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Multidimensional analysis of behavior predicts genotype with
high accuracy in a mouse model of Angelman syndrome
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Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of expression of the maternal copy of the UBE3A gene.
Individuals with AS have a multifaceted behavioral phenotype consisting of deficits in motor function, epilepsy, cognitive
impairment, sleep abnormalities, as well as other comorbidities. Effectively modeling this behavioral profile and measuring
behavioral improvement will be crucial for the success of ongoing and future clinical trials. Foundational studies have defined an
array of behavioral phenotypes in the AS mouse model. However, no single behavioral test is able to fully capture the complex
nature of AS—in mice, or in children. We performed multidimensional analysis (principal component analysis + k-means clustering)
to quantify the performance of AS model mice (n = 148) and wild-type littermates (n = 138) across eight behavioral domains. This
approach correctly predicted the genotype of mice based on their behavioral profile with ~95% accuracy, and remained effective
with reasonable sample sizes (n = ~12-15). Multidimensional analysis was effective using different combinations of behavioral
inputs and was able to detect behavioral improvement as a function of treatment in AS model mice. Overall, multidimensional
behavioral analysis provides a tool for evaluating the effectiveness of preclinical treatments for AS. Multidimensional analysis of
behavior may also be applied to rodent models of related neurodevelopmental disorders, and may be particularly valuable for
disorders where individual behavioral tests are less reliable than in AS.
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INTRODUCTION

Rodent models have enabled mechanistic insights into the
genetic causes and circuit-level manifestations of single-gene
neurodevelopmental disorders (NDDs) [1-7]. As mechanism-based
treatments are developed for NDDs, the effectiveness of such
treatments is often first tested preclinically by assessing improve-
ments in mouse behavior. Behavioral phenotypes span multiple
domains in individuals with NDDs (e.g., cognitive, motor, seizures,
sleep), and a wide range of corresponding behavioral assessments
have been developed and deployed in mouse models [8-11].
Accurately measuring phenotypic severity across multiple beha-
vioral domains is critical to properly assess the effectiveness of
treatments in rodent models of NDDs.

We hypothesized that multidimensional analysis of mouse
behavior would enable quantification of overall behavioral
severity, aggregated across multiple domains. Here we define
multidimensional analysis as the multi-step process of: (a)
reducing the dimensionality of large behavioral datasets using
principal component analysis (PCA) [12, 13], (b) clustering data in
principal component space using k-means clustering, and (c)
assessing whether behaviorally defined clusters align with animal
genotype. Dimensionality reduction and clustering have been
validated in various mouse behavioral contexts [14-22]. Here, we
tested the hypothesis that multidimensional analysis of mouse
behavioral data could accurately distinguish the genotype of

Ube3a mutants (@ model of Angelman syndrome (AS)) from wild-
type littermates. AS is an ideal disorder for testing the effective-
ness of multidimensional analysis because of recent progress in
developing mechanism-based treatments [23] and because
behavioral testing can be performed reliably in Angelman model
mice [24].

AS is a NDD caused by lack of expression of the maternal allele
of UBE3A, an E3 ubiquitin ligase located on chromosome 15
[25-27]. Individuals with AS have a multifaceted behavioral
phenotype that typically includes cognitive impairment, motor
impairment, lack of speech, seizures, and disrupted sleep [28-30].
While mutations in maternal UBE3A are sufficient to cause AS, the
majority of cases (~70%) are caused by deletions of a region of
maternal chromosome 15g11-13 spanning UBE3A and neighbor-
ing genes [29]. The paternal UBE3A allele is epigenetically silenced
in neurons by expression of a UBE3A antisense transcript (UBE3A-
ATS) [31, 32], and neuronal paternal Ube3a imprinting is conserved
[33] in the mouse model of AS (Ube3a™"?%) [34]. Multiple
approaches have successfully unsilenced the dormant paternal
Ube3a allele in mice [35-42], and one such approach (antisense
oligonucleotides targeted to UBE3A-ATS) is currently in early-stage
clinical trials (NCT04428281, NCT04259281, NCT05127226). Other
AS treatments such as gene replacement therapy and targeting
downstream processes are also in preclinical development [43].
Developing a pipeline to test new AS treatments in mice will be
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critical to evaluate their success, regardless of treatment mechan-
ism. Recent work established a “gold standard” behavioral battery
consisting of five tests (rotarod, open field, marble burying, nest
building, forced swim) that are reliably impaired in Ube3a™""
mice [24] and are sensitive to treatment [40, 44-46]. Using this
battery, we hypothesized that multidimensional analysis: (a) would
enable quantification of behavior across multiple domains as a
single “severity score,” (b) that this severity score would be a
reliable indicator of Ube3a genotype, and (c) that this severity
score is sensitive to treatment.

METHODS AND MATERIALS

Animals

We performed multidimensional analysis using three mouse behavioral
datasets. All datasets assessed behavior in male and female AS model mice
(Ube3a™P™) [34] and wild-type littermate controls (WT; Ube3a™ ") with
experimenters blind to genotype. For all datasets, experimental WT and
Ube3a™P* littermates were generated by crossing female Ube3a™ "
mice and male WT mice. Dataset 1 used experimental mice on an F1 hybrid
129S2-C57BL6/J background, and Datasets 2 and 3 used experimental
mice on a congenic C57BL6/J background. All experimental protocols were
conducted in accordance with the European Commission Council Directive
2010/63/EU (CCD approval AVD101002016791; Dataset 1), or were
approved by the Institutional Animal Care and Use Committee (IACUC)
of Children’s National Medical Center (Dataset 2). Dataset 3 contained only
previously published data and no additional mouse experiments.

Dataset 1 was used for the majority of analyses (Figs. 1-3, 4a, 5, S1-S8,
and S10) to assess the effectiveness of multidimensional analysis at
predicting Ube3a genotype based on behavior. Dataset 1 included 286
total mice (WT: n= 148, Ube3a™"P": n=138) run across 10 cohorts at
Erasmus Medical Center. Behavioral data from 8 of these 10 cohorts

(n=231/286 mice) were previously published [24] and 2 additional
cohorts (n =55 mice) were also included. A detailed table showing the
genotypes, sex, and behavioral tests performed in each of the ten cohorts
is shown in Fig. S1. Behavioral testing was performed in P60-P90 mice.

Dataset 2 was used to test the hypothesis that multidimensional analysis
of behavior can effectively predict Ube3a genotype using small sample
sizes (Fig. 4b and $9). Dataset 2 included 24 mice (WT: n = 12, Ube3a™""":
n=12) tested at Children’s National Research Institute. Behavioral testing
was performed in P60-P90 mice.

Dataset 3 was previously published (Wolter et al.; Supplementary Fig. 4)
[41] and was used to assess whether multidimensional analysis could
detect behavioral improvement in Ube3a™"" mice treated with CRISPR-
Cas9-based targeted treatment to unsilence the dormant paternal Ube3a
allele (Fig. 6 and S11). Mice were treated with either viral expression of a
SaCas9 gRNA targeting the Ube3a-ATS locus (Sajw33), or a negative control
gRNA that did not unsilence paternal Ube3a. Bilateral i.c.v. AAV delivery of
Sajw33 or control occurred at both E15.5 and P1 within the same animals,
and behavioral testing began at 4 weeks and continued through 40 weeks
[41]. Behavioral data included WT + control (n = 34), Ube3a™"P* + control
(n = 25), and Ube3a™* + treatment (Sajw33; n =32) groups.

Behavioral testing

Mice in Datasets 1 and 2 were weighed and then underwent a series of
behavioral tests in the same order: rotarod, open field, marble burying,
nest building, and forced swim (Fig. 1a). A subset of mice in Dataset 1
lacked data from three of these tests (weight, open field, nest building; Fig.
S1a). Methods for Dataset 1 were previously published [24] and methods
for Dataset 2 (below) were based upon Sonzogni et al. [24], with minor
modifications.

Rotarod. Mice were placed on a rotating bar that accelerated from 4 to
40 rpm across 5 min at an acceleration rate of 7.2 rpom? (Ugo Basile model
#47600). Trials were complete once the mouse fell off, if three consecutive
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Fig. 1 Ube3a™"?* mice have robust behavioral impairments across multiple domains. a Experimental timeline, as described and performed

by Sonzogni et al. (eight cohorts), plus two additional unpublished cohorts. b Weight (WT: n = 118, AS: n = 110). ¢ Rotarod performance (WT:
n =148, AS: n=138). d Distance traveled and e time spent in the center of an open field (WT: n=118, AS: n=110). f Marble burying
performance (WT: n = 148, AS: n = 138). g Nest building performance (WT: n =109, AS: n = 100). h Forced swim performance (WT: n = 148, AS:
n= 138) See Fig. S1 for full breakdown of tests performed in each of ten cohorts. Data represent mean + SEM; ****p < 0.0001; black: WT, red:
Ube3a™P* (AS). i Methods for multidimensional behavioral analysis and genotype validation. First, eight behavioral measures were included
in multidimensional analysis. Second, principal component analysis (PCA) reduces the dimensionality of the behavioral dataset. Each point
represents one animal; these points are schematized and are not real data. Third, mice are clustered into two groups using k-means clustering
by their proximity in PC space. Finally, validation reflects a comparison of clusters with the known genotype of animals.
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wrapping rotations were made, or if 5 min elapsed. Each day, the results of
two trials with an inter-trial interval of one hour were averaged together.
Experiments were run over the span of five consecutive days, with a two
day interval before open field testing.

Open field test. Mice were placed into a 42 cm square open field arena
(AccuScan Instruments, Inc.,, Columbus, OH) and were allowed to freely
move for a single 30min trial. The center square was defined as
21cmx21cm. The data was collected using the open field activity
monitoring system (Omnitech Electronics, Inc. SuperFlex Open Field
System) which uses photocell emitters and receptors forming an x-y grid
of infrared beams. Total distance moved and time spent in the center
square were recorded using infrared beam break information.

Marble burying. Mice were placed individually in a 16 x 8 in cage with
~4 cm of bedding (Bed-o'Cobs 1/4” bedding) and 20 black glass marbles
arranged in a 5 x 4 array for a single 30 min trial. A marble was considered
buried if it was >50% covered with bedding at the end of the trial.

Nest building. Immediately after marble burying, mice were habituated to
single housing as well as new nesting material (Bio-Rad 7.5 x 10 cm extra
thick block filter paper; 11+1g) for 5-7 days prior to testing. During
testing, new nesting material was introduced on day 1 and unused
material was weighed daily across five days.

Forced swim test. Forced swim testing was performed on the same day
immediately following the final day of nest building. Mice were placed in a
9 in cylindrical X 9.25 in tall tank filled with 23 £ 1 °C water to a height of
~60% of the container’s height. Trials lasted 6 min: the first 2 min were an
acclimation period and the last 4 min were to record immobility (lack of
movement or only necessary movements to keep head above water) as a
percentage of total recording time. Immobility was recorded manually
using a stopwatch.

Mice in Dataset 3 underwent a different series of behaviors in consistent
order: hindlimb clasping, rotarod, open field, marble burying, fear
conditioning, rotarod (again) (Fig. S11a). Methods for Dataset 3 were
previously published [41].

Multidimensional analysis of mouse behavior

Multidimensional analysis of behavior consisted of a series of steps: data
selection, standardization, principal component analysis (PCA), k-means
clustering, and validation (Fig. 1i) [22]. Data selection: Eight total measures
(weight, rotarod day 1, rotarod day 5, open field distance traveled, open
field center time, marbles buried, nest building, forced swim floating time)
from a series of six tests (weight, rotarod, open field, marble burying, nest
building, forced swim) were included in multidimensional analysis. Tests
with multiple measures include rotarod (day 1 and day 5 performance) and
open field (total distance and time spent in the center of the arena).
Measures considered redundant (e.g., intermediate, non-independent
timepoints for rotarod and nest building) were excluded a priori from
multidimensional analysis. For the majority of analyses (Figs. 2, 3a-d, 4a, 5,
S$3-56, S8¢, and S10), we included the subset of animals that underwent all
six tests (WT: n = 88, Ube3a™"P*: n = 82). One outlier was excluded from
analysis based on its position in 2PC space (PC1: —2.49, PC2: 8.62) using
Grubbs’ test for outliers (alpha = 0.05), leaving a total n =81 Ube3a™"""
mice. Standardization: All measures were standardized using a z-score
(z=(data point —group mean)/standard deviation) to account for
different units across tests. Prior to standardization, we tested whether
each behavioral measure showed significant sex differences using a two-
way ANOVA with sex and genotype as factors (Fig. S2). All behaviors that
showed either a significant main effect of sex or sex x genotype interaction
were standardized separately in male and female animals (Fig. 1i), except
where noted (Fig. S6; a separate analysis to assess the effectiveness of
multidimensional analysis if sex is not accounted for). Measures with no
sex differences were standardized using the entire group. Principal
component analysis: We performed PCA using the pca() function in
MATLAB and calculated the amount of variance explained by each PC
using a Scree plot (Figs. S3, S9h, and S11b) and the loading distribution of
principal components using the coefficient outputs from PCA (Figs. 5a, b
and S11c). k-means clustering: k-means clustering was performed in
principal component space using the kmeans() function in MATLAB with
k =2 clusters. Except where noted (Figs. 5, 6¢, S4, and S11d, g), clustering
was performed in 2PC space. In Figs. 5¢, 6¢, and S11d, g, one PC was used
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for clustering. Figure 5d, e evaluated using three and four PCs for
clustering. In Fig. S4, clustering was performed on raw data (not in PC
space). Validation: We compared the actual genotypes of animals to their
assigned cluster and calculated the percentage correct (accuracy of
clustering, Figs. 2¢, 3b, ¢, f-h, 4b, 5c-e, S5a, S6, S10, and S11d).

In order to assess the generalizability of multidimensional analysis, we
varied the input parameters of analysis in three ways (Fig. 3). First, we
performed multidimensional analysis on Dataset 1 (n = 169; standardized by
sex) in 2 PC space under 11 conditions (Fig. 3a-c). Each condition
represented the removal of a single behavioral measure or a complete
behavioral test. Next, we performed multidimensional analysis using every
possible combination of 3-8 total measures (Fig. 3d). Finally, we performed
multidimensional analysis on different combinations of data where more
animals could be included with partial behavioral profiles (Fig. 3e-h and S1).
This approach resulted in four conditions with the number of behavioral
measures ranging from 4 to 8 and the number of animals ranging from 169
to 286 per condition.

To assess the minimal sample size needed for multidimensional analysis
to effectively classify Ube3a genotype, we performed a bootstrap analysis
of Dataset 1 (n=169) using 2 PCs for clustering (Fig. 4a). For n=3 to
n =30 with a step of n =1, we randomly selected n animals per genotype
from the overall dataset (n=169), with replacement, and performed
multidimensional analysis. We repeated 10,000 trials for each n and report
the average clustering accuracy.

To determine whether multidimensional analysis results in false positive
effects, we performed multidimensional analysis in a homogenous sample
(all 36 wild-type females). We randomly assigned mice to two groups (to
model two genotypes with no true behavioral difference; Fig. S7).

Behavioral rescue with Ube3a reinstatement by Cas9 gene
therapy

Behavioral data was available for a total of n=91 mice in Dataset 3.
However, every behavioral test was not performed in every animal. Thus,
we performed multidimensional analysis in two subsets (“conditions”) of
the total sample (Fig. S11e). Condition 1 (Fig. 6) included n = 33 total mice
where behavioral data was available for each of thirteen total measures.
Condition 2 (Fig. S11f, g) included n = 86 total mice where behavioral data
was available for six of thirteen total measures. Data were standardized by
sex for measures where statistically significant sex differences were
observed between WT + control and AS + control groups in the total
sample (P90 weight, open field center time).

Statistics

Statistical analysis was performed using GraphPad Prism 9 and MATLAB
R2019a, R20214a, and R2022a (Mathworks). Group comparisons on individual
behavioral tests (Figs. 1 and S9) were made using Student’s t-tests (weight,
open field distance, open field center time, marble burying, forced swim)
and two-way RM ANOVA (rotarod, nest building). Assessment of sex
differences (Figs. 2, S5¢, and data not shown to accompany Fig. 6/511) were
made using two-way ANOVA. Effect of treatment was assessed using one-
way ANOVA and post hoc Tukey’s multiple comparison test in 1 PC space
(Figs. 6¢c and S11q). Figure 3d used one-way ANOVA and post hoc Tukey's
multiple comparison test. Figure S7d used Student’s t test. Fisher's exact test
was used to determine if clustering accuracy was statistically different
between test conditions (Figs. 3a-c, S4, and S6). For all figures, *p <0.05,
**p < 0.01, ¥**p <0.001, and ****p < 0.0001.

RESULTS

Ube3a™ " mice have robust behavioral impairments

Ten independent cohorts totaling 286 mice (Fig. S1; 26-30 mice
per cohort) performed a series of behavioral tests in order: weight,
rotarod, open field, marble burying, nest building, and forced
swim (Fig. 1a). Behavioral data from eight of these cohorts
(n=231) were previously reported by Sonzogni and colleagues
[24]. In the complete dataset, Ube3a™"P* mice showed increased
weight (Fig. 1b; t26 =4.428, p<0.0001), impaired rotarod
performance (Fig. 1c; main effect of genotype: F(j 284 = 103.8,
p <0.0001), and impaired rotarod learning (Fig. 1c; genotype X
time interaction: F 1136 =6.792, p<0.0001) relative to WT
controls. Ube3a™#" mice were hypoactive in an open field

SPRINGER NATURE
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(Fig. 1d; t(226) = 8.874, p < 0.0001) despite normal time spent in the
center of the arena (Fig. 1e; tpag = 1.348, p = 0.1789). Ube3a™ P+
mice also showed impairments on marble burying (Fig. 1f;
tose = 16.79, p <0.0001), nest building (Fig. 1g; main effect of
genotype: F 207 = 176.1, p <0.0001), and forced swim tests (Fig.
1h; tpssq) =15.73, p<0.0001) relative to WT controls. Prior work
found significant sex differences in a subset of these behaviors
[24], and we confirmed with the complete dataset that six of eight
behavioral measures showed statistically meaningful sex differ-
ences (Fig. S2).

Multidimensional analysis of behavior predicts Ube3a
genotype with high accuracy

From the group of six behavioral tests, we selected eight non-
redundant measurements to include in multidimensional analysis
(Fig. 1i). We performed multidimensional analysis using data from
mice where all behavioral tests were performed within individual
animals (n=169/286; 6/10 cohorts; Fig. S1). Multidimensional
analysis consisted of four steps: standardization, principal
component analysis (PCA), k-means clustering, and validation
(Fig. Ti). First, all measures were standardized using a z-score and
measures with sex differences were standardized separately by
sex. PCA revealed that two principal components (PCs) are likely
sufficient to capture a majority of variance in the dataset (Fig. S3);
thus, we performed k-means clustering in 2PC space (Fig. 2a).
Validation comparing clusters (Fig. 2a) to the actual genotype of
animals (Fig. 2b) demonstrated that multidimensional analysis was
94.7% accurate in predicting Ube3a genotype from behavior (Fig.
2¢). Multidimensional analysis performed better than k-means
clustering of performance on individual assessments, which
ranged from ~55-85% accuracy (Fig. S4). Male and female mice
were equally distributed in PC space (Fig. S5), confirming that sex
differences in behavior were accounted for by standardization,
and likely do not represent an additional source of meaningful
variance. Not accounting for the sex dependence of behaviors
slightly reduced the accuracy of multidimensional analysis (from
94.7% to 91.1%), though this difference was not statistically
meaningful (Fig. $6). To confirm the validity of multidimensional
analysis, we demonstrated that this approach does not detect

SPRINGER NATURE

“false positive” differences in behavior between two randomly
assigned groups within a homogenous group of animals (all wild-
type females) (Fig. S7).

Multidimensional analysis remains effective with different
combinations of behavioral input

For multidimensional analysis to be a valuable tool to quantify
behavior in mouse models of AS and related disorders, it should
generalize across multiple combinations of behavioral input. To
address this question, we first performed multidimensional
analysis on the same dataset (n =169) under conditions where
each individual measurement (e.g., rotarod day 5) or overall test
(e.g., rotarod) were excluded from analysis. Removal of individual
measures or tests resulted in a range of 92.3-96.4% accuracy,
which was not statistically different from the baseline of 94.7%
(Fisher's exact tests; lowest p = 0.5092; Figs. 3a—c and S8a). Next,
we assessed the clustering accuracy in each of 219 possible
combinations of including between three and eight behavioral
measures in analysis. Clustering accuracy decreased on average as
the number of measures decreased (Fig. 3d; one-way ANOVA,
Fa261)=21.31, p<0.0001). We also expanded the dataset to
include all animals (n = 286), and defined four conditions where
different combinations of behavior were available for different
subsets of animals (Fig. S1). As the number of measures decreased,
the accuracy of multidimensional analysis decreased despite the
sample size increasing (Figs. 3e-h and S8b). Together, these data
suggest that multidimensional analysis generalizes well across
different combinations of behavioral data in the Ube3a™"P*
mouse model, and gains effectiveness as more behavioral tests
are included in analysis.

Multidimensional analysis accurately predicts Ube3a™ "+
genotype with reasonable sample sizes for mouse behavior
In practice, a behavioral study requiring >80 mice per genotype to
detect group differences would likely be time and cost prohibitive.
Here, we asked whether multidimensional analysis would retain
high accuracy in groups with smaller sample sizes. To address this
question, we performed a bootstrap analysis to predict the
clustering accuracy that could be achieved across sample sizes

Translational Psychiatry (2022)12:426
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Fig. 4 Multidimensional analysis retains high accuracy with
reasonable sample sizes. a Bootstrap analysis was performed using
Dataset 1, and 10,000 trials per n. Open circles indicate the
clustering accuracy within six individual cohorts. The bold circle
represents the overlap of two cohorts with the same (xy)
coordinates (14, 100%). b Clustering accuracy using Dataset 2
(n =12 per genotype) was 100%.
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ranging from n=3-30 per group (Figs. 4a and S8c). We then
performed multidimensional analysis on a behavioral cohort
tested prospectively in a different laboratory with 12 animals
per group (Dataset 2, Fig. S9). The bootstrap analysis predicted an
accuracy of 90% using n=12, and multidimensional analysis
achieved 100% accuracy in this new cohort (Figs. 4b and S9). We
hypothesized that accuracy was higher in a new cohort because
the bootstrap analysis pulls animals randomly across multiple
cohorts, introducing inter-cohort variability. We tested this
hypothesis by performing multidimensional analysis separately
in each of six individual cohorts from Dataset 1 (Fig. S9). Accuracy
in each of these cohorts also outperformed the expectations of
the bootstrap analysis, ranging from 92-100% with sample sizes of
~13-15 animals per genotype (Fig. 4a; open circles). The cohort
sizes tested here are comparable to the sample sizes determined
by Sonzogni et al. to be required to detect group level differences
on individual behavioral tests (n =7-21, depending on test) [24].
Overall, this work confirms that multidimensional analysis of
behavior is highly accurate in Ube3a mice using typical sample
sizes for mouse behavior.
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a Loading table b Loading plot
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Fig. 5 Principal component 1 (PC1) is sufficient for predicting Ube3a genotype with high accuracy. a Loadings for PC1-PC4 for each
behavioral measure. b Loadings for PC1 and PC2 for each measure, plotted in 2PC space. All behavioral measures except open field correlate
more strongly with PC1, and both open field measures correlate more strongly with PC2. ¢ Clustering accuracy using 1 PC is 94.7%.
d Clustering accuracy using 3 PCs is 94.7%. e Increasing the number of PCs used for clustering does not have a major impact on clustering
accuracy.
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Fig. 6 Multidimensional analysis has the sensitivity to detect behavioral improvement in Ube3a™P" mice following treatment.

a Multidimensional analysis used 12 behavioral measures from Wolter et al. (Dataset 3). *Indicates sex difference and standardization by sex.
b Animals with paternal Ube3a unsilencing (purple open circles) have a qualitatively intermediate behavioral profile between Ube3a™""*
mutants (AS; red) and wild-type controls (WT; black). ¢ In 1PC space, treated AS mice show overall behavioral improvement relative to control
AS mice, but not full rescue. Full timeline of behavioral tests and analysis using different combinations of behavioral tests is shown in Fig. S11.
Data represent mean + SEM; ****p < 0.0001.

SPRINGER NATURE Translational Psychiatry (2022)12:426



Multidimensional analysis remains effective using a single PC
for clustering

A potentially valuable use of multidimensional behavioral
analysis is the possibility of summarizing an animal’s overall
phenotypic severity as a single number (PC1). Such an approach
will only be valuable if (a) PC1 represents a substantial amount
of the total variability in the dataset and (b) PC1 alone is
sufficient to accurately predict Ube3a genotype. PC1 accounts
for 37.7% of variance in the dataset (Figs. S3 and 5a) and
correlates strongly with each behavioral measure tested (Fig.
5a, b). Clustering accuracy remained high (94.7%) using a single
principal component for k-means clustering (Fig. 5¢). Increasing
the number of PCs to 3-4 (accounting for up to 75% of total
variation) provided little additional benefit in predicting Ube3a
genotype (Fig. 5d, e). Overall, these results suggest that PC1
alone is sufficient to accurately predict Ube3a genotype.

Multidimensional analysis can detect behavioral improvement
following paternal Ube3a unsilencing

Behavioral testing in mouse models of neurodevelopmental
disorders is often used to test the preclinical effectiveness of
treatments [10]. We performed multidimensional analysis of
behavior in a group of mice where CRISPR/Cas9-based targeting
of Ube3a-ATS enabled unsilencing of the paternal Ube3a allele and
re-expression of UBE3A protein [41]. In this cohort (Dataset 3), the
series of behavioral tests performed was similar but not identical
to the series of tests performed by Sonzogni and colleagues [24]
(Figs. 6a and S11a). In this dataset, PC1 represented 31.0% of total
variance and clustering accuracy was 100% between WT and
Ube3a™P* non-drug control groups when using 1 PC for
clustering (Fig. S11b-d). CRISPR/Cas9 treatment resulted in an
amelioration, but not full correction, of overall behavioral severity
in Ube3a™P* mice as measured by PC1 (Fig. 6b, c; main effect of
group: Fp30)=93.66, p <0.0001; post hoc WT/control vs. AS/
control: p<0.0001; post hoc AS/control vs. AS/treatment:
p <0.0001). We observed a significant effect of treatment using
PC1 under multiple conditions where different combinations of
behavioral measures were included in the analysis (Fig. S11e-g).

PUMBAA: A graphical user interface for multidimensional
analysis of behavior

Multidimensional analysis may be valuable for other behavioral
datasets in Ube3a™* mice and mouse models of related
disorders. To enable widespread use of multidimensional beha-
vioral analysis, we developed a graphical user interface for
phenotyping using a multidimensional behavioral analysis algo-
rithm (PUMBAA; Fig. S12; https://github.com/sidorovliab/PUMBAA).
PUMBAA runs in a MATLAB environment but does not require
users to have prior MATLAB coding knowledge. PUMBAA enables
user control of analysis parameters for all steps including data
selection, data standardization, principal component analysis,
clustering, and validation.

DISCUSSION

Multidimensional analysis of behavior (Fig. 1) correctly predicted
Ube3a genotype in a mouse model of AS with high accuracy (Fig.
2). This approach retained high accuracy with multiple combina-
tions of behavioral data (Fig. 3) and in behavioral cohorts of a
manageable size (n=~12-15; Fig. 4). Principal component
analysis enabled the simplification of an animal’s overall
behavioral profile to a single severity score (PC1, Fig. 5) that
demonstrated improvement following treatment (Fig. 6). We
propose that multidimensional behavioral analysis provides a
generalizable approach to quantify behavioral impairment and
screen treatments preclinically in rodent models of neurodevelop-
mental disorders.
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In the context of AS, the primary value of multidimensional
behavioral analysis is to assess the efficacy of treatments in rodent
models. Multiple promising treatments for AS are currently under
development at various stages of clinical and preclinical testing
[23, 43]. Current and future treatments will span multiple
mechanisms of action, including directly targeting Ube3a expres-
sion, targeting downstream Ube3a protein targets, and more
generalized symptom-based approaches. Simplifying mouse
behavior to an overall severity score will be valuable for measuring
overall improvement following treatment, and for assessing the
effect of treatment across development. Our analysis found that
each behavioral measure in the well-established Sonzogni battery
[24] contributes roughly equally to PC1 (loadings range from
0.22-0.42; removal of single measures resulted in 92.3-96.4%
accuracy), and that different combinations of behavioral inputs
can be used to achieve high accuracy (Figs. 3 and 5a, b). These
results suggest that multidimensional behavioral analysis can
generalize well across different behavioral batteries and across
different laboratories. In addition, multidimensional analysis is a
tool that can generalize across mouse strains, mouse lines, and
across species to be applied to the new Ube3a™™ rat model [47].
Our study assessed behavior using the Ube3a™"* mouse
developed by Jiang and colleagues [34], which has been the
most commonly used preclinical model for AS research. However,
a limit to this mouse line is that it mimics the loss of UBE3A but
not other nearby genes that are also deleted in the majority of
individuals with AS. In humans, AS clinical severity is typically
greater in individuals with a deletion genotype [48]. Multi-
dimensional analysis can be used in the future to test whether
AS mouse models with larger deletions [49] have a more severe
behavioral phenotype than the Ube3a™"?* model.

Multidimensional analysis revealed that overall behavioral
severity was improved but not fully corrected by paternal Ube3a
unsilencing at E15.5 + P1. Incomplete behavioral improvement is
consistent with the results of Wolter et al. on certain individual
tests (e.g., rotarod, brain weight), though they did report full
correction of impairments in hindlimb clasping [41]. We hypothe-
size that overall behavioral rescue was incomplete due to the
amount of UBE3A reinstatement achieved using CRISPR/Cas9-
based unsilencing: Wolter et al. achieved reinstatement of UBE3A
protein to ~40% of WT levels in a subset of animals where Western
blotting was performed [41]. An advantage of multidimensional
analysis is that for future treatment studies, PC1 (as a readout of
overall behavioral severity) can be correlated with the degree of
UBE3A reinstatement achieved within individual animals.

Beyond AS, this study provides proof of concept that multi-
dimensional behavioral analysis can be applied to rodent models
of related disorders. Prior studies have generally applied principal
component analysis to rodent behavioral data in two contexts: (a)
to assess which subset of behavioral measures are most relevant
or valuable [14, 17, 18], and (b) to attempt to categorize two or
more groups based on their behavior [15, 16, 22]. Here, we applied
both approaches to quantify behavior in Ube3a mutants. Multi-
dimensional analysis was especially effective in Ube3a™P* mice
because behavioral impairments on individual tests are so reliable
and widespread in this line [5]. However, behavioral phenotypes in
other lines are often less robust. We hypothesize that multi-
dimensional analysis will be particularly valuable for detecting
subtle behavioral differences in established mouse models and for
screening behavior in new mouse models of rare disorders.
Multidimensional analysis used in this context is unlikely to result
in false positive effects of genotype (Fig. S7). To enable
widespread use of multidimensional behavioral analysis, we
developed a graphical user interface (PUMBAA; Fig. S12) to
simplify and generalize analysis methods. PUMBAA enables users
to perform customized multidimensional analysis in a MATLAB
environment without any prior coding knowledge.
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Our work identified a number of practical considerations for
future studies using multidimensional analysis to quantify
behavior in rodent models of NDDs. First, multidimensional
analysis can only be performed in datasets where longitudinal
behavioral testing is performed within animals. This requirement
places certain limits on experimental design, such as the inclusion
of tests that may be terminal (e.g., audiogenic seizures). Long-
itudinal testing also presents challenges when assessing the
efficacy of treatment. For example, a four-week longitudinal
behavioral battery would not be appropriate for a treatment
expected to last two weeks. In addition, accounting for sex
differences is an important consideration for multidimensional
analysis, as sex differences in behavior have been reported in
Ube3a™P" mice and in rodent models of related disorders (Fig.
S2) [24, 45, 50-53]. Accounting for sex differences in behavior
resulted in a slight but not statistically meaningful improvement in
the accuracy of multidimensional analysis from ~91% to ~95%
(Figs. 2 and S6). Finally, our results suggest that cross-cohort
behavioral variability decreases the accuracy of multidimensional
analysis performed across multiple behavioral cohorts (Fig. 4). The
inclusion of behavioral assessments with no group differences
would not “dilute” the effectiveness of PCA; thus, multidimen-
sional analysis is well-suited for analysis of broad behavioral
phenotyping regimens [12, 13]. Future studies using multidimen-
sional analysis of behavior may also consider additional methods
(beyond percent accuracy) to quantify the degree to which two
genotypes can be distinguished in PC space. Other potentially
valuable parameters include the distance between cluster
centroids and the spread of data within individual clusters.

Overall, multidimensional behavioral analysis enables represen-
tation of behavior in Ