {cS(λ)}S⊆N . Thanks to the observation from Section 2.5.1, solving

Φ(λ) ∈ C(λ) for λ ∈ Λ translates into the problem of solving linear inequalities.

In what follows, we conduct several tests in which we drop several assumptions made in the case

treated in Theorem 1. In Section 2.6.1, we consider the case where players’ costs are allowed to take

two different values. This is extended in Section 2.6.2, where two different demand and capacity levels

are considered as well. Finally, the network structure is generalized in Section 2.6.3, where both a

mathematical and a numerical analysis are carried out.

2.6.1 Corridor with high and low costs

We again consider collaboration on a corridor as in Sect. 2.5.2, and test whether our insights obtained

from Theorem 1 still hold when unit costs are no longer identical. As opposed to Theorem 1, we

assume different costs: nL < n companies have low cost cL, company ip has a cost of cip = cL + λ,

for λ ∈ Λ, and the remaining nH ∶= n − nL − 1 companies have cost cH > cL.

We repeatedly generate the parametric game for increasing demand levels from k = k0 to k = u for

each value nL = 0, 1, . . . , n − 1, keeping all other parameters fixed.3 For each instance, the optimal

3Parameters are set as follows: k0 = 0, u = 30; cL = 20, cH = 30; company ip = 1 has parametric cost c1 = cL + λ,
λ ∈ Λ = [−20, 40]; for i ∈ {2, . . . , nL + 1}, ci = cL, while for i ∈ {nL + 2, . . . , n}, ci = cH (cL < cH ).
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objective value cS(λ) for the parametric problem P S(λ) is computed for each coalition S ⊆ N by

using Algorithm 1 described in Appendix 2.8.2. We find the intervals in Λ for which Φ(λ) ∈ C(λ).

Parameter regions of stability are shown shaded in Figure 2.5 for nL = 0, 1, 2, 3, 4 and n = 5. The case

nL = 4, which coincides with the situation studied in Theorem 1, has been inserted for comparison.
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Figure 2.5: Regions of stability (shaded) of the 5-players cooperation. Note that the cases nL =
4, nH = 0 and nL = 0, nH = 4 coincide with the situation studied in Theorem 1. “*” indicates the case
where a complete transfer of order is possible between companies with low and high cost, as explained
further in the text.

We find that stability is sensitive to changes in λ as soon as players’ costs are heterogeneous. Re-

gions (I) and (II) are inherited from the scenario with identical costs studied in Theorem 1. Indeed,

region (I) appears for values of k
u

higher than the threshold (2n−1)(n−2)
2n2−3n

and positive values of λ, while

region (II) is located at values of k
u

lower than the threshold 2n−2
2n2−3n

and negative values of λ. Unlike

for Theorem 1, the extension of those regions now also depends on the absolute value of λ and not only

on its sign. Notably, the stability regions inherited from the identical cost scenario appear consistently

throughout the experiments, even when the size n of the cooperation increases.
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Case λ > 0 Case λ < 0
Mean relative error [%] Mean relative error [%]

n f+(n) u = 30 u = 40 u = 60 f−(n) u = 30 u = 40 u = 60

4 0.70 3.17 3.17 3.17 0.30 7.41 7.41 7.41
5 0.77 3.70 3.70 3.70 0.23 12.50 12.50 12.50
6 0.81 2.27 2.27 2.27 0.19 10.00 10.00 10.00
7 0.84 2.67 2.67 2.67 0.16 14.44 14.44 14.44
8 0.87 1.80 1.80 1.80 0.13 11.56 11.56 11.56

Table 2.2: Relative deviation of the numerically obtained thresholds δ+(n, nL) and δ−(n, nL) from
the theoretical ones f+(n) = (2n−1)(n−2)

2n2−3n
and f−(n) = 2n−2

2n2−3n
, respectively. The reported values are

the average over the cases nL ∈ {1, . . . , n−1} of the absolute relative error ∣δ±(n, nL)−f±(n)∣/f±(n).

From Figure 2.5, it can be seen that region (I) is formed beginning at k+ = 24. Let δ+(n, nL) ∶= k+

u

be the numerical threshold obtained, where k+ is the lowest demand value k contained in region (I).

Similarly, we denote the value below which region (II) is formed by k− and the corresponding nu-

merical threshold by δ−(n, nL) ∶= k−

u
. In the case of Figure 2.5, we have k− = 6. Table 2.2 reports

average values for the absolute relative deviation of the numerically obtained thresholds δ+(n, nL)

and δ−(n, nL) from the theoretical ones obtained in Theorem 1. Given a test value of the capacity u,

the values δ+(n, nL) have been computed for each n = 4, . . . , 8 and nL = 1, . . . , n − 1, and the ab-

solute relative error ∣δ+(n, nL) − f+(n)∣/f+(n) has been computed. The same procedure has been

performed for δ−(n, nL). Table 2.2 reports the averages of values obtained in both cases. The low

values obtained show that the analytical results we obtained are good indicators for the position of

regions of stability when generalizing the parameter setting. Of the two thresholds, it can be observed

that the mean relative error for the threshold f+(n) is lower than that for f−(n).

Non-identical costs introduce new regions of stability in the over-capacitated regime. For the case of

nL = 1, the regions (III) and (IV), which were not present in Theorem 1, appear. Regions (III) and (IV)

form as neighborhoods of parameter values at which low cost companies are executing all orders of the

high cost companies by saturating their transport capacity. The cooperation is stable when a complete

transfer of orders is possible, i.e, when there is a division of roles between companies that either only

share capacity or only share orders. Following this argument, the parameter values are k = nL+1
n

and

λ = cL, or k = nL
n

and λ = cH and are highlighted by “*” in Fig. 2.5.

We further explore how instability is sensitive to λ and how it depends on k
u

by computing the relative

ε-distance ε̄Φ(λ). The contour plots in Fig. 2.6 show levels of 1%, 5%, and 20% for the case of nL = 1

and n = 5. Regions of 1%-instability appear in the saturated top regions of the plots. This shows that

if one relaxes the notion of stability, high values of the ratio k
u

are still related to low instability of the
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cooperation, but also that new regions of limited instability appear in the over-capacitated regime as

well.

Figure 2.6: The relative ε-distance ε̄Φ(λ) for a 5-players cooperation with nL = 1 (values in percent).
Cf. Fig. 2.5.

From a sensitivity analysis point of view, ε̄Φ(λ) is less sensitive to λ in the saturated region than in the

over-capacitated one. A similar effect can be observed for the upper bound: the higher the saturation,

the lower its sensitivity to variations of λ.

It can be concluded that the capacity-over-demand ratio has a major impact in regulating the sensibility

of stability on a single player’s transport cost. It is still possible to obtain stable cooperation in the

over-capacitated regime, which will be more sensitive to λ than in the saturated regime.

This result sheds light on corridor formation, as this structure can be stable even in the case of an

over-capacitated network. This could potentially benefit areas of the hinterland where container flows

are small and cooperation is not seen as an option because economies of scale cannot be achieved. Our

results show that, even in the absence of this cost reduction, cooperation can nonetheless be stable and

beneficial.
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2.6.2 Corridor cases with varying demand and capacity

In the previous section, the network saturation k
u

could be computed from the demand k and capacity u.

This is not the case when demand and capacity are not the same for all players. We observe that the

total demand K ∶= ∑i∈N ki over total capacity U ∶= ∑i∈N ui ratio K
U

allows for a comparison with the

previous case.

Case λ > 0 Case λ < 0

n f+(n) ∆k
Mean relative error [%]

f−(n) ∆k
Mean relative error [%]

kL > kH kH > kL kL > kH kH > kL

5 0.77 5 3.70 13.58 0.23 5 12.50 2.08
10 3.70 3.70 10 2.08 12.50

6 0.81 5 1.93 3.98 0.19 5 19.00 13.00
10 2.12 −− 10 23.00 16.00

7 0.84 5 2.10 2.10 0.16 5 9.10 12.92
10 1.08 3.23 10 15.28 9.86

8 0.87 5 2.64 1.91 0.13 5 9.76 19.52
10 2.07 2.07 10 15.48 16.43

Table 2.3: (kL ≠ kH): Relative deviation of the numerically obtained thresholds δ+(n, nL)
and δ−(n, nL) from the theoretical ones f+(n) = (2n−1)(n−2)

2n2−3n
and f−(n) = 2n−2

2n2−3n
, respectively.

The reported values are the average over the cases nL ∈ {1, . . . , n − 1} of the absolute relative error
∣δ±(n, nL) − f±(n)∣/f±(n).

Let kL and kH be the demand for players with low or high cost, respectively, and let ∆k ∶= ∣kH − kL∣

be the demand gap between the players. We assume: nL < n companies with low cost cL have

demand kL, company ip with cost of cip = cL + λ, for λ ∈ Λ has demand kL, and the remaining

nH ∶= n − nL − 1 companies with high cost cH have demand kH .

Then, we test the stability of cooperation for increasing values of k = k0, . . . , u−∆k in two cases where

either kL = k +∆k (kH = k), or kL = k (kH = k +∆k). Note that it is not necessary that kL < kH .

We generate plots as in Figure 2.5 and compute the numerical thresholds δ+(n, nL) and δ−(n, nL)

using the lowest total demand K+ at which the saturated region of stability exists, and the highest

total demand K− below which the region of stability for negative values of λ exists, respectively. In

Table 2.3, we report the mean relative error ∣δ±(n, nL) − f±(n)∣/f±(n) over nL = 1, . . . , n − 2 for

two sample values of ∆k. We observe that the numerical threshold δ+(n, nL) is close to the value

f+(n) obtained from Theorem 1, but a higher gap is present between δ−(n, nL) and f−(n) for λ < 0.

The demand gap ∆k can explain this difference as low values of saturation of the network cannot be
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reached. Indeed, even if one company is only transporting k = 1 order, others would have k = 1 +∆k

orders, so the network is still far from the target values of low saturation.

Similar results are obtained if we assume that players’ capacities are different. Again we test for the

case where either uL = u+∆u and uH = u, the capacity for players with low or high costs, respectively,

or uL = u and uH = u +∆u. The player ip with parametric cost is counted as a player with low cost.

Table 2.4 reports values of the mean relative error that again shows results close to the theoretical

threshold obtained from Theorem 1 for the case of λ > 0 only.

Case λ > 0 Case λ < 0

n f+(n) ∆u
Mean relative error [%]

f−(n) ∆u
Mean relative error [%]

uL > uH uH > uL uL > uH uH > uL

5 0.77 5 1.34 5.60 0.23 5 21.81 3.33
10 2.78 4.34 10 32.43 9.88

6 0.81 5 1.63 6.44 0.19 5 22.13 3.07
10 0.06 6.41 10 36.96 12.39

7 0.84 5 1.28 3.83 0.16 5 29.94 5.31
10 1.53 4.34 10 26.53 8.68

8 0.87 5 1.76 3.19 0.13 5 20.68 15.89
10 2.42 3.02 10 40.27 24.59

Table 2.4: (uL ≠ uH): Relative deviation of the numerically obtained thresholds δ+(n, nL)
and δ−(n, nL) from the theoretical ones f+(n) = (2n−1)(n−2)

2n2−3n
and f−(n) = 2n−2

2n2−3n
, respectively.

The reported values are the average over the cases nL ∈ {1, . . . , n − 1} of the absolute relative error
∣δ±(n, nL) − f±(n)∣/f±(n).

Overall, these numerical tests show that the total demand to capacity ratio, compared to the threshold

f+(n), is a main discriminant for the stability of a cooperation. We can also conclude that the region

of stability for low values of the demand-over-capacity ratio for λ < 0 is more susceptible to variations

in the amount of orders and of capacity in the network.

2.6.3 Vertical cooperation opportunity

In this section, we consider the case where the companies also have the opportunity of collaborating in

a vertical transport setting. While being simple in its formulation, this case generalizes the network of

the cases considered previously. The analysis performed here shows that our theoretical results can be

extended to a slightly richer network and our algorithmic approach is not bound to specific networks.

Consider the case where each company in a cooperation executes a segment of a joint transport route

and, at the same time, is able to execute direct transport from origin to destination. The sequence
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of segments constitutes a path that can be used only when all companies cooperate. One example of

such a configuration can be found in the case of intermodal container transport where each company

operates a transport service in a vertically-integrated sequence of transport operations, but also has the

opportunity of self-arranging direct transport.

Formally, we consider the network given in Figure 2.7. Each company i ∈ N = {1, . . . , n} executes

transport on arc ri, representing the direct transport option, and arc r̄i, representing the segment in

the vertical cooperation path joining origin s and destination t. All companies but company ip have

identical unit transport costs ci = c and cr̄i = c̄. Company ip has a parametric arc cost either on arc rip ,

i.e.,cr̄ip
= c̄ + λ, or arc r̄ip , i.e, crip

= c + λ, that is used to inspect the sensitivity of the stability

of the Shapley value. Each of these two cases will be treated separately later. The direct transport

capacity uri = u on arc ri and the vertical cooperation transport capacity ūr̄i = ū on arc r̄i are

identical for all companies i ∈ N , as well as the amount of orders ki = k to be transported from origin

node s to destination node t. We let cS(λ) denote total cost of the minimum cost flow generated by

coalition S ⊆ N when the set of arcs RS = ∪i∈S{ri, r̄i} is used and the amount of orders kS = ∑i∈S ki

is pooled. We then obtain a parametric minimum cost flow game as in Section 2.4.

We denote the resulting parametric minimum cost flow game on the graph given in Figure 2.7 by cv(λ)

and, for simplicity, refer to it as the vertical cooperation game. In Section 2.6.3.1, we discuss the

theoretical properties of the cooperation, while Section 2.6.3.2 presents the numerical experiments that

complement the theoretical findings.

t⋅
r̄n

⋅ . . .⋅
r̄2

s

r1

. . .

rn−1

rn

r̄1

Figure 2.7: Transport network for corridor cooperation with opportunity of vertical cooperation.
Arc ri represents a direct connection, while path (r̄1, . . . , r̄n) represents the joint vertical service.
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2.6.3.1 Theoretical Analysis

We denote the Shapley value and the core of the vertical cooperation game cv(λ) by Φv(λ) and Cv(λ),

respectively.

We first consider the case where cr̄ip
= c̄ + λ and assume that λ ≥ −c in order to ensure that cr̄ip

≥ 0.

Here, we obtain the following theorem:

Theorem 3. Consider the vertical cooperation game cv(λ), where cr̄ip
= c̄ + λ. For all values of

direct unit transport cost c and capacity u, vertical unit transport cost c̄ and capacity ū, amount of

orders k and number of players n, we have

Φv(λ) ∈ Cv(λ) for all λ ∈ [−c,+∞). (2.17)

In other words, when the parametric cost is on one of the arcs in the vertical cooperation path, the

Shapley value Φv(λ) is stable for all values of λ.

Proof. Proof. The proof is given in Appendix 2.8.9.

Theorem 3 shows that, given identical costs for direct transport, adding a vertical cooperation opportu-

nity can only benefit the stability of the Shapley value. Moreover, it becomes clear that this case does

not require any further computational investigation as stability holds for every parameter setting.

We now consider the case where the parameter λ is on the direct arc rip of player ip, i.e., crip
= c+λ.

We assume that λ ≥ −c to ensure non-negativity of the unit transport cost, and that the total unit cost nc̄

for vertical cooperation transport is at most that of direct transport, i.e., nc̄ ≤ c. Otherwise the vertical

cooperation game would reduce to the horizontal cooperation case studied in Theorem 1. Indeed, if

nc̄ > c, then the vertical cooperation path is never used.

Given the parameter being on arc rip , if we consider only cooperation on the direct transport arcs {ri ∶

i ∈ N}, we obtain the case of cooperation on a corridor with identical players treated in Theorem 1. We

denote the corresponding cooperative game by ch(λ) and show the following relation between cv(λ)

and ch(λ):

Theorem 4. In the vertical cooperation game cv(λ) where crip
= c + λ, we have that, for all values

of direct unit transport cost c and capacity u, vertical unit transport cost c̄ such that nc̄ ≤ c and

capacity ū, amount of orders k and number of players n, the following holds: For each value of
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λ ∈ [−c̄,+∞), stability of the Shapley value Φh(λ) in the horizontal cooperation game ch(λ) implies

stability of the Shapley value Φv(λ) in the vertical cooperation game cv(λ). More formally:

For each λ ∈ [−c̄,+∞) ∶ Φh(λ) ∈ Ch(λ) ⇒ Φv(λ) ∈ Cv(λ). (2.18)

The converse does, in general, not hold true.

Proof. Proof. We provide an intuitive explanation of the proof, which is given in Appendix 2.8.9

[Online]. Here, we focus on the case λ > 0.

Like the proof of Theorem 1, this proof is based on a decomposition of the game cv(λ) as a linear

combination of the horizontal cooperation game ch(λ) and a new game c̄(λ) that is obtained as the

algebraic difference of cv(λ) and ch(λ). Since, in this case, the arc rip with parametric cost is a direct

transport arc, we obtain that the horizontal cooperation game ch(λ) can be decomposed as in the proof

of Theorem 1, i.e., ch(λ) = c0 + λc+.

We denote the Shapley values for the games c+ and c0 by Φ+ = Φ(c+) and Φ0 = Φ(c0), respectively.

Combining the decomposition of ch(λ) with that of cv(λ), we obtain that cv(λ) = c0 + λc+ + c̄(λ)

and the Shapley value Φv(λ) can be obtained by using linearity since it can be computed explicitly for

each of the games c0, c+, and c̄(λ).

Testing coalitional rationality for S ⊊ N means testing whether ∑i∈S Φv
i (λ) ≤ cv

S(λ), which can be

rewritten as follows:

∑
i∈S

Φv
i (λ) ≤ cv

S(λ)

⇔ ∑
i∈S

Φ0
i + λ∑

i∈S
Φ+i + ∣S∣

c̄N(λ)
n

≤ c0
S + λc+S

⇔ λ∑
i∈S

Φ+i + ∣S∣
c̄N(λ)

n
≤ λc+S

This greatly simplifies the problem and provides a simple way to complete the proof. Indeed, it now

suffices to study the term ∣S∣ c̄N (λ)
n

because a closed-form solution to the set of inequalities∑i∈S Φ+i ≤

c+S (S ⊆ N ) has already been obtained in the proof of Theorem 1.

From Theorem 4, we can conclude that, independently of the unit cost nc̄ and capacity ū on the vertical

cooperation path, the vertical cooperation opportunity is never disadvantageous for stability. However,
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it is not clear whether and – if so – by how much the region of stability is enlarged. We test this in the

numerical experiments of the following section.

2.6.3.2 Numerical study

To test whether the region of stability of the vertical cooperation game cv(λ) extends beyond that of

the horizontal cooperation game ch(λ), we consider the following numerical experiments.

We assume n = 4, direct unit transport cost c = 100 and vertical unit transport cost c̄ ∈ {25, 24, 23, 20},

direct transport capacity u = 60 and vertical transport capacity ū = 120. Knowing from Theorem 1

that the stability of the Shapley value in the game ch(λ) depends on the ratio k
u

, we test stability

for a varying amount k of orders between k = 0 and k = u = 60. The parameter λ varies in the

interval Λ = [−100, 100]. Note that we set vertical transport capacity equal to the direct transport

capacity of two players, and generate a plot for each value of c̄.

c̄ = 25

-100 0 100

0

18

30

42

60

λ

k

c̄ = 24

-100 0 100
λ

c̄ = 23

-100 0 100
λ

c̄ = 20

-100 0 100
λ

Figure 2.8: Regions of stability for the vertical cooperation game. All subfigures share the same
vertical axis shown on the left.

Our results are shown in Figure 2.8, in which the shaded areas correspond to the regions of stability of

the vertical cooperation game. We observe that, in case nc̄ = 100 = c, we obtain the result described in

Theorem 1 for n = 4 players. As soon as vertical cooperation becomes beneficial for c̄ = 24, meaning

that nc̄ = 96 < 100 = c, the region of stability expands for all values of the demand-over-capacity

ratio k
u

. This behaviour is consistent across the remaining two cases of c̄ = 23 and c̄ = 20.

From the experiments, we can conclude that, as soon as vertical transport is advantageous (i.e., its

unit transport cost is lower than that of direct transport), the stability of the vertical cooperation game

becomes less dependent on the demand-over-capacity ratio than in the horizontal cooperation on a

corridor case (compare Figure 2.8 with Figures 2.5 and 2.6). This decreased dependency on the amount

of spare capacity depends on the value of the unit cost of vertical transport. This result adds to the
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current understanding that horizontal cooperation in transportation is stable only for coalitions of small

size (Basso et al. 2019, Agarwal & Ergun 2010). Indeed, we observe that, when a service requiring the

joint effort of all companies is advantageous for all, then the cooperation gains in stability.

2.7 Conclusion

Cooperation in the hinterland container transport sector can improve the performance of hinterland

connections. However, while reducing costs and improving the competitive position of ports, coopera-

tion exposes members to the risk of its failure. For this reason, we study the relation between transport

setting and stability of cooperation from a cost sharing perspective. We propose a sensitivity analysis

method to test the stability of bargained cost shares. This approach combines results from linear para-

metric optimization with key concepts from cooperative game theory. By using methods from linear

parametric optimization, we generate parametric cooperative games for more complex instances. Our

approach computes parameter intervals leading to stability, thus extending the sampling-based analysis

available in the literature on collaborative transport. Furthermore, we introduce a measure of instability

that quantifies the deviation from stability based on the ε-Core (Shapley & Shubik 1966). Overall, we

prove that the demand-over-capacity ratio – when compared to a function of the size of the cooperation

– is the main discriminant for stability of horizontal cooperation in transportation for network flow-

like cost structures. Moreover, we show that, even for over-capacitated networks, a stable, or limited

unstable, cooperation is possible. Given the complexity of the formal analysis, our analytical results

are limited to the case of identical companies cooperating on two different networks. In our numerical

experiments, instead, we study the effect that heterogeneity of companies has on our theoretical results.

There are several directions for future research. First, we assume a simple transport model. Including

a time dimension in the model could lead to a parametric analysis of the dependency of cooperation

stability on time-related parameters, such as speed and frequency of connections. Second, extending

and generalizing the type of networks studied could further reveal the role played by the network

structure itself. Third, other concepts from cooperative game theory can be parametrized using the

proposed definition of parametric cooperative games. Finally, a stochastic optimization model could

be considered to improve the representation of the actual decision making process, at the cost of finding

a suitable representation of the bargaining process.
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2.8 Appendix

2.8.1 Introductory example analysis

If we denote the amount of orders and capacity of each company by k and u, respectively, then the

problem to be solved for each coalition S ⊆ N ∶= {P1, P2, P3} is a minimum cost flow problem on

the graph in Figure 2.1. Node s is the source and node t the sink (see the model definition given in

Section 2.4). Table 2.5 shows the cost cS generated by each subset S of companies as well as the

Shapley value allocation to each player Pi (i = 1, 2, 3) and each coalition. The Shapley value has been

computed using expression (2.1) in Section 2.3. Note that, for coalition S ⊆ N , ΦS ∶= ∑Pi∈S ΦPi .

Table 2.5 presents three cases: the case k = 15 is the one described in Section 2.1, the cases k = 18

and u = 25 refer to the mentioned situations where demand is increased to 18 units or capacity is

lowered to 25 units.

The bold value in case k = 15 highlights instability of coalition {P1, P3} due to the cost generated

by this coalition being lower then the Shapley value allocation. In all other cases, the Shapley value

allocation ΦS is at most as large as the cost cS , proving stability of the Shapley value and of the

cooperation.

Case {P1} {P2} {P3} {P1, P2} {P1, P3} {P2, P3} {P1, P2, P3}

k = 15 cS 450 375 300 750 600 600 975
ΦS 387.5 350 237.5 737.5 625625625 587.5 975

k = 18 cS 540 450 360 930 780 750 1200
ΦS 480 420 300 900 780 720 1200

u = 25 cS 450 375 300 775 650 625 1000
ΦS 400 350 250 750 650 600 1000

Table 2.5: Game definition and Shapley value for the introductory example.

2.8.2 Algorithmic approach

The parametric minimum cost flow game c(λ) can be efficiently constructed by computing the cost

curves cS(λ) for each coalition S ⊆ N following the Eisner-Severance method (Eisner & Severance

1976), which we recall here. We first explain the method with the help of Figure 2.9, then provide a

formal definition in Algorithm 1. We use the same notation as in Section 2.4.
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Figure 2.9: Sequential construction of the parametric cost curve cS(λ) with the Eisner-Severance
method.

The construction of the cost curve cS(λ) over an interval Λ ∶= [λ, λ] is performed by updating a piece-

wise linear curve l∗(λ) until it converges to cS(λ). During the execution of the algorithm, optimal

solutions to the minimum cost flow problem at query values of λ ∈ Λ will be computed. For an op-

timal solution f∗ found at a query value λ′, let lλ′(λ) ∶= ∑r∈RS∖{rλ} crf∗r + λf∗rλ
be the parametric

objective value for the optimal solution f∗. Note that lλ′(λ′) = cS(λ′), i.e., lλ′ is optimal at λ′, and

lλ′(λ) ≥ cS(λ) for λ ≠ λ′, as f∗ is not granted to be an optimal solution to the minimum cost flow

problem for λ ≠ λ′.

Algorithm 1 Construction of cost curve cS(λ) for λ ∈ Λ.
1: A← lλ ∩ lλ

2: if lλ = lλ then
3: l∗(λ)← lλ

4: else
5: l∗ ← lλ ∧ lλ

6: while A ≠ ∅ do
7: λ′ ← pop an element from A
8: if ∣l∗ ∩ lλ′ ∣ ≤ 2 then
9: A← A ∪ (l∗ ∩ lλ′)

10: l∗ ← l∗ ∧ lλ′

11: l∗(λ) is the optimal cost curve cS(λ) for λ ∈ Λ.

Assuming that cS(λ) is not linear (i.e., it has at least one breakpoint) implies that l∗(λ) is piecewise

linear and that l∗(λ) has at least one breakpoint since the start of the algorithm. The starting point,

indeed, is the computation of the lines l1(λ) ∶= lλ(λ) and l2(λ) ∶= lλ(λ) obtained from the optimal

solutions at query values given by the extremes of Λ. The curve l∗(λ) is defined at first by the point-

wise minimum of the lines l1(λ) and l2(λ): l∗(λ) = min{l1(λ), l2(λ)} (see Figure 2.9a). During
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each update, a new line li(λ) ∶= lλ′(λ) is computed for a query value of λ′ corresponding to one of the

breakpoints of l∗(λ). This operations can have two outcomes: either the point (λ′, lλ′(λ′)) lies on the

curve l∗(λ) and this breakpoint does not need to be tested further, or (λ′, lλ′(λ′)) lies below l∗(λ′).

In the second case, the optimal solution found by solving the minimum cost flow problem generates

the line lλ′(λ) which intersects l∗(λ) (see l3 in Figure 2.9b). In this case, l∗(λ) can be updated to

the point-wise minimum between l∗(λ) and lλ′(λ), leading to new breakpoints to test in the following

updates (see Figure 2.9c). The method terminates when no further breakpoints need to be tested.

From a computational perspective, these updates performed within the algorithm require only 2pS − 1

queries to a solver for the minimum cost flow problem, where pS is the number of breakpoints of cS(λ)

in the interval Λ (Jenkins 1990).

Intuitively, the result is correct because the performed operations are equivalent to updating an upper

and a lower bound until the two converge to the cost curve itself. The upper bound is obtained from

optimal solutions, while the lower bound is a piecewise linear and concave approximation of the cost

curve. A formal proof is provided in Eisner & Severance (1976).

We now provide a formal description in Algorithm 1, where we use the following notation: given two

lines l1(λ) and l2(λ) in the plane, we denote by l1 ∧ l2 the piecewise linear function obtained by the

point-wise minimum of the two lines, and by l1 ∩ l2 the set of the intersection points between the two

lines. For ease of notation, we write lλ′ for the line lλ′(λ) obtained from an optimal solution at λ = λ′.

Note that the condition at Line 2 treats the case where the cost curve cS(λ) has no breakpoints, meaning

that it is a linear function. In this case, the fact that the two lines lλ and lλ coincide implies that each of

them is optimal for the other extreme point as well. Lines 5–10 formalize the explanation given above.

The set A contains the query points to evaluate.

2.8.3 Reduction from the multiple destination case

In this section, we show how our model can accommodate multiple destinations for different orders.

We then observe that the same reasoning can be applied to multiple sources, but cannot be extended to

the combination of the two, i.e., the case of multiple sources and destinations.

Given a coalition S ⊆ N , let tS
1 , . . . , tS

d be the destinations and kS
t1 , . . . , kS

td
be the total demands for

each destination. We introduce a super sink t∗ and arcs rj = (tj , t∗) for all j = 1, . . . , d, with per unit

cost crj = 0 and capacity urj = kS
tj

. Finally, we set total demand at node t∗ equal to∑d
j=1 kS

tj
.
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This transformation of the graph leads to an equivalent formulation of the minimum cost flow problem

for coalition S, where the single destination t∗ is used.

A similar reduction can be applied to the case of multiple sources. The case of multiple sources

and destinations, however, cannot be modeled with our formulation, as it requires the definition of a

multicommodity flow problem in order to distinguish the path followed by each commodity, which

might not be conserved otherwise (Ahuja et al. 1993).

2.8.4 Proof of Proposition 1

Proposition 1. The parametric minimum cost flow game c(λ) is subadditive and has a non-empty

core for all λ ∈ Λ.

Proof. Proof. In what follows, we assume that λ ∈ Λ is fixed and consider the parametric minimum

cost flow game c(λ) for this given value. To simplify notation, we write cS for cS(λ) for all S ⊆ N ,

and prove that the core of the minimum cost flow game (N, c) is non-empty.

We follow Owen (1975) to prove this claim by showing that the minimum cost flow game without

integrality constraints is a balanced cost sharing game. Balancedness of the game is equivalent to

non-emptiness of the core. Integral optimal solutions are found by solving the linear relaxation P S
L of

problem P S obtained by substituting the flow integrality constraint fS
r ∈ N≥0 with fS

r ∈ R≥0. This

allows for our proof while guaranteeing the same result for our case as integral optimal solutions can

be found by solving the relaxed problem. We assume that problem P S if feasible for all coalitions

S ⊆ N , so P S
L is also feasible.

To define balancedness of a game, the concept of a balanced map is required. A map γ ∶ 2N ∖ {∅} →

[0,+∞) is called balanced for N if

∑
S∈2N∖{∅}

γ(S)e⃗S = e⃗N (2.19)

where, for each ∅ ≠ S ⊆ N , the vector e⃗S ∈ R∣N ∣ is such that

eS
i ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if i ∈ S,

0 otherwise,

∀i ∈ N.

A cost sharing game (N, c) is balanced if, for every balanced map γ for N , we have∑S∈2N∖{∅} γ(S)cS ≥

cN .



2.8 Appendix 43

In what follows, we prove that the minimum cost flow game is balanced. Let γ be a balanced map for

N . Then we have

∑
S∈2N∖{∅}

γ(S)kS = ∑
S∈2N∖{∅}

∑
i∈S

γ(S)ki

= ∑
i∈N

⎡⎢⎢⎢⎢⎣
∑

S∈2N∖{∅}∶i∈S
γ(S)

⎤⎥⎥⎥⎥⎦
ki

= ∑
i∈N

ki

= kN

Now, we have cS = ∑r∈RS crfS
r by definition of the cost game, where the optimal flow allocation

{fS
r }r∈RS satisfies constraints (2.3b) (2.3c), (2.3d),(2.3e). Then,

∑
S∈2N∖{∅}

γ(S)cS = ∑
S∈2N∖{∅}

∑
r∈RS

γ(S)crfS
r

= ∑
r∈RN

cr ∑
S∈2N∖{∅}∶r∈RS

γ(S)fS
r (2.20)

= ∑
r∈RN

cr f̂r

where f̂r ∶= ∑S∈2N∖{∅}∶r∈RS γ(S)fS
r for all arcs r ∈ RN . It follows that the vector {f̂}r∈RN is

feasible for the relaxed problem P N
L of the grand-coalition. Indeed, for all v ∈ V N ∖ {s, t}

∑
r∈δ−

N
(v)

f̂r = ∑
r∈δ−

N
(v)

∑
S∈2N∖{∅}∶r∈RS

γ(S)fS
r

= ∑
S∈2N∖{∅}

γ(S) ∑
r∈δ−

S
(v)

fS
r

= ∑
S∈2N∖{∅}

γ(S) ∑
r∈δ+

S
(v)

fS
r

= ∑
r∈δ+

N
(v)

∑
S∈2N∖{∅}∶r∈RS

γ(S)fS
r

= ∑
r∈δ+

N
(v)

f̂r.
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Similarly, we have

∑
r∈δ+

N
(s)

f̂r = ∑
r∈δ+

N
(s)

∑
S∈2N∖{∅}∶r∈RS

γ(S)fS
r

= ∑
S∈2N∖{∅}

γ(S) ∑
r∈δ+

S
(s)

fS
r

= ∑
S∈2N∖{∅}

γ(S)kS

= kN .

The same holds for constraint (2.3e).

Finally, f̂r ≥ 0 for all r ∈ RN because of the non-negativity of the coefficients γ(S).

As {f̂}r∈RN is feasible for P N
L , it follows that

cN ≤ ∑
r∈RN

cr f̂r. (2.21)

Then, we see from (2.20) and (2.21) that ∑S∈2N∖{∅} cS ≥ cN , so (N, c) is balanced.

As the proof is independent of λ, this result holds for all λ ∈ Λ.

2.8.5 Proof of Proposition 2

Proposition 2. If there exists λ̂ ∈ Λ and Ŝ ⊂ N such that ΦŜ(λ̂) > cŜ(λ̂), then

∀ε ∈ (0,
ΦŜ(λ̂) − cŜ(λ̂)

2K
) ∶ Φ(λ) ∉ C(λ) ∀λ ∈ (λ̂ − ε, λ̂ + ε), (2.22)

where K ≥ 0 is a Lipschitz constant of the functions {cS(λ)}S⊆N and {ΦS(λ)}S⊆N , i.e, ∀λ′, λ′′ ∈ Λ,

∣cS(λ′) − cS(λ′′)∣ ≤K ⋅ ∣λ′ − λ′′∣ and ∣ΦS(λ′) −ΦS(λ′′)∣ ≤K ⋅ ∣λ′ − λ′′∣ for all S ⊆ N .4

Proof. Proof. From the hypothesis, it follows that Φ(λ̂) ∉ C(λ̂). Because of piecewise linearity of

the cost curves cS(λ) and the marginal cost functions ΦS(λ) (S ⊆ N ), these functions satisfy the

Lipschitz property, i.e., there exists a constant K ≥ 0 such that ∣cS(λ′) − cS(λ′′)∣ ≤ K ⋅ ∣λ′ − λ′∣ for

all λ′, λ′′ ∈ Λ and for all S ⊆ N , and similarly for the marginal cost functions ΦS(λ) (because we

deal with a finite number of functions, we can use the same Lipschitz constant for all functions by

4In this case, the constant K can be chosen as the highest slope of all functions.
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taking the maximum of all of their separate Lipschitz constants). In particular, we obtain that ΦŜ(λ)

is bounded from below by −K ⋅ ∣λ̂ − λ∣ +ΦŜ(λ̂) for all λ ∈ Λ, while cŜ(λ) is bounded from above by

K ⋅ ∣λ̂ − λ∣ + cŜ(λ̂) for all λ ∈ Λ. These bounds are obtained directly from the Lipschitz property, as

shown here for the case of cŜ(λ):

∣cŜ(λ̂) − cŜ(λ)∣ ≤K ⋅ ∣λ̂ − λ∣

⇔ ∣cŜ(λ) − cŜ(λ̂)∣ ≤K ⋅ ∣λ̂ − λ∣

⇔ +K ⋅ ∣λ̂ − λ∣ ≥ cŜ(λ)−cŜ(λ̂) ≥ −K ⋅ ∣λ̂ − λ∣

⇒ cŜ(λ) − cŜ(λ̂) ≤K ⋅ ∣λ̂ − λ∣

⇔ cŜ(λ) ≤K ⋅ ∣λ̂ − λ∣ + cŜ(λ̂)

Because of these two bounds for ΦŜ(λ) and cŜ(λ), the difference ΦŜ(λ) − cŜ(λ) satisfies ΦŜ(λ) −

cŜ(λ) ≥ −2K ∣λ̂−λ∣+ΦŜ(λ̂)−cŜ(λ̂). Hence, for any ε ∈ (0,
Φ

Ŝ
(λ̂)−c

Ŝ
(λ̂)

2K
) and any λ ∈ (λ̂−ε, λ̂+ε),

we obtain ΦŜ(λ) − cŜ(λ) > 0, which implies that Φ(λ) ∉ C(λ) and concludes the proof.

2.8.6 Proof of Theorem 1

Theorem 1. In the case of cooperation on a corridor with identical players, whether the Shapley value

is in the core or not depends on the value of the ratio k
u

compared to the size n = ∣N ∣ ≥ 2 of the grand

coalition as follows:

Φ(0) ∈ C(0) for all 0 ≤ k

u
≤ 1, (2.23a)

Φ(λ) ∈ C(λ) ∀λ > 0 if and only if
(2n − 1)(n − 2)

2n2 − 3n
≤ k

u
≤ 1 (2.23b)

Φ(λ) ∈ C(λ) ∀ −c0 ≤ λ < 0 if and only if 0 ≤ k

u
≤ 2n − 2

2n2 − 3n
. (2.23c)

Proof. Proof. Testing stability of the Shapley value means computing the combinations of the parame-

ters n, c0, λ, u, k for which all the inequalities∑i∈S Φi(λ) ≤ cS(λ) (for S ⊆ N ) are satisfied. To tackle

this problem, we will first decompose the minimum cost flow game into two the sum of two games and

exploit linearity of the Shapley value to simplify the computations. At that point, we will distinguish

three cases based on the value of λ: λ = 0 is treated first as instrumental to solve the following two

cases of λ > 0 and λ < 0. For each of the three cases, we will need to discuss several subcases that are

required to make the expression of the Shapley value and the cost function explicit. More precisely,
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we will compute the cost function of each game, the marginal costs, and the Shapley value. From their

expressions, the conditions defining the subcases will become clear. In each subcase, we then make

the expressions required to solve the system of inequalities {∑i∈S Φi(λ) ≤ cS(λ) ∶ S ⊆ N} explicit

for the parameters mentioned above. At this stage, the inequalities can be solved exactly, which leads

to the conditions in (2.23).

Before delving into the proof, we recall linearity of the Shapley value over the set of cooperative

games in characteristic function form (Shapley 1953). Given two games c1 = (c1
S)S⊆N ∈ R2n and

c2 = (c2
S)S⊆N ∈ R2n on the same set of players N (where ∣N ∣ = n), the sum c1 + c2 of the two games

is the game defined by (c1 + c2)S = c1
S + c2

S for each coalition S ⊆ N . Similarly, for a given scalar

α ∈ R, the game αc1 is defined by (αc1)S = αcS for each coalition S ⊆ N . Linearity of the Shapley

value implies that Φ(c1+αc2) = Φ(c1)+αΦ(c2) (Shapley 1953). As a final remark, we write c for c0

in the remainder of the proof to simplify the notation.

Case 0: Special cases. We start by dealing with two special cases.

First, we note that the Shapley value is stable in the cases where k = 0 or k = u, independently of

the value of λ or the size n of the grand-coalition. Indeed, if k = 0, no orders are transported and all

costs are zero, which results in a Shapley value allocation Φ(λ) ≡ 0 that is stable (see Inequalities 2.7).

For k = u, instead, we observe that the cost of each coalition S ⊆ N satisfies cS(λ) = ∑i∈S ci(λ)

because all arcs are saturated. Thus, individual rationality of the Shapley value (i.e., Φi(λ) ≤ ci(λ)

for all players i ∈ N ) implies coalitional rationality and, therefore, stability of the Shapley value itself

(∑i∈S Φi(λ) ≤ ∑i∈S ci(λ) = cS(λ)).

Second, in case of a two-players cooperation (i.e., n = 2) the Shapley value is stable independently of

the values of all other parameters. Indeed, coalitional rationality is implied by individual rationality

and efficiency of the Shapley value as only the cases of ∣S∣ = 1 and S = N remain from the inequalities

in (2.7).

Having taken care of Case 0, we may assume for the rest of the proof that k and u are such that

0 < k < u, and that n ≥ 3.

Case 1 1: λ = 0. For λ = 0, all players have identical costs and the cost of each coalition S ⊆ N

equals cS(0) = ∣S∣kc. We define the game c0 having cost c0
S ∶= ∣S∣kc for each coalition S ⊆ N . We

denote the Shapley value allocation computed for the game c0 by Φi(c0) . Note that Φi(0) = Φi(c0).

Since all players are symmetric in this game (and, thus, Φi(0) = Φj(0) for all i, j) and the Shapley
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value is an efficient solution concept (i.e., ∑i∈N Φi = c0
N ), the Shapley value allocation Φi(0) to each

player i ∈ N is Φi(c0) = kc.

In this case, it can be observed that ∑i∈S Φi(c0) = ∣S∣kc = c0
S for each coalition S ⊆ N . Thus, for all

values of k and u such that 0 < k
u
< 1, we have Φ(c0) ∈ C(c0) and coalitional rationality is satisfied in

this case.

Case 2: λ > 0. For a given coalition S ⊆ N , the cost function cS(λ) is given by:

cS(λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣S∣kc ip ∉ S (2.24a)

∣S∣kc ip ∈ S and ∣S∣ ≥ u
u−k

(2.24b)

(∣S∣ − 1)uc + [u − ∣S∣(u − k)](c + λ) ip ∈ S and ∣S∣ < u
u−k

(2.24c)

Cases (2.24a) and (2.24b) follow from the fact that ∣S∣k orders can be executed without sending flow

on arc rip . Note that the inequality ∣S∣ ≥ u
u−k

is equivalent to ∣S∣k ≤ (∣S∣ − 1)u, meaning that the total

amount of orders is less than the total capacity of all players in S different from ip. The expression

in (2.24c), instead, follows from the fact that arc rip has to be used in spite of its higher cost resulting

from the positive value of λ (note that the condition ∣S∣ < u
u−k

is equivalent to ∣S∣k > (∣S∣ − 1)u), thus

(∣S∣ − 1) arcs are used fully at a unit cost of c, and the remaining ∣S∣k − (∣S∣ − 1)u orders will use

arc rip at a unit cost c + λ.

Now, we decompose the minimum cost flow game c(λ) into the sum c(λ) = c0 + λc+ of the two

games c0 and c+, where c0 has been defined in Case 1, and c+ is defined as follows:

c+S ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 ip ∉ S , (2.25a)

0 ip ∈ S and ∣S∣ ≥ u
u−k

, (2.25b)

u − ∣S∣(u − k) ip ∈ S and ∣S∣ < u
u−k

. (2.25c)

By comparing each condition in (2.24) and (2.25), it can be checked that cS(λ) = c0
S + λc+S for

all S ⊆ N . Intuitively, the cost game c+ counts only the amount of orders transported on arc rip , so

that λc+ is the additional cost generated by transporting on arc rip .

From this decomposition and linearity of the Shapley value, it follows that Φi(λ) = Φi(c0)+λΦi(c+)

for all players i ∈ N , and that, for each coalition S ⊆ N , the inequality ∑i∈S Φi(λ) ≤ cS(λ) can be
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written as:

∑
i∈S

Φi(λ) ≤ c(λ) (2.26a)

⇔ ∑
i∈S
(Φi(c0) + λΦi(c+)) ≤ c0

S + λc+S (2.26b)

⇔ ∑
i∈S

Φi(c0) + λ∑
i∈S

Φi(c+) ≤ c0
S + λc+S (2.26c)

⇔ λ∑
i∈S

Φi(c+) ≤ λc+S (as ∑
i∈S

Φi(c0) = c0
S) (2.26d)

⇔ ∑
i∈S

Φi(c+) ≤ c+S (as λ > 0) (2.26e)

Therefore, the Shapley value is stable in the game c(λ) for λ > 0 if and only if the Shapley value is

stable in the game c+. Moreover, note that, in (2.26), we have obtained both independence of λ and a

much simpler game to analyze.

In order to compute the expression of the Shapley value, we compute the marginal cost c+S∪{i} − c+S for

each player i ∈ N and each coalition S ⊆ N ∖ {i}. We distinguish two cases, namely, whether i ≠ ip

or i = ip.

For i ≠ ip, we have:

c+S∪{i} − c+S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ip ∉ S (2.27a)

k − u ip ∈ S and ∣S∣ < k
u−k

(2.27b)

∣S∣(u − k) − u ip ∈ S and k
u−k
≤ ∣S∣ < u

u−k
(2.27c)

0 ip ∈ S and u
u−k
≤ ∣S∣ (2.27d)

For i = ip, we know that ip ∉ S, and the marginal cost equals

c+S∪{ip} − c+S =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k ∣S∣ = 0 (2.28a)

k − ∣S∣(u − k) and 0 < ∣S∣ < k
u−k

(2.28b)

0 k
u−k
≤ ∣S∣ (2.28c)

With those expressions for the marginal costs, we compute the Shapley value allocation to each player.

We first treat the case of players i ≠ ip and then the case of player i = ip. We denote the Shapley value

allocation to a player i ≠ ip by Φ−ip(c+), which can be computed as follows:
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Φ−ip(c
+) = 1

n
∑

S⊆N∖{i}
(n − 1
∣S∣
)
−1

(c+S∪{i} − c+S) (2.29a)

= 1
n

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∑
S⊆N∖{i}∶

ip∈S,
k

u−k
≤∣S∣< u

u−k

(n − 1
∣S∣
)
−1

(c+S∪{i} − c+S) + ∑
S⊆N∖{i}∶

ip∈S,

∣S∣< k
u−k

(n − 1
∣S∣
)
−1

(c+S∪{i} − c+S)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(2.29b)

= 1
n

⎛
⎜⎜⎜⎜⎜⎜
⎝

∑
l=1,...,n−1∶

k
u−k

≤l< u
u−k

∑
S⊆N∖{i}∶

ip∈S,

∣S∣=l

(n − 1
l
)
−1

(l(u − k) − u)+

+ ∑
l=1,...,n−1∶

l< k
u−k

∑
S⊆N∖{i}∶

ip∈S,

∣S∣=l

(n − 1
l
)
−1

(k − u)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.29c)

= 1
n

⎛
⎜⎜⎜⎜
⎝
∑

l=1,...,n−1∶
k

u−k
≤l< u

u−k

(n − 1
l
)
−1

(l(u − k) − u)(n − 2
l − 1

)+

+ ∑
l=1,...,n−1∶

l< k
u−k

(n − 1
l
)
−1

(k − u)(n − 2
l − 1

)

⎞
⎟⎟⎟⎟
⎠

(2.29d)

= 1
n

⎛
⎜⎜⎜⎜
⎝
∑

l=1,...,n−1∶
k

u−k
≤l< u

u−k

l

n − 1
(l(u − k) − u) + ∑

l=1,...,n−1∶
l< k

u−k

l

n − 1
(k − u)

⎞
⎟⎟⎟⎟
⎠

(2.29e)

We now compute the Shapley value allocation to player i = ip:

Φip(c
+) = 1

n
∑

S⊆N∖{i}
(n − 1
∣S∣
)
−1

(c+S∪{i} − c+S) (2.30a)

= 1
n

⎛
⎜⎜⎜⎜
⎝
∑

S⊆N∖{ip}∶
∣S∣< k

u−k

(n − 1
∣S∣
)
−1

(c+S∪{ip} − c+S)

⎞
⎟⎟⎟⎟
⎠

(2.30b)
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= 1
n

⎛
⎜⎜⎜⎜
⎝
∑

l=0,...,n−1∶
l< k

u−k

∑
S⊆N∖{ip}∶
∣S∣=l

(n − 1
l
)
−1

(k − l(u − k))

⎞
⎟⎟⎟⎟
⎠

(2.30c)

= 1
n

⎛
⎜⎜⎜⎜
⎝
∑

l=0,...,n−1∶
l< k

u−k

(n − 1
l
)
−1

(k − l(u − k))(n − 1
l
)

⎞
⎟⎟⎟⎟
⎠

(2.30d)

= 1
n

⎛
⎜⎜⎜⎜
⎝
∑

l=0,...,n−1∶
l< k

u−k

(k − l(u − k))

⎞
⎟⎟⎟⎟
⎠

(2.30e)

= 1
n

⎛
⎜⎜⎜⎜
⎝

k + ∑
l=1,...,n−1∶

l< k
u−k

(k − l(u − k))

⎞
⎟⎟⎟⎟
⎠

(2.30f)

It is possible to rewrite the expressions in (2.29e) and (2.30f) further by discussing the index sets of the

summations as, depending on the value of k
u

, they can be empty. We distinguish three cases that are

presented in Table 2.6 and discuss them now.

In case 0 < k
u
≤ 1

2 , we have k
u−k
≤ 1 and u

u−k
≤ 2, and the index set {l = 1, . . . , n− 1 ∶ k

u−k
≤ l < u

u−k
}

reduces to the single value l = 1, while the index set {l = 1, . . . , n − 1 ∶ l < k
u−k
} is empty and the

summations with this index set are equal to zero.

In case 1
2 <

k
u
≤ n−1

n
, we have k

u−k
≤ n − 1 and the index set {l = 1, . . . , n − 1 ∶ k

u−k
≤ l < u

u−k
}

reduces to the singleton {l = ⌈ k
u−k
⌉}, as ⌈ k

u−k
⌉ is the only integer number in [ k

u−k
, u

u−k
). The index

set {l = 1, . . . , n − 1 ∶ l < k
u−k
} equals {l = 1, . . . , ⌈ k

u−k
⌉ − 1}. Indeed, ⌈ k

u−k
⌉ − 1 is the largest integer

number lower than k
u−k

(note that ⌈ k
u−k
⌉−1 = ⌊ k

u−k
⌋, we opt for this expression for later convenience).

In case n−1
n
< k

u
≤ 1, we have k

u−k
> n − 1 and the index set {l = 1, . . . , n − 1 ∶ k

u−k
≤ l < u

u−k
} is

empty, while the index set {l = 1, . . . , n − 1 ∶ l < k
u−k
} equals {l = 1, . . . , n − 1}.

For each subcase that we just defined, we now solve the following set of inequalities: ∑i∈S Φi(c+) ≤ c+S

for all S ⊆ N such that 2 ≤ ∣S∣ ≤ n−1. Note that, because the Shapley value is an individually rational

and efficient solution concept, the inequalities for ∣S∣ = 1 and ∣S∣ = n (i.e., S = N ) are already satisfied

for any value of the parameters. Moreover, we first consider the inequalities for coalitions S such that

ip ∉ S first, and afterwards the ones for which ip ∈ S.
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Case Φ−ip(c+) Φip(c+)

0 < k

u
≤ 1

2
1
n
(∑

l=1

l
n−1(l(u − k) − u) + 0) 1

n
(k + 0)

1
2 <

k

u
≤ n−1

n
1
n
( ∑

l=⌈ k
u−k

⌉

l
n−1(l(u − k) − u) +

⌈ k
u−k

⌉−1

∑
l=1

l
n−1(k − u)) 1

n
(k +

⌈ k
u−k

⌉−1

∑
l=1

(k − l(u − k)))

n−1
n
< k

u
≤ 1 1

n
(0 +

n−1
∑
l=1

l
n−1(k − u)) 1

n
(k +

n−1
∑
l=1
(k − l(u − k)))

Table 2.6: Summary of the expressions of the Shapley value for the case λ > 0. Note that the expres-
sions have not been fully simplified to highlight the effect of the various cases on the index set.

Case 2.1: 0 < k

u
≤ 1

2 . We first simplify the expressions for Φ−ip(c+) and Φip(c+) from Table 2.6:

Φ−ip(c
+) = 1

n
(∑

l=1
l

n − 1
(l(u − k) − u)) (2.31a)

= − k

n(n − 1)
(2.31b)

Φip(c
+) = k

n
(2.31c)

We now test coalitional rationality, first for coalitions S ⊊ N such that ip ∉ S. In this case, the cost

of coalition S equals c+S = 0 and each inequality ∑i∈S Φi(c+) ≤ 0 is equivalent to Φ−ip(c+) ≤ 0. As

k > 0 and n ≥ 2, Φ−ip(c+) < 0 and coalitional rationality is satisfied for these coalitions.

We now consider coalitions S ⊊ N such that ip ∈ S. In this case, c+S = 0 and the inequality to solve is

the following:

∑
i∈S∖{ip}

Φi(c+) +Φip(c
+) ≤ 0 (2.32a)

⇔ −(∣S∣ − 1)k
n(n − 1)

+ k

n
≤ 0 (2.32b)

⇔ −(∣S∣ − 1) + n − 1 ≤ 0 (2.32c)

⇔ n − ∣S∣ ≤ 0 (2.32d)

Since S ⊊ N , (2.32d) cannot hold, which means that coalitional rationality is not satisfied for these

coalitions S. Thus, we proved that Φ(c+) ∉ C(c+) for 0 < k
u
≤ 1

2 as coalitional rationality failed for
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some coalitions. Note that the previous contradiction holds for all coalition sizes we need to test (i.e.,

2 ≤ ∣S∣ ≤ n − 1).

Case 2.2: 1
2 <

k

u
≤ n−1

n
. We follow the same procedure as in the previous case: we start by

computing the expressions for Φ−ip(c+) and Φip(c+) from Table 2.6:

Φ−ip(c
+) = 1

n
(∑

l=⌈ k
u−k

⌉
l

n − 1
(l(u − k) − u) +∑⌈ k

u−k
⌉−1

l=1
l

n − 1
(k − u)) (2.33a)

= 1
n

⎛
⎝
⌈ k

u−k
⌉

n − 1
(⌈ k

u − k
⌉ (u − k) − u) + (k − u)

n − 1 ∑
⌈ k

u−k
⌉−1

l=1
l
⎞
⎠

(2.33b)

= 1
n(n − 1)

⎛
⎝
⌈ k

u − k
⌉ (⌈ k

u − k
⌉ (u − k) − u) + (k − u)

⌈ k
u−k
⌉ (⌈ k

u−k
⌉ − 1)

2
⎞
⎠

(2.33c)

= 1
2n(n − 1)

⌈ k

u − k
⌉ (⌈ k

u − k
⌉ (u − k) − u − k) (2.33d)

Φip(c
+) = 1

n
(k +∑⌈ k

u−k
⌉−1

l=1
(k − l(u − k))) (2.33e)

= 1
n

⎛
⎝

k + (k − u)
⌈ k

u−k
⌉ (⌈ k

u−k
⌉ − 1)

2
+ k (⌈ k

u − k
⌉ − 1)

⎞
⎠

(2.33f)

= 1
n
⌈ k

u − k
⌉ ((k − u)

2
(⌈ k

u − k
⌉ − 1) + k) (2.33g)

= 1
2n
⌈ k

u − k
⌉ ((k − u) ⌈ k

u − k
⌉ + k + u) (2.33h)

We now test coalitional rationality for coalitions S with ip ∉ S. We know that c+S = 0 for these

coalitions in this case. Thus, ∑i∈S Φi(c+) ≤ c+S reduces to Φ−ip(c+) ≤ 0, which can be rewritten as

follows:

Φ−ip(c
+) ≤ 0 (2.34a)

⇔ 1
2n(n − 1)

⌈ k

u − k
⌉ (⌈ k

u − k
⌉ (u − k) − u − k) ≤ 0 (2.34b)

⇔ ⌈ k

u − k
⌉ ≤ u + k

u − k
(2.34c)

⇔ ⌈ k

u − k
⌉ − k

u − k
≤ u

u − k
(2.34d)

As for all 0 < k < u, ⌈ k
u−k
⌉ − k

u−k
< 1 by definition of the ceiling operation and u

u−k
≥ 1 as u − k < u,

we have that (2.34d) is always satisfied for coalitions S such that ip ∉ S.

We now test coalitional rationality for coalitions S such that ip ∈ S. From 1
2 <

k
u
≤ n−1

n
, we obtain

2 < u
u−k
≤ n and, therefore, we need to distinguish two further cases depending on the size ∣S∣ of
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coalition S compared to u
u−k

as in the definition of c+S :

c+S =
⎧⎪⎪⎨⎪⎪⎩

0 ip ∈ S and ∣S∣ ≥ u
u−k

, (2.35a)

u − ∣S∣(u − k) ip ∈ S and ∣S∣ < u
u−k

. (2.35b)

Therefore, we start with the case where ∣S∣ ≥ u
u−k

. It is important to note that, since ∣S∣ ≤ n − 1, for

values of u
u−k
> n − 1 this case will not occur as no coalition has such a size and we are left with

the case that will be discussed later. The condition u
u−k
> n − 1 is equivalent to k

u
> n−2

n−1 . Note that
n−2
n−1 <

n−1
n

for all n > 2.

(∣S∣ − 1)Φ−ip(c
+) +Φip(c

+) ≤ 0 (2.36a)

⇔ ∣S∣ − 1
2n(n − 1)

⌈ k

u − k
⌉ (⌈ k

u − k
⌉ (u − k) − u − k)+

1
2n
⌈ k

u − k
⌉ ((k − u) ⌈ k

u − k
⌉ + k + u) ≤ 0 (2.36b)

⇔ n − ∣S∣
2(n − 1)

⌈ k

u − k
⌉ (k ⌈ k

u − k
⌉ + k − u ⌈ k

u − k
⌉ + u) ≤ 0 (2.36c)

⇔ ⌈ k

u − k
⌉ (k − u) + u + k ≤ 0 (2.36d)

⇔ u + k ≤ (u − k) ⌈ k

u − k
⌉ (2.36e)

⇔ u

u − k
≤ ⌈ k

u − k
⌉ − k

u − k
(2.36f)

As 1 ≤ u
u−k

and ⌈ k
u−k
⌉ − k

u−k
< 1 by definition of the ceiling operation, (2.36f) does not hold, which

means that coalitional rationality is not satisfied in this case. Thus, for 1
2 <

k
u
≤ n−2

n−1 , we have Φ(c+) ∉

C(c+).

We can now test coalitional rationality for the case ∣S∣ < u
u−k

when n−2
n−1 <

k
u
≤ n−1

n
, as for the case

1
2 <

k
u
≤ n−2

n−1 coalitional rationality was not achieved. We note that u
u−k
> n − 1 is equivalent to

k
u−k
> n−2, and that k

u
≤ n−1

n
is equivalent to u

u−k
≤ n, from which it follows that n−2 < k

u−k
≤ n−1
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and ⌈ k
u−k
⌉ = n − 1. We can then solve the following

(∣S∣ − 1)Φ−ip(c
+) +Φip(c

+) ≤ u − ∣S∣(u − k) (2.37a)

⇔ ∣S∣ − 1
2n(n − 1)

⌈ k

u − k
⌉ (⌈ k

u − k
⌉ (u − k) − u − k)+

1
2n
⌈ k

u − k
⌉ ((k − u) ⌈ k

u − k
⌉ + k + u) ≤ u − ∣S∣(u − k) (2.37b)

⇔ 1
2n
(kn2 − kn∣S∣ − 2k∣S∣ − n2u + n∣S∣u + 2nu − 2u) ≤ 0 (2.37c)

⇔ kn2 + ∣S∣((3n − 2)u − 3kn) − n2u ≤ 0 (2.37d)

At this point, we note that this expression is linear in ∣S∣ which takes values in {2, 3, . . . , n−1}. Thus,

depending on the sign of the coefficient (3n − 2)u − 3kn, it will be sufficient to test this expression

for ∣S∣ = 2 or ∣S∣ = n−1 as the maximum of the expression on the left must be achieved at one of these

two extremes. We test for positivity of the coefficient:

(3n − 2)u − 3kn > 0 (2.38a)

⇔ k

u
> 3n − 2

3n
(2.38b)

Note that 3n−2
3n
> n−1

n
and, therefore, the coefficient (3n − 2)u − 3kn is positive for all values of k

and u such that n−2
n−1 <

k
u
≤ n−1

n
. We can then replace ∣S∣ = n − 1 in (2.37d) and obtain:

kn(3 − 2n) + u(2 − 5n + 2n2) ≤ 0 (2.39a)

⇔ (2 − 5n + 2n2) ≤ k

u
(2n2 − 3n) (2.39b)

⇔ 2n2 − 5n + 2
2n2 − 3n

≤ k

u
(2.39c)

⇔ (2n − 1)(n − 2)
2n2 − 3n

≤ k

u
(2.39d)

Because we have (2n−1)(n−2)
2n2−3n

> n−2
n−1 and (2n−1)(n−2)

2n2−3n
< n−1

n
for all n > 2, we can conclude that, for

values of k and u such that (2n−1)(n−2)
2n2−3n

≤ k
u
≤ n−1

n
, the Shapley value is stable, i.e., Φ(c+) ∈ C(c+).

Case 2.3: n−1
n
< k

u
≤ 1. Again, we follow the same procedure as above: we start by computing the

expressions for Φ−ip(c+) and Φip(c+) from Table 2.6:
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Φ−ip(c
+) = 1

n
(0 +∑n−1

l=1
l

n − 1
(k − u)) (2.40a)

= (k − u)
n(n − 1)

n(n − 1)
2

(2.40b)

= k − u

2
(2.40c)

Φip(c
+) = 1

n
(k +∑n−1

l=1
(k − l(u − k))) (2.40d)

= 1
n
(k + (n − 1)k − (u − k)n(n − 1)

2
) (2.40e)

= k + (k − u)n − 1
2

(2.40f)

We now check coalitional rationality starting with coalitions S such that ip ∉ S. In this case, c+S = 0,

and the inequality to test is:

∣S∣Φ−ip(c
+) ≤ 0 (2.41a)

⇔ Φ−ip(c
+) ≤ 0 (2.41b)

⇔ k − u

2
≤ 0 (2.41c)

Since k < u, (2.41c) holds true, which means that coalitional rationality is satisfied for these coalitions.

We now test coalitional rationality for coalitions S such that ip ∈ S. In this case, we have c+S = u − ∣S∣(u − k)

and

(∣S∣ − 1)Φ−ip(c
+) +Φip(c

+) ≤ c+S (2.42a)

⇔ (∣S∣ − 1)k − u

2
+ k + (k − u)n − 1

2
≤ u − ∣S∣(u − k) (2.42b)

⇔ (k − u)(n − 2) ≤ 0 (2.42c)

Since k < u, (2.42c) holds true, which means that we have shown that Φ(c+) ∈ C(c+) for n−1
n
< k

u
≤ 1.

A summary of the findings in the previous three cases is presented in Table 2.7, which can be combined

into

Φ(c+) ∈ C(c+) if and only if
(2n − 1)(n − 2)

2n2 − 3n
≤ k

u
≤ 1. (2.43)

We can now move to consider the third and last case.
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Case Result

0 < k

u
≤ 1

2 Φ(c+) ∉ C(c+)
1
2 <

k

u
≤ n−1

n
Φ(c+) ∈ C(c+) if and only if (2n−1)(n−2)

2n2−3n
≤ k

u
≤ n−1

n
n−1

n
< k

u
≤ 1 Φ(c+) ∈ C(c+)

Table 2.7: Summary of the findings in the three cases for λ > 0.

Case 3: λ < 0. Our discussion of this case follows the same structure as the one of Case 2.

For a given coalition S ⊆ N and λ ∈ [−c, 0], the cost c(λ) of coalition S is given as follows:

cS(λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣S∣kc ip ∉ S (2.44a)

∣S∣k(c + λ) ip ∈ S and ∣S∣ ≤ u
k

(2.44b)

u(c + λ) + c(∣S∣k − u) ip ∈ S and ∣S∣ > u
k

(2.44c)

The conditions ∣S∣ ≤ u
k

and ∣S∣ > u
k

in (2.44b) and (2.44c) can be rewritten as u ≥ ∣S∣k and u < ∣S∣k,

respectively. They represent the two cases where all the ∣S∣k orders can either be transported on arc rip

or not. Indeed, as λ < 0, arc rip is used first in any optimal solution of the minimum cost flow problem

for coalition S.

We rewrite c(λ) as c(λ) = c0 + λc−, where

c−S =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 ip ∉ S , (2.45a)

∣S∣k ip ∈ S and ∣S∣ ≤ u
k

, (2.45b)

u ip ∈ S and ∣S∣ > u
k

. (2.45c)

We now observe that, as in Case 2, this decomposition simplifies checking the stability of the Shapley

value. Indeed, using linearity of the Shapley value, we can write Φi(λ) = Φi(c0) + λΦi(c−) for each

player i ∈ N and, for each coalition S ⊆ N , we can rewrite the inequality ∑i∈S Φi(λ) ≤ cS(λ) as
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follows:

∑
i∈S

Φi(λ) ≤ c(λ) (2.46a)

⇔ ∑
i∈S
(Φi(c0) + λΦi(c−)) ≤ c0

S + λc−S (2.46b)

⇔ ∑
i∈S

Φi(c0) + λ∑
i∈S

Φi(c−) ≤ c0
S + λc−S (2.46c)

⇔ λ∑
i∈S

Φi(c−) ≤ λc−S (as ∑
i∈S

Φi(c0) = c0
S) (2.46d)

⇔ ∑
i∈S

Φi(c−) ≥ c−S (as λ < 0) (2.46e)

Therefore, the Shapley value is stable in the game c(λ) for λ < 0 if and only if ∑i∈S Φi(c−) ≥ c−S for

all coalitions S ⊆ N . As in Case 2, note that, in (2.46), we have obtained both independence of λ and

a much simpler game to analyze.

We now compute the marginal cost for each player i ≠ ip:

c−S∪{i} − c−S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ip ∉ S (2.47a)

k ip ∈ S and ∣S∣ + 1 ≤ u
k

(2.47b)

u − ∣S∣k ip ∈ S and u
k
− 1 < ∣S∣ ≤ u

k
(2.47c)

0 ip ∈ S and ∣S∣ > u
k

(2.47d)

For i = ip, we have ip ∉ S, and the marginal cost equals

c−S∪{ip} − c−S =
⎧⎪⎪⎨⎪⎪⎩

(∣S∣ + 1)k ∣S∣ + 1 ≤ u
k

(2.48a)

u and ∣S∣ + 1 > u
k

. (2.48b)

We now compute the expressions for Φ−ip(c−) and Φip(c−).



58 An analysis of the stability of hinterland container transport cooperation

For i ≠ ip:

Φi(c−) =
1
n
∑

S⊆N∖{i}
(n − 1
∣S∣
)
−1

(c−S∪{i} − c−S) (2.49a)

= 1
n

⎛
⎜⎜⎜⎜⎜⎜
⎝

∑
S⊆N∖{i}∶

ip∈S,

∣S∣≤u
k
−1

(n − 1
∣S∣
)
−1

(c−S∪{i} − c−S) + ∑
S⊆N∖{i}∶

ip∈S,
u
k
−1<∣S∣≤u

k

(n − 1
∣S∣
)
−1

(c−S∪{i} − c−S)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.49b)

= 1
n

⎛
⎜⎜⎜⎜⎜⎜
⎝

∑
l=1,...,n−1∶

l≤u
k
−1

∑
S⊆N∖{i}∶

ip∈S,

∣S∣=l

(n − 1
l
)
−1

k + ∑
l=1,...,n−1∶

u
k
−1<l≤u

k

∑
S⊆N∖{i}∶

ip∈S,

∣S∣=l

(n − 1
l
)
−1

(u − lk)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.49c)

= 1
n

⎛
⎜⎜⎜
⎝
∑

l=1,...,n−1∶
l≤u

k
−1

(n − 1
l
)
−1

(n − 2
l − 1

)k + ∑
l=1,...,n−1∶

u
k
−1<l≤u

k

(n − 1
l
)
−1

(n − 2
l − 1

)(u − lk)
⎞
⎟⎟⎟
⎠

(2.49d)

= 1
n

⎛
⎜⎜⎜
⎝
∑

l=1,...,n−1∶
l≤u

k
−1

k
l

n − 1
+ ∑

l=1,...,n−1∶
u
k
−1<l≤u

k

(u − lk) l

n − 1

⎞
⎟⎟⎟
⎠

(2.49e)

For i = ip:

Φip(c
−) = 1

n
∑

S⊆N∖{ip}
(n − 1
∣S∣
)
−1

(c−S∪{ip} − c−S) (2.50a)

= 1
n

⎛
⎜⎜⎜⎜
⎝
∑

S⊆N∖{ip}∶
∣S∣≤u

k
−1

(n − 1
∣S∣
)
−1

(c−S∪{ip} − c−S) + ∑
S⊆N∖{ip}∶
∣S∣>u

k
−1

(n − 1
∣S∣
)
−1

(c−S∪{ip} − c−S)

⎞
⎟⎟⎟⎟
⎠

(2.50b)

= 1
n

⎛
⎜⎜⎜
⎝
∑

l=0,1,...,n−1∶
l≤u

k
−1

∑
S⊆N∖{ip}∶
∣S∣=l

(n − 1
l
)
−1

(l + 1)k+

+ ∑
l=0,1,...,n−1∶

l>u
k
−1

∑
S⊆N∖{ip}∶
∣S∣=l

(n − 1
l
)
−1

u

⎞
⎟⎟⎟
⎠

(2.50c)

= 1
n

⎛
⎜⎜⎜
⎝
∑

l=0,1,...,n−1∶
l≤u

k
−1

(n − 1
l
)
−1

(n − 1
l
)(l + 1)k + ∑

l=0,1,...,n−1∶
l>u

k
−1

(n − 1
l
)
−1

(n − 1
l
)u
⎞
⎟⎟⎟
⎠

(2.50d)
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= 1
n

⎛
⎜⎜⎜
⎝
∑

l=0,1,...,n−1∶
l≤u

k
−1

(l + 1)k + ∑
l=0,1,...,n−1∶

l>u
k
−1

u

⎞
⎟⎟⎟
⎠

(2.50e)

It is possible to rewrite the expressions in (2.50e) and in (2.49e) further by analysing the index sets of

the two summations as, depending on the value of k
u

, they can be empty or not. We distinguish four

cases that are presented in Table 2.8 and discuss them now.

In case 0 < k
u
≤ 1

n
, we have u

k
− 1 ≥ n − 1, and the index set {l = 1, . . . , n − 1 ∶ l ≤ u

k
− 1}

equals {l = 1, . . . , n − 1}, while the index set {l = 1, . . . , n − 1 ∶ u
k
− 1 < l ≤ u

k
} is empty and the

summation with this index set is zero. Moreover, the index set {l = 0, 1, . . . , n − 1 ∶ l ≤ u
k
− 1} equals

{l = 0, 1, . . . , n − 1}, while the index set {l = 1, . . . , n − 1 ∶ l > u
k
− 1} is empty.

In case 1
n
< k

u
≤ 1

n−1 , we have n − 2 ≤ u
k
− 1 < n − 1, and the index set {l = 1, . . . , n − 1 ∶ l ≤ u

k
− 1}

equals {l = 1, . . . , ⌊u
k
− 1⌋}, while the index set {l = 1, . . . , n − 1 ∶ u

k
− 1 < l ≤ u

k
} equals {l = n − 1}.

Moreover, the index set {l = 0, 1, . . . , n−1 ∶ l ≤ u
k
−1} equals {l = 0, 1, . . . , ⌊u

k
− 1⌋}, while the index

set {l = 1, . . . , n − 1 ∶ l > u
k
− 1} reduces to the singleton {l = ⌈u

k
− 1⌉}.

In case 1
n−1 <

k
u
≤ 1

2 , we have 1 ≤ u
k
−1 < n−2, and the index set {l = 1, . . . , n−1 ∶ l ≤ u

k
−1} equals

{l = 1, . . . , ⌊u
k
− 1⌋} as in the previous case, while the index set {l = 1, . . . , n−1 ∶ u

k
−1 < l ≤ u

k
} equals

{l = ⌊u
k
⌋}. Moreover, the index set {l = 0, 1, . . . , n−1 ∶ l ≤ u

k
−1} equals {l = 0, 1, . . . , ⌊u

k
− 1⌋} as in

the previous case, while the index set {l = 1, . . . , n−1 ∶ l > u
k
−1} equals {l = ⌊u

k
⌋ , ⌊u

k
⌋+1, . . . , n−1}.

In case 1
2 <

k
u
≤ 1, we have 0 ≤ u

k
− 1 < 1, and the index set {l = 1, . . . , n − 1 ∶ l ≤ u

k
− 1} is

empty, while the index set {l = 1, . . . , n − 1 ∶ u
k
− 1 < l ≤ u

k
} equals {l = ⌊u

k
⌋}. Moreover, the

index set {l = 0, 1, . . . , n − 1 ∶ l ≤ u
k
− 1} reduces to the singleton {l = ⌊u

k
⌋}, while the index set

{l = 1, . . . , n − 1 ∶ l > u
k
− 1} equals {l = 1, . . . , n − 1}.

Case 3.1: 0 < k

u
≤ 1

n
. We start by computing the expressions for Φ−ip(c−) and Φip(c−) from

Table 2.8:
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Case Φ−ip(c−) Φip(c−)

0 < k

u
≤ 1

n
1
n

n−1
∑
l=1

k l
n−1

1
n

n−1
∑
l=0
(l + 1)k

1
n
< k

u
≤ 1

n−1
1
n
(
⌊u

k
−1⌋

∑
l=1

k l
n−1 + ∑

l=n−1
(u − lk) l

n−1)
1
n
(
⌊u

k
−1⌋

∑
l=0
(l + 1)k + ∑

l=⌈u
k
−1⌉

u)

1
n−1 <

k

u
≤ 1

2
1
n
(
⌊u

k
−1⌋

∑
l=1

k l
n−1 + ∑

l=⌊u
k
⌋
(u − lk) l

n−1)
1
n
(
⌊u

k
−1⌋

∑
l=0
(l + 1)k +

n−1
∑

l=⌊u
k
⌋
u)

1
2 <

k

u
≤ 1 1

n
(0 + ∑

l=⌊u
k
⌋
(u − lk) l

n−1)
1
n
(∑

l=0
(l + 1)k +∑n−1

l=1 u)

Table 2.8: Summary of the expressions of the Shapley value for the case λ < 0. Note that the expres-
sions have not been fully simplified to highlight the effect of the various cases on the index set.

Φ−ip(c
−) = 1

n
∑n−1

l=1
k

l

n − 1
(2.51a)

= k

n(n − 1)
n(n − 1)

2
(2.51b)

= k

2
(2.51c)

Φip(c
−) = 1

n
∑n−1

l=0
(l + 1)k (2.51d)

= k

n
∑n

l=1
l (2.51e)

= k

n

n(n + 1)
2

(2.51f)

= k(n + 1)
2

(2.51g)

We now test coalitional rationality of the Shapley value by using the equivalent expression (2.46e) for

all coalitions S ⊆ N starting with coalitions S such that ip ∉ S. In this case, c−S = 0, and the inequality

to test is the following:

∣S∣Φ−ip(c
−) ≥ 0 (2.52a)

⇔ Φ−ip(c
−) ≥ 0 (2.52b)

⇔ k

2
≥ 0 (2.52c)
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Since k > 0, (2.52c) holds true for all coalitions S such that ip ∉ S. We now test coalitional rationality

for coalitions S such that ip ∈ S. In this case, c−S = ∣S∣k, and the inequality to test is

(∣S∣ − 1)Φ−ip(c
−) +Φip(c

−) ≥ ∣S∣k (2.53a)

⇔ (∣S∣ − 1)k
2
+ k

2
(n + 1) ≥ ∣S∣k (2.53b)

⇔ kn ≥ ∣S∣k (2.53c)

⇔ n ≥ ∣S∣ (2.53d)

Since S ⊆ N , (2.53d) holds true and, overall, we obtain that the Shapley value Φ(c(λ)) is stable in

this case.

Case 3.2: 1
n
< k

u
≤ 1

n−1 . We start by computing the expressions for Φ−ip(c−) and Φip(c−) from

Table 2.8. Note that, in this case, ⌊u
k
− 1⌋ = n−2. Indeed, the condition defining this case is equivalent

to n− 1 ≤ u
k
< n and, if u

k
∈ N, then u

k
= n− 1. If u

k
∉ N instead, then ⌈u

k
− 1⌉ = ⌈u

k
⌉− 1 = n− 2. This

makes the limit of the first summations in the expressions of Φ−ip(c−) and Φip(c−) explicit.

Φ−ip(c
−) = 1

n
(∑⌊u

k
−1⌋

l=1
k

l

n − 1
+∑

l=n−1
(u − lk) l

n − 1
) (2.54a)

= k

n(n − 1)∑
n−2

l=1
l + 1

n
(u − (n − 1)k)n − 1

n − 1
(2.54b)

= k

n(n − 1)
(n − 1)(n − 2)

2
+ u − (n − 1)k

n
(2.54c)

= −nk + 2u

2n
(2.54d)

Φip(c
−) = 1

n
(∑⌊u

k
−1⌋

l=0
(l + 1)k +∑

l=⌈u
k
−1⌉

u) (2.54e)

= k

n
∑n−1

l=1
l + u

n
(2.54f)

= k

n

n(n − 1)
2

+ u

n
(2.54g)

= n(n − 1)k + 2u

2n
(2.54h)

Similarly to the previous case, we test coalitional rationality starting with coalitions S such that ip ∉ S.

In this case, c−S = 0, and the inequality to test is
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∣S∣Φ−ip(c
−) ≥ 0 (2.55a)

⇔ Φ−ip(c
−) ≥ 0 (2.55b)

⇔ 2u − nk

2n
≥ 0 (2.55c)

⇔ 2u ≥ nk (2.55d)

⇔ k

u
≤ 2

n
(2.55e)

Since the case-defining condition k
u
≤ 1

n−1 implies that k
u
≤ 2

n
(as 1

n−1 ≤
2
n

for n ≥ 2), (2.55e) holds

true.

We now consider coalitions S such that ip ∈ S. In this case, c−S = ∣S∣k, and the inequality to test is

(∣S∣ − 1)Φ−ip(c
−) +Φip(c

−) ≥ ∣S∣k (2.56a)

⇔ (∣S∣ − 1)2u − nk

2n
+ n(n − 1)k + 2u

2n
≥ ∣S∣k (2.56b)

⇔ n2k − 3n∣S∣k + 2∣S∣u ≥ 0 (2.56c)

⇔ ∣S∣(2u − 3nk) ≥ −n2k (2.56d)

as (2u − 3nk) < 0 and the inequality should hold for all ∣S∣ = 1, 2, . . . , n − 1, it suffices to consider

∣S∣ = n − 1:

⇔ (n − 1)(2u − 3nk) ≥ −n2k (2.56e)

⇔ 2u

k
(n − 1) ≥ 2n2 − 3n (2.56f)

⇔ k

u
≤ 2n − 2

2n2 − 3n
(2.56g)

Since 1
n
< 2n−2

2n2−3n
≤ 1

n−1 for all n ≥ 2, (2.56g) defines a new condition for stability in this case.

Combining the results just obtained yields Φ(c(λ)) ∈ C(λ) for 1
n
< k

u
≤ 2n−2

2n2−3n
.

Case 3.3: 1
n−1 <

k

u
≤ 1

2 . We start by computing the expressions for Φ−ip(c−) and Φip(c−) from

Table 2.8:



2.8 Appendix 63

Φ−ip(c
−) = 1

n
(∑⌊u

k
−1⌋

l=1
k

l

n − 1
+∑

l=⌊u
k
⌋
(u − lk) l

n − 1
) (2.57a)

= k

n(n − 1)
⌊u

k
⌋ ⌊u

k
− 1⌋

2
+
(u − ⌊u

k
⌋k) ⌊u

k
⌋

n(n − 1)
(2.57b)

= k

2n(n − 1)
[⌊u

k
⌋ (⌊u

k
⌋ − 1) + 2 ⌊u

k
⌋ (u

k
− ⌊u

k
⌋)] (2.57c)

Φip(c
−) = 1

n
(∑⌊u

k
−1⌋

l=0
(l + 1)k +∑n−1

l=⌊u
k
⌋
u) (2.57d)

= k

n
∑⌊u

k
⌋

l=2
l + u

n
(n − ⌊u

k
⌋) (2.57e)

= k

2n
⌊u

k
⌋ (⌊u

k
⌋ − 1) + u − u

n
⌊u

k
⌋ (2.57f)

We now check whether coalitional rationality holds for all S ⊆ N starting with coalitions S such that

ip ∉ S. In this case,c−S = 0, and the inequality to test is

∣S∣Φ−ip(c
−) ≥ 0 (2.58a)

⇔ Φ−ip(c
−) ≥ 0 (2.58b)

⇔ k

2n(n − 1)
[⌊u

k
⌋ (⌊u

k
⌋ − 1) + 2 ⌊u

k
⌋ (u

k
− ⌊u

k
⌋)] ≥ 0 (2.58c)

⇔ (⌊u
k
⌋ − 1) + 2(u

k
− ⌊u

k
⌋) ≥ 0 (2.58d)

Since u
k
≥ 2 in this case and u

k
− ⌊u

k
⌋ ≥ 1 by definition of the floor operation, (2.58d) holds true.

We now consider coalitional rationality for coalitions S such that ip ∈ S. In this case, the value of c−S

depends on whether ∣S∣ ≤ u
k

or not. We treat only the case ∣S∣ > u
k

as it will suffice to prove that the

Shapley value is not stable in this case. For ∣S∣ > u
k

, we have c−S = u and the inequality to test is
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(∣S∣ − 1)Φ−ip(c
−) +Φip(c

−) ≥ u (2.59a)

⇔ (∣S∣ − 1) k

2n(n − 1)
[⌊u

k
⌋ (⌊u

k
⌋ − 1) + 2 ⌊u

k
⌋ (u

k
− ⌊u

k
⌋)]+ (2.59b)

k

2n
⌊u

k
⌋ (⌊u

k
⌋ − 1) + u − u

n
⌊u

k
⌋ ≥ u (2.59c)

⇔ ∣S∣ − 1
n − 1

[⌊u
k
⌋ (⌊u

k
⌋ − 1) + 2 ⌊u

k
⌋ (u

k
− ⌊u

k
⌋)] + ⌊u

k
⌋ (⌊u

k
⌋ − 2u

k
) + ⌊u

k
⌋ ≥ 0 (2.59d)

we test the case ∣S∣ = n − 1 and obtain that

⇔ ⌊u
k
⌋ − 2u

k
+ 1 ≥ 0 (2.59e)

⇔ ⌊u
k
⌋ − u

k
+ 1 ≥ u

k
(2.59f)

Since ⌊u
k
⌋ − u

k
+ 1 ≤ 1 and u

k
≥ 2, (2.59f) does not hold, and we obtain that the Shapley value is not

stable in this case.

Case 3.4: 1
2 <

k

u
≤ 1. We start by computing the expressions for Φ−ip(c−) and Φip(c−) from

Table 2.8:

Φ−ip(c
−) = 1

n
∑

l=⌊u
k
⌋
(u − lk) l

n − 1
(2.60a)

= u − k

n(n − 1)
(2.60b)

Φip(c
−) = 1

n
(∑

l=0
(l + 1)k +∑n−1

l=1
u) (2.60c)

= k

n
+ u

n
(n − 1) (2.60d)

= k + (n − 1)u
n

(2.60e)

We now test coalitional rationality of the Shapley value for all coalitions S ⊆ N starting with coali-

tions S such that ip ∉ S. In this case, c−S = 0, and the inequality to test is
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∣S∣Φ−ip(c
−) ≥ 0 (2.61a)

⇔ Φ−ip(c
−) ≥ 0 (2.61b)

⇔ u − k

n(n − 1)
≥ 0 (2.61c)

Since k < u, (2.61c) holds true.

We now consider coalitions S such that ip ∈ S. Moreover, we consider the case where ∣S∣ > 1 as,

for ∣S∣ = 1, we would be testing individual rationality of the Shapley value, which is always satisfied.

Under these assumptions, we have c−S = u and the inequality to test is

(∣S∣ − 1)Φ−ip(c
−) +Φip(c

−) ≥ u (2.62a)

⇔ (∣S∣ − 1)(u − k)
n(n − 1)

+ k + (n − 1)u
n

≥ u (2.62b)

⇔ (u − k)(∣S∣ − n) ≥ 0 (2.62c)

Since S ⊊ N , (2.62c) does not hold, meaning that the Shapley value is not stable in this case.

Case Result

0 < k

u
≤ 1

n
Φ(c−) ∈ C(c−)

1
n
< k

u
≤ 1

n−1 Φ(c−) ∈ C(c−) if and only if 1
n
< k

u
≤ 2n−2

2n2−3n
1

n−1 <
k

u
≤ 1

2 Φ(c−) ∉ C(c−)
1
2 <

k

u
≤ 1 Φ(c−) ∉ C(c−)

Table 2.9: Summary of the findings in the four cases for λ < 0.

A summary of the findings in the previous four cases is given in Table 2.9, which can be put together

as

Φ(c−) ∈ C(c−) if and only if 0 < k

u
≤ 2n − 2

2n2 − 3n
. (2.63)

Summary. As a final remark, we note that the numerical expressions we found under the assump-

tion that n ≥ 3 extend to the case of a two-players cooperation, despite the fact that the subcases
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in Tables 2.7 and 2.8 would not lead to the correct case. We observe that the summarizing condi-

tions Φ(λ) ∈ C(λ) if and only if (2n−1)(n−2)
2n2−3n

≤ k
u
≤ 1 for λ > 0, and Φ(λ) ∈ C(λ) if and only if

0 ≤ k
u
≤ 2n−2

2n2−3n
for λ < 0 are valid for n = 2 as well. Indeed, the two terms (2n−1)(n−2)

2n2−3n
and 2n−2

2n2−3n

equal 0 and 1, respectively, for n = 2, thus covering the stable case of a two-players cooperation.

Thanks to the previous observation and by combining the results of Cases 2 and 3, the proof is

complete.

2.8.7 Proof of Theorem 2

To prove the theorem, we need the following Lemma.

Lemma 1. Given a subadditive TU cost game (N, c) and a solution concept Ψ that is individually

rational and efficient, let the individual rationality gap δi for company i ∈ N be δi ∶= ci −Ψi. Then,

for any coalition S ⊊ N , coalitional rationality implies bounded synergy for this coalition. Moreover,

synergy greater than that of the grand-coalition leads to instability of the solution concept. In other

words:

∑
i∈S

Ψi ≤ cS ⇒ σS ≤ σN (2.64a)

σS > σN ⇒ ∑
i∈S

Ψi > cS ⇒ C = ∅ (2.64b)

Moreover,

∑
i∈S

Ψi = cS + ε ⇔ ε = σS − σN + ∑
i∈N∖S

δi (2.65)

Proof. Proof. We have:

∑
i∈S

Ψi > cS

⇔ cN − ∑
i∈N∖S

Ψi + ∑
i∈N

ci − ∑
i∈N

ci > cS

⇔ σS > σN − ∑
i∈N∖S

δi

Thus,

∑
i∈S

Ψi > cS ⇔ σS > σN − ∑
i∈N∖S

δi (2.66)
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which implies (2.64a) and (2.64b). Equivalence (2.66) shows that instability of a coalition implies a

synergy level higher than the difference of the synergy level of the grand-coalition and the individual

rationality gap of the other players.

Equivalence (2.65) is obtained by repeating the same steps, but starting with∑i∈S Ψi = cS + ε.

Theorem 2. Given a subadditive cost game (N, c) and an individually rational and efficient solution

concept Ψ, the following holds:

σS ≤ σN ∀S ⊆ N ⇒ Ψ ∈ CσN , (2.67)

where CσN is the ε-Core for ε = σN .

Proof. Proof. Pick S ⊆ N and assume that σS ≤ σN . Then, either σS ≤ σN − ∑i∈N∖S δi or

σN−∑i∈N∖S δi < σS ≤ σN . In the former case, we have∑i∈S Ψi ≤ cS ; in the latter case,∑i∈S Ψi > cS

and∑i∈S Ψi = cS +εS , where εS ∶= σS −σN +∑i∈N∖S δi (from (2.65)). From the condition σS ≤ σN ,

we obtain that εS ≤ ε0 ∶= ∑i∈N δi for all coalitions S ⊆ N . If Ψ ∉ C, then it follows that Ψ ∈ Cε, where

ε = maxS⊆N{∑i∈S Ψi − cS} = maxS⊆N{εS} ≤ ε0. Thus, Ψ ∈ Cε0 . If Ψ ∈ C, then Ψ ∈ Cε0 as C ⊆ Cε0 .

Now, ε0 = ∑i∈N(ci −Ψi) = ∑i∈N ci − cN = σN concludes the proof of (2.67).

2.8.8 Proof of Corollary 2

Corollary 2. Given a parametric minimum cost flow game c(λ), it follows that

Φ(λ) ∈ CσN (λ) ∀λ ∈ Λ. (2.68)

Proof. Proof.

Consider a fixed value λ ∈ Λ. Non-emptiness of the core of the game c(λ) implies that σS(λ) ≤ σN(λ)

for all S ⊆ N . Indeed, non-emptiness of the core implies that there exists x = (xi)i∈N ∈ C(λ)

such that ∑i∈N xi = cN(λ) and ∑i∈S xi ≤ cS(λ) for all coalitions S ⊆ N . From the inequalities

∑i∈S xi ≤ cS(λ), we obtain
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∑
i∈S

xi ≤ cS(λ) (2.69a)

⇔ cN(λ) − ∑
i∈N∖S

xi + ∑
i∈N

ci(λ) − ∑
i∈N

ci(λ) ≤ cS(λ) (2.69b)

⇔ σS(λ) ≤ σN(λ) − ∑
i∈N∖S

(ci(λ) − xi) (2.69c)

⇒ σS(λ) ≤ σN(λ) (2.69d)

where, in (2.69c), we note that ci(λ) − xi ≥ 0 because of coalitional rationality. Thus, we have

σS(λ) ≤ σN(λ) for all S ⊆ N . Therefore, since the Shapley value Φ(λ) is an individually rational

and efficient solution concept, the claim follows from Theorem 2 and the fact that our argument holds

true for each value λ ∈ Λ.

2.8.9 Proofs of Theorems 3 and 4

In this section, we provide the proofs of Theorems 3 and 4, which extend the results of Theorem 1 to a

slightly richer network structure.

Independently of the position of the parameter λ on the arcs of the network, we can observe that the

cost function cv(λ) of the vertical cooperation game cv(λ) can be decomposed into the sum of two

games cv(λ) = ch(λ)+c̄(λ), where the horizontal cooperation game ch(λ) is defined by the minimum

cost flow game from Section 2.4, where only the set of arcs {r̄i ∶ i ∈ N} is considered, and the cost

function of the game c̄(λ) is the difference c̄(λ) ∶= cv(λ) − ch(λ). Note that, from the fact that the

vertical cooperation path can be used only by the grand coalition, it follows that c̄S(λ) ∶= 0 for all

S ⊊ N , while only c̄N(λ) can have non-zero value depending on λ and the parameters of the game.

Theorem 3. Consider the vertical cooperation game cv(λ), where cr̄ip
= c̄ + λ. For all values of

direct unit transport cost c and capacity u, vertical unit transport cost c̄ and capacity ū, amount of

orders k and number of players n, we have

Φv(λ) ∈ Cv(λ) for all λ ∈ [−c,+∞). (2.70)

In other words, when the parametric cost is on one of the arcs in the vertical cooperation path, the

Shapley value Φv(λ) is stable for all values of λ.
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Proof. Proof. We first note that the game cv(λ) is symmetric for every value of λ. Indeed, for any two

players i, j ∈ N , we have cv
S∪{i}(λ) = cv

S∪{j}(λ) for all coalitions S ⊆ N ∖ {i, j}. This is because

S ∪ {i} ⊊ N and S ∪ {j} ⊊ N , so the vertical cooperation game reduces to the horizontal cooperation

game where all players and their networks (being a single arc) are identical (see Figure 2.7). Therefore,

we have that cv
S∪{i}(λ) = ch

S∪{i}(λ) = ch
S∪{j}(λ) = cv

S∪{j}(λ). Note that this holds true even when i =

ip as the parametric cost is on arc r̄ip , which is not considered in the game ch(λ). It follows that

Φi(λ) = Φj(λ) for all i, j. Using efficiency of the Shapley value, this implies that Φv
i (λ) = 1

n
cv

N(λ)

for all players i ∈ N .

We now distinguish two cases depending on whether the unit transport cost λ + nc̄ of the vertical

cooperation path is greater than the unit cost c for direct transport or not. In the first case, the vertical

cooperation path is not used by the cooperation, while in the second case, it might appear in the

cost cv
N(λ) of the grand coalition.

Case 1: λ+nc̄ > c. In this case, the game cv(λ) reduces to the game ch(0) as the vertical cooperation

path is not used, and the parameter λ does not enter the cost expressions. Therefore, ch(λ) = ch(0)

and, thus, the Shapley value is stable by Theorem 1, i.e., Φv(λ) ∈ Cv(λ).

Case 2: λ+nc̄ ≤ c. In this case, the vertical cooperation path can be used by the grand coalition since

its unit transport cost λ + nc̄ is at most as large as the unit cost of direct transport. Testing coalitional

rationality of the Shapley value requires us to test whether ∑i∈S Φv
i(λ) ≤ cv

S(λ) for all coalitions

S ⊆ N . For any S ⊆ N , we can reformulate the corresponding inequality as follows:

∑
i∈S

Φv
i(λ) ≤ cv

S(λ) (2.71a)

⇔ ∣S∣c
v
N(λ)

n
≤ ∣S∣kc (2.71b)

⇔ cv
N(λ) ≤ knc (2.71c)

Inequality (2.71c) holds since λ + nc̄ ≤ c implies that cv
N(λ) = ū(λ + nc̄) + (kn − ū)c ≤ knc. Here,

the equality follows since the grand coalition can transport ū orders on the vertical cooperation path at

unit cost λ + nc̄. Therefore, coalitional rationality is satisfied for all coalitions S ⊆ N and we obtain

Φv(λ) ∈ Cv(λ).

We now provide the proof of Theorem 4.
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Theorem 4. In the vertical cooperation game cv(λ) where crip
= c + λ, we have that for all values

of direct unit transport cost c and capacity u, vertical unit transport cost c̄ such that nc̄ ≤ c and

capacity ū, amount of orders k and number of players n, the following holds: For each value of

λ ∈ [−c̄,+∞), stability of the Shapley value Φh(λ) in the horizontal cooperation game ch(λ) implies

stability of the Shapley value Φv(λ) in the vertical cooperation game cv(λ). More formally:

For each λ ∈ [−c̄,+∞) ∶ Φh(λ) ∈ Ch(λ) ⇒ Φv(λ) ∈ Cv(λ). (2.72)

The converse does, in general, not hold true.

Proof. Proof. Note that this proof is based on observations found in the proof of Theorem 1 provided

in Appendix 2.8.6.

We first note that the game c̄(λ) is symmetric for every value of λ since only c̄N(λ) can be non-zero.

Therefore, for any two of players i, j ∈ N , we have Φ̄i(λ) = Φ̄j(λ). Using efficiency of the Shapley

value, this implies that Φ̄i(λ) = 1
n

c̄N(λ) for all players i ∈ N . Moreover, we note that c̄N(λ) ≤ 0

for each λ. This follows since c̄N(λ) = cv
N(λ) − ch

N(λ) by definition and since the graph considered

in the minimum cost flow problem of the grand coalition N in ch(λ) is a subgraph of the graph in

the minimum cost flow problem of the grand coalition in cv(λ), which implies that the minimum

cost ch
N(λ) achievable by the grand coalition in ch(λ) is at least as large as the minimum cost cv

N(λ)

achievable by the grand coalition in cv(λ).

Because the arc rip with parametric cost is a direct transport arc, we obtain that the horizontal cooper-

ation game ch(λ) can be decomposed as in the proof of Theorem 1: ch(λ) = c0 + λc±, where c± = c+

or c± = c− depending on the sign of λ. The games c0, c+, and c− have been defined in the proof of

Theorem 1 provided in Appendix 2.8.6 (see Equations (2.25) and (2.45) for c+ and c−, respectively).

Intuitively, the two games c+ and c− count only the amount of orders transported on arc rip , so that

λc± is the cost difference resulting from transport on arc rip . The dependence on the sign of λ follows

from the fact that, for λ < 0, player ip’s arc rip is used first in each coalition, while, for λ > 0, arc rip

is used last.

We let Φ± and Φ0 be the Shapley value for the games c±, and c0, respectively.

Combining the decomposition of ch(λ) with that of cv(λ), we obtain that cv(λ) = c0 + λc± + c̄(λ)

and the Shapley value Φv(λ) can be computed by using linearity, as its expression is known explicitly

for each of the games c0, c± and c̄(λ).

Before entering the proof of coalitional rationality, we recall that c̄S(λ) = 0 for all S ⊊ N .
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Testing coalitional rationality for S ⊊ N means testing whether ∑i∈S Φv
i (λ) ≤ cv

S(λ), which can be

rewritten as follows:

∑
i∈S

Φv
i (λ) ≤ cv

S(λ) (2.73a)

⇔ ∑
i∈S

Φ0
i + λ∑

i∈S
Φ±i + ∣S∣

c̄N(λ)
n

≤ c0
S + λc±S (2.73b)

⇔ λ∑
i∈S

Φ±i + ∣S∣
c̄N(λ)

n
≤ λc±S (2.73c)

To further make the expression (2.73c) explicit, we distinguish two cases depending on the sign of λ.

Case 1: λ = 0. In this case, (2.73c) reduces to

∣S∣
n

c̄N(0) ≤ 0, (2.74)

which holds since c̄N(0) ≤ 0. Thus, Φv(0) ∈ Cv(0).

Case 2: λ > 0. In this case, we can rewrite (2.73c) as follows, knowing that c± = c+:

∑
i∈S

Φ+i +
1
λ

∣S∣
n

c̄N(λ) ≤ c+S (2.75)

Since c̄N(λ) ≤ 0 and λ > 0, we have 1
λ

∣S∣
n

c̄N(λ) ≤ 0. Consequently, we obtain that ∑i∈S Φ+i ≤ c+S

for all S ⊂ N , which is equivalent to Φh(λ) ∈ Ch(λ) as seen in (2.26) in the proof of Theorem 1,

implies (2.75), i.e., that Φv(λ) ∈ Cv(λ).

Case 3: −c ≤ λ < 0. In this case, we rewrite (2.73c) as follows, knowing that c± = c−:

∑
i∈S

Φ−i +
1
λ

∣S∣
n

c̄N(λ) ≥ c−S (2.76)

Since c̄N(λ) ≤ 0 and λ < 0, we have 1
λ

∣S∣
n

c̄N(λ) ≥ 0. Thus, if ∑i∈S Φ−i ≥ c−S for all S ⊆ N ,

then (2.76) holds and Φv(λ) ∈ Cv(λ). As∑i∈S Φ−i ≥ c−S for all S ⊆ N is equivalent to Φh(λ) ∈ Ch(λ)

because of (2.46) in the proof of Theorem 1, we obtain that Φh(λ) ∈ Ch(λ) implies Φv(λ) ∈ Cv(λ)

as claimed.

By combining the two cases, we have shown that Φh(λ) ∈ Ch(λ) implies Φv(λ) ∈ Cv(λ).

To show that the opposite implication does not hold true in general, we refer to the numerical example

in Section 2.6.3.2, which shows that, for certain combinations of the parameters, we have Φh(λ) ∈

Ch(λ) but Φv(λ) ∉ Cv(λ).





5 Conclusions and Future Outlook

This thesis studied how the utilization of inland containerized and bulk freight transport capacity can

improve upon current practice from the planning and execution perspective. This focal problem is

analyzed from three main points of view related to the state of the industry at the time of pursuing this

research.

First, to counter the effect of a fragmented transport market with a large share of small companies,

cooperation among carriers that pool transport demand and capacity is analyzed. Thanks to a novel

tool that allows for a sensitivity analysis of cooperative games, it is possible to analyse whether a

cooperation is stable depending on a given transport setting. Indeed, as the bargaining power of a

participant in the cooperation depends on their contribution to the cooperative transport setup, the

cooperation is stable or not depending on the partition of the gains among the participants themselves.

Such a division of the gains might be successful, as all agree, or not, because of unfairness in the

partition, for instance. The effect that the transport setting has on this partition and its success is

analyzed in Chapter 2.

Second, an adaptive planning approach suitable for freight transport operations is formulated and stud-

ied to address the negative impact of uncertainty of container transport operations on transport relia-

bility. In particular, the purpose of this study is estimating the performance improvement, in terms of

costs and reliability, resulting from the adoption of such a complex approach. A challenging aspect of

freight operations is that, to be able to adjust a transport plan during the execution, the planner needs

to pay a fee to reserve that additional capacity required to adapt the plan.

Third, digital transport marketplaces are considered as an opportunity to improve upon traditional

matchmaking in the inland waterway transport market. The raising search friction and heterogeneity

due to enlarging customer base are addressed with a dynamic model for two-sided assortment optimiza-

tion. The model proposed tackles the challenge of learning the behavior of the users while improving

the rate of matches in the marketplace.
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The remainder of this chapter is organized as follows: Section 5.1 concludes the research in Chapters 2,

3 and 4; Section 5.2 provides an outlook on future research.

5.1 Conclusions

The main conclusions from each chapter are reported in the following.

Chapter 2 shows that cooperation, either horizontal or vertical, between container transport operators,

can be stable under certain conditions through a novel tool to inspect this problem. Indeed, by taking

advantage of both parametric optimization and cooperative game theory, an analysis of the sensitivity

of cooperation stability is made possible.

Taking advantage of this approach, a theoretical study on a stylized setting shows that the main dis-

criminant for the stability of horizontal cooperation is the demand-over-capacity ratio compared with

a function of the size of the cooperation. This abstract result is in line with the business understand-

ing of the conditions for cooperation to be most stable. In particular, it is proven that, for problems

with network flow-like cost structure, cooperation is stable or limited unstable even in over-capacitated

settings, where one would expect competition to prevail over cooperation.

Moreover, a novel measure of instability is introduced to further the understanding of the stability

of a cooperation, which has been traditionally studied from a binary stance, i.e., either a cooperation

is stable or not. Taking advantage of this measure, a numerical analysis of a stylized cooperation

setting finds only a small relative instability across the whole range of parameters, provided similar

transport costs between the companies. This finding shows that small and similar companies can reap

the benefits of stable medium-sized cooperation against a small individual loss for some. Whether this

loss is acceptable for a small company or not depends on other factors that go beyond the scope of this

study. While previous analysis would have concluded not-viable cooperation for those parameters, by

measuring instability new opportunities for cooperation might be considered.

Overall, it can be concluded that conflicts during the division of the gains of a cooperation should not be

expected to be the main reason for cooperation to fail as the measure of instability is rather insensitive

to changing configurations. As those theoretical and numerical results are in line with other empirical

findings on real cases of failing cooperation in transport, it can be concluded that the operational

challenge of coordinating the cooperative effort must be greater than the benefits of improved transport

performance.
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From the stability of cooperation considered in Chapter 2, this thesis focuses then in Chapter 3 on

adaptive routing decisions as a way to hedge against uncertainties in transport operations at the plan-

ning level. The findings in Chapter 3 suggest that adaptive decisions can reduce the marginal cost of

reliability when compared to non-adaptive planning approaches. The trade-off between adaptive deci-

sions and capacity booking is tackled at once thanks to a novel model combining static and dynamic

decisions. The complexity of this problem lies in the fact that the set of alternative adaptive routing

options is defined by the capacity booking decisions. After showing that this problem is hard to solve

(NP-complete), a solution approach is found in a MIP formulation which can be input to off-the-shelf

solvers. Having a solution approach for this problem, two sets of numerical experiments show that (i)

the medium-sized realistic instances can be solved by a consumer-grade computer, and suggest (ii) a

constant marginal cost of reliability. The latter result is of relevance for practitioners as it highlights

the potential value of adaptive decisions: the reliability of a transport plan can be increased at a cost

linear to the reliability requirement. While further investigations should check whether this result holds

in specific transport operations, the stylized model constructed gives first evidence of the potential of

adaptive decisions.

Overall, the research in Chapter 3 showed that a model to combine adaptive routing decisions for

container freight transport is possible under current business practice. By formalizing the complex

interaction between a-priori and adaptive decisions in a scheduled network, this model opens a range

of opportunities for container transport planning in the hope of improving the capability of practitioners

to react to changes

Chapter 4 considers the problem faced by a growing digital transport marketplace, like the one of the

industry partner involved in this research, that aims at improving the matching rate in a heterogeneous

and dynamic freight transport market. First, it is found that the problem faced by the platform operating

the marketplace is more similar to the problem faced by dating platforms than that faced by ride-hailing

ones: indeed, because the platform is not in control of transport capacity, they cannot assign demand

to supply like a taxi platforms assigns riders to taxis. Instead, the platform can facilitate matching by

deciding what each side evaluates, a problem related to the so-called assortment optimization problem

(faced by physical stores, for instance, that can decide how to display items to facilitate sales). As a

second conclusion, Chapter 4 shows that the novel approach achieves an expected regret rate of 0.27

meaning that it is expected that only 0.27 of matchable transport requests cannot be matched by the

model at each epoch. Moreover, this performance level is reached quickly within the first 20 transport
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requests. This result shows a promising approach that is ready to be tested further in field experiments.

Because three different policies were tested with a different attitude towards exploring new alternatives

or exploiting successful ones, numerical results suggest further that exploratory approaches should be

preferred over exploitative ones because of the possible positive effect on customer adoption. Indeed,

in the first transport requests, the more exploratory method achieves the lowest regret meaning they

can cater the best combination of alternatives among the three policies. In the long run, though, this

early gain is overridden by the learned preferences.

Overall, Chapter 4 shows that digital transport marketplaces can tackle a larger customer base by

learning user preferences while limiting the number of alternatives each user effectively evaluates. This

shows that digital platforms can expand further thus allowing for a better-than-traditional matching

between transport demand and supply in the inland transport market.

5.2 Future outlook

This dissertation investigates how Operations Research could benefit transport planning by tackling

different problems with a range of methodologies. This work opens several avenues for further inves-

tigation.

Extending the sensitivity analysis of cooperative games. The method developed in Chapter 2 to

perform a sensitivity analysis of cooperative games considers only changes for a single parameter in

the objective value of the optimization problem. Changes in parameters in the set of constraints have

been evaluated numerically. A natural extension of the method proposed would extend the analysis to

parameter changes in a constraint.

Analysing cooperation on general networks. The analysis of the stability of cooperation in inland

transport networks in Chapter 2 considers only horizontal and vertical types of cooperation. While

those are two well-understood and studied types of arrangement, the structure of the transport networks

of multiple companies might lead to other types of power relations. A second natural extension of

the research presented in Chapter 2 could consider general transport network structures to study the

stability of cooperation. This would allow for far greater precision in representing specific cooperative

settings and providing insights into their stability.

Extending the adaptive flow model to multi-commodity flows. The model developed and studied

in Chapter 3 considered a single type of container as well as a single origin-destination pair. It would

then be interesting to explore the effect of the interaction of multiple shipments having different origins
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and destinations. Moreover, as different types of containers exist and might not be transported on the

same set of transport means, adding this real feature to the model would be a natural extension. Those

extensions would benefit the understanding of the value of adaptive planning in an even more realistic

setting than the one considered in this thesis.

An online extension of adaptive decision making. Transport planning requires online decision mak-

ing: a stream of requests is received while plans need to be adjusted. In many cases, the planner has

to decide on whether to accept or reject an order within a few minutes without having the possibility

to pool requests and decide on a batch. While the model in Chapter 3 acts on pooled transport demand

and supply to book capacity and devise an adaptive routing policy, extending the model to include

online decisions would be very valuable both to support real operations and to study the cost and value

of online decision making.

Modelling customer long-term value in assortment decisions. Mathematical models for digital

marketplaces like the one considered in Chapter 4 often consider only the matching rate as their ob-

jective. As a result, the characterization of platform agents is limited to features that can characterize

their matching behavior. Indeed, the reaction and acceptance behavior as well as the characteristics

of transport become focal. The result of this focus is that the platform is left to address the long-term

value of their users by means other than matching technology. It follows that the main measure of

perceived quality of service from the users, i.e., their individual matching performance, is neglected by

the matching algorithm. A model that includes estimations on the long-term value of a customer in the

matching decision would be valuable for the practitioner. Moreover, such an approach would open a

wealth of interesting academic problems.

Finally, the many exchanges with practitioners that were formally or informally involved in this dis-

sertation lead to the following research question the author is particularly interested in. This question

follows up naturally from the gradual approach to real problems of this thesis. While the presenta-

tion of the thesis focused on well-defined and scoped academic contributions, the research in the three

Chapters progresses from a more abstract to a more realistic representation of the focal real problem.

Indeed, from a theoretical study on cooperation via an adaptive model for planning, the work in Chap-

ter 4 was the result of a cooperation with an industry partner facing a real problem. Therefore, the

following question can be seen as a natural outlook on the research of this thesis.
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How can one take advantage of methods from Operations Research to improve, if not max-

imize, the success rate of the application of Operations Research and Operations Manage-

ment models and frameworks to solve real-life problems?



Bibliography

Agarwal, R. & Ergun, . (2010). Network Design and Allocation Mechanisms for Carrier Alliances in Liner Ship-

ping. Operations Research, 58(6), 1726–1742.

Agatz, N., Erera, A., Savelsbergh, M., & Wang, X. (2012). Optimization for dynamic ride-sharing: A review.

European Journal of Operational Research, 223(2), 295–303.

Agrawal, S., Avadhanula, V., Goyal, V., & Zeevi, A. (2019). MNL-Bandit: A Dynamic Learning Approach to

Assortment Selection. Operations Research, 67(5), 1453–1485.

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications.

Pearson.

Aouad, A., Farias, V., & Levi, R. (2020). Assortment Optimization Under Consider-Then-Choose Choice Models.

Management Science, (pp. 1–19).

Aouad, A. & Saban, D. (2020). Online Assortment Optimization for Two-sided Matching Platforms. SSRN Elec-

tronic Journal.

Ashlagi, I., Burq, M., Jaillet, P., & Manshadi, V. (2019a). On matching and thickness in heterogeneous dynamic

markets. Operations Research, 67(4), 927–949.

Ashlagi, I., Krishnaswamy, A. K., Makhijani, R., Saban, D., & Shiragur, K. (2019b). Assortment planning for

two-sided sequential matching markets. arXiv.

Ballot, E., Barbarino, S., van Bree, B., Liesa, F., Rod Franklin, J., Nettsträter, A., Paganelli, P., & Tavasszy, L. A.

(2020). The Physical Internet. Technical report.

Barabási, A.-L. & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509–512.

Basso, F., D’Amours, S., Rönnqvist, M., & Weintraub, A. (2019). A Survey on Obstacles and Difficulties of Prac-

tical Implementation of Horizontal Collaboration in Logistics. International Transactions in Operational

Research, 26(3), 775–793.

Bastani, H., Harsha, P., Perakis, G., & Singhvi, D. (2018). Sequential Learning of Product Recommendations With

Customer Disengagement. SSRN Electronic Journal.

Berge, C. (1973). Graphs and hypergraphs. Amsterdam: Elsevier.

Berger, P. (2022). The U.S. Import Surge Is Skipping the Train. The Wall Street Journal.

Bertsimas, D., Jaillet, P., & Martin, S. (2019). Online Vehicle Routing: The Edge of Optimization in Large-Scale

Applications. Operations Research, 67(1), 143–162.



176 Bibliography

Bertsimas, D. & Kallus, N. (2020). From predictive to prescriptive analytics. Management Science, 66(3), 1025–

1044.

Bertsimas, D. & Tsitsiklis, J. (1993). Simulated Annealing. Statistical Science, 8(1), 10–15.

Bhattacharya, A. & Kharoufeh, J. P. (2017). Linear Programming Formulation for Non-stationary, Finite-horizon

Markov Decision Process Models. Operations Research Letters, 45(6), 570–574.

Bhoopalam, A. K., Agatz, N., & Zuidwijk, R. (2018). Planning of truck platoons: A literature review and directions

for future research. Transportation Research Part B: Methodological, 107, 212–228.

Birge, J. R. & Louveaux, F. (2011). Introduction to Stochastic Programming. In Springer Series in Operations

Research and Financial Engineering (pp. 1–469). Springer New York, NY.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and

dynamics. Physics Reports, 424(4-5), 175–308.

Botev, Z. I., L’Ecuyer, P., Rubino, G., Simard, R., & Tuffin, B. (2013). Static Network Reliability Estimation via

Generalized Splitting. INFORMS Journal on Computing, 25(1), 56–71.

Brancaccio, G., Kalouptsidi, M., Papageorgiou, T., & Rosaia, N. (2021). Search Frictions and Efficiency in Decen-

tralized Transportation Markets. SSRN Electronic Journal.

Brathwaite, T., Vij, A., & Walker, J. L. (2017). Machine Learning Meets Microeconomics: The Case of Decision

Trees and Discrete Choice. arXiv.

Breiman, L. (2001). Random Forests. Machine Learning 2001 45:1, 45(1), 5–32.

Butcher, M. (2020). Digital freight forwarder Forto raises another $50M in round led by Inven Capital. techcrunch.

Caplice, C. (2007). Electronic markets for truckload transportation. Production and Operations Management,

16(4), 423–436.

Caro, F. & Gallien, J. (2007). Dynamic Assortment with Demand Learning for Seasonal Consumer Goods. Man-

agement Science, 53(2), 276–292.

Carstensen, P. (1983). The complexity of some problems in parametric linear and combinatorial programming. PhD

thesis, University of Michigan.

Chen, A. & Ji, Z. (2005). Path finding under uncertainty. In Journal of Advanced Transportation, volume 39 (pp.

19–37).

Chen, B. Y., Lam, W. H., Sumalee, A., Li, Q., Shao, H., & Fang, Z. (2013). Finding Reliable Shortest Paths in Road

Networks Under Uncertainty. Networks and Spatial Economics, 13(2), 123–148.

Chen, B. Y., Li, Q., & Lam, W. H. (2016). Finding the k reliable shortest paths under travel time uncertainty.

Transportation Research Part B: Methodological, 94, 189–203.

Chen, L. & Miller-Hooks, E. (2012). Resilience: An Indicator of Recovery Capability in Intermodal Freight

Transport. Transportation Science, 46(1), 109–123.

Crainic, T. G., Hewitt, M., Toulouse, M., & Vu, D. M. (2016). Service network design with resource constraints.

Transportation Science, 50(4), 1380–1393.

Crainic, T. G. & Kim, K. H. (2007). Chapter 8 Intermodal Transportation. Handbooks in Operations Research and

Management Science, 14, 467–537.



Bibliography 177

Crichton, D. (2021). Father and son duo take on global logistics with Optimal Dynamics sequential decision AI

platform | TechCrunch.

Cruijssen, F., Borm, P., Fleuren, H., & Hamers, H. (2010). Supplier-initiated outsourcing: A methodology to exploit

synergy in transportation. European Journal of Operational Research, 207(2), 763–774.

Cruijssen, F., Cools, M., & Dullaert, W. (2007a). Horizontal cooperation in logistics: Opportunities and impedi-

ments. Transportation Research Part E: Logistics and Transportation Review, 43(2), 129–142.

Cruijssen, F., Dullaert, W., & Fleuren, H. (2007b). Horizontal Cooperation in Transport and Logistics: A Literature

Review. Transportation Journal, 46(3), 22–39.

Cullen, Z. & Farronato, C. (2021). Outsourcing Tasks Online: Matching Supply and Demand on Peer-to-Peer

Internet Platforms. Management Science, 67(7), 3985–4003.

Dempsey, H. (2022). Is there an end in sight to supply chain disruption? Financial Times.

Eisner, M. J. & Severance, D. G. (1976). Mathematical Techniques for Efficient Record Segmentation in Large

Shared Databases. Journal of the ACM, 23(4), 619–635.

Engevall, S., Göthe-Lundgren, M., & Värbrand, P. (2004). The Heterogeneous Vehicle-Routing Game. Transporta-

tion Science, 38(1), 71–85.

ETP-ALICE (2016). Corridors, Hubs and Synchromodality. Technical report.

EuYu (2014). Degree sequence of connected graphs. Mathematics Stack Exchange.

Ford, L. R. & Fulkerson, D. R. (1958). Constructing Maximal Dynamic Flows from Static Flows. Operations

Research, 6(3), 419–433.

Fradkin, A. (2017). Search, Matching, and the Role of Digital Marketplace Design in Enabling Trade: Evidence

from Airbnb. SSRN Electronic Journal.

Frank, H. (1969). Shortest Paths in Probabilistic Graphs. Operations Research, 17(4), 583–599.

Fransoo, J. C. & Lee, C. Y. (2013). The critical role of ocean container transport in global supply chain performance.

Production and Operations Management, 22(2), 253–268.

Frisk, M., Göthe-Lundgren, M., Jörnsten, K., & Rönnqvist, M. (2010). Cost allocation in collaborative forest

transportation. European Journal of Operational Research, 205(2), 448–458.

Gal, T. (1994). Postoptimal Analyses, Parametric Programming, and Related Topics. De Gruyter.

Gillies, D. B. (1959). Solutions to general non-zero-sum games. Contributions to the Theory of Games, 4(40),

47–85.

Giusti, R., Manerba, D., Bruno, G., & Tadei, R. (2019). Synchromodal logistics: An overview of critical success

factors, enabling technologies, and open research issues. Transportation Research Part E: Logistics and

Transportation Review, 129, 92–110.

Greene, W. H. (2018). Econometric Analysis. Pearson, 8 edition.

Guajardo, M. & Rönnqvist, M. (2016). A review on cost allocation methods in collaborative transportation. Inter-

national Transactions in Operational Research, 23(3), 371–392.

Gul, F. (1989). Bargaining Foundations of Shapley Value. Econometrica, 75(1), 81–95.



178 Bibliography

Hall, R. W. (1986). The Fastest Path through a Network with Random Time-Dependent Travel Times. Transporta-

tion Science, 20(3), 182–188.

Hapag-Lloyd (2021). Schedule Reliability: Hapag-Lloyd to provide full transparency on vessel arrivals - Hapag-

Lloyd.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer Series in Statistics.

New York, NY: Springer New York.

Houghtalen, L., Ergun, ., & Sokol, J. (2011). Designing Mechanisms for the Management of Carrier Alliances.

Transportation Science, 45(4), 465–482.

Hu, M. & Zhou, Y. (2015). Dynamic Matching in a Two-Sided Market. SSRN Electronic Journal.

Huang, H. & Gao, S. (2018). Trajectory-adaptive routing in dynamic networks with dependent random link travel

times. Transportation Science, 52(1), 102–117.

IPPC (2014). IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group

III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Technical report,

IPCC, , Cambridge, United Kingdom and New York, NY, USA.

Jaillet, P., Qi, J., & Sim, M. (2016). Routing Optimization Under Uncertainty. Operations Research, 64(1), 186–

200.

Jenkins, L. (1990). Parametric Methods in Integer Linear Programming. Annals of Operations Research, 27, 77–96.

Johari, R., Kamble, V., & Kanoria, Y. (2021). Matching While Learning. Operations Research, 69(2), 655–681.

Johnson, T. (2020). Reliability on the spot. Maersk News.

Joseph, V. R. (2016). Space-filling designs for computer experiments: A review. In Quality Engineering, volume 28

(pp. 28–35).: Taylor and Francis Inc.

Joseph, V. R., Gul, E., & Ba, S. (2019). Designing computer experiments with multiple types of factors: The

MaxPro approach. Journal of Quality Technology, 52(4), 343–354.

Kanoria, Y. & Saban, D. (2017). Facilitating the Search for Partners on Matching Platforms: Restricting Agents’

Actions. SSRN Electronic Journal.

Karsten, F., Slikker, M., & van Houtum, G.-J. (2015). Resource Pooling and Cost Allocation Among Independent

Service Providers. Operations Research, 63(2), 476–488.

Keyhani, M. H., Schnee, M., & Weihe, K. (2017). Arrive in time by train with high probability. Transportation

Science, 51(4), 1122–1137.

Knolwer, G. (2021). Container shipping: Europe stuck with port bottlenecks until liner reliability improves: Rot-

terdam.

Konrad, A. (2022). Flexport Is Silicon Valleys Solution To The Supply Chain MessWhy Do Insiders Hope It Sinks?

Forbes.

Kurant, M. & Thiran, P. (2006). Layered complex networks. Physical Review Letters, 96(13), 1–4.

Langen, P. W. D. (2004). The Performance of Seaport Clusters; A Framework to Analyze Cluster Performance and

an Application to the Seaport Clusters of Durban, Rotterdam and the Lower Mississippi. Erasmus Research

Institute of Management (ERIM), Erasmus University Rotterdam.



Bibliography 179

Lattimore, T. & Szepesvári, C. (2020). Bandit Algorithms. Cambridge University Press.

L’Ecuyer, P., Maillé, P., Stier-Moses, N. E., & Tuffin, B. (2017). Revenue-maximizing rankings for online platforms

with quality-sensitive consumers. Operations Research, 65(2), 408–423.

Li, J. & Netessine, S. (2020). Higher market thickness reduces matching rate in online platforms: Evidence from a

quasiexperiment. Management Science, 66(1), 271–289.

Li, W. & Cai, X. (2007). Empirical analysis of a scale-free railway network in China. Physica A: Statistical

Mechanics and its Applications, 382(2), 693–703.

Lijesen, M. G. (2014). Optimal Traveler Responses to Stochastic Delays in Public Transport. Transportation

Science, 48(January 2015), 256–264.

Lin, J. & Ban, Y. (2013). Complex Network Topology of Transportation Systems. Transport Reviews, 33(6),

658–685.

Lin, Y.-K. (2007). On a multicommodity stochastic-flow network with unreliable nodes subject to budget constraint.

European Journal of Operational Research, 176(1), 347–360.

Lium, A. G., Crainic, T. G., & Wallace, S. W. (2009). A study of demand stochasticity in service network design.

Transportation Science, 43(2), 144–157.

Lozano, S., Moreno, P., Adenso-Diaz, B., & Algaba, E. (2013). Cooperative game theory approach to allocating

benefits of horizontal cooperation. European Journal of Operational Research, 229(2), 444–452.

Maersk (2020). Logistics Digital Revolution. Technical Report August, A.P. Moller Maersk.

Miller, J., Nie, Y. M., & Liu, X. (2020). Hyperpath Truck Routing in an Online Freight Exchange Platform.

Transportation Science, 54(6), 1676–1696.

Miller-Hooks, E. & Mahmassani, H. (2003). Path comparisons for a priori and time-adaptive decisions in stochastic,

time-varying networks. European Journal of Operational Research, 146(1), 67–82.

Miller-Hooks, E. D. & Mahmassani, H. S. (2000). Least Expected Time Paths in Stochastic, Time-Varying Trans-

portation Networks. Transportation Science, 34(2), 198–215.

Montreuil, B. (2011). Toward a Physical Internet: meeting the global logistics sustainability grand challenge.

Logistics Research, 3(2-3), 71–87.

Montreuil, B., Meller, R. D., & Ballot, E. (2012). Physical Internet Foundations. IFAC Proceedings Volumes, 45(6),

26–30.

Morder Intelligence (2021). Netherlands Road Freight Transport Market. Technical report.

Mulder, J., van Jaarsveld, W., & Dekker, R. (2019). Simultaneous Optimization of Speed and Buffer Times with an

Application to Liner Shipping. Transportation Science, 53(2), 365–382.

Nash, J. (1953). Two-Person Cooperative Games. Econometrica, 21(1), 128.
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Container transport allowed for global trade, and trade has lifted the welfare and fostered the 
development of nations worldwide. The exchange of goods required the movements of those along 
a chain of parties and companies. While intercontinental transport allowed for global trade, the inland 
transport sector plays a critical role in regions’ and countries’ competitive performance. 

This thesis focuses on the inland container and bulk transport, the fi rst and end part of the intercontinental 
journey, which connects production areas to ports and warehouses and last-mile distribution. Within 
this context, the challenge tackled in this research is improving transport performance by focusing on 
transport capacity utilization given immutable transport demand, technology, and infrastructure. 
A particular focus is on the plan of transport execution and its e� ect on transport capacity utilization. 

From such a problem perspective, three main solutions are studied: fi rst, cooperation among transport 
operators as a way for companies to improve their capacity utilization by demand pooling and supply 
sharing; second, advanced transport planning models based on adaptive decisions that are cost-e�  cient 
while guaranteeing a certain level of reliability as a way to improve capacity utilization when transport 
times are uncertain; third, matching algorithms for digital transport marketplaces as a way to enhance the 
utilization of capacity by e� ectively match demand and supply.

The Erasmus Research Institute of Management (ERIM) is the Research School (Onderzoekschool) in 
the fi eld of management of the Erasmus University Rotterdam. The founding participants of ERIM are the 
Rotterdam School of Management (RSM), and the Erasmus School of Economics (ESE). ERIM was founded 
in 1999 and is o�  cially accredited by the Royal Netherlands Academy of Arts and Sciences (KNAW). The 
research undertaken by ERIM is focused on the management of the fi rm in its environment, its intra- and 
interfi rm relations, and its business processes in their interdependent connections.

The objective of ERIM is to carry out fi rst rate research in management, and to o� er an advanced doctoral 
programme in Research in Management. Within ERIM, over three hundred senior researchers and PhD 
candidates are active in the di� erent research programmes. From a variety of academic backgrounds and 
expertises, the ERIM community is united in striving for excellence and working at the forefront of creating 
new business knowledge.
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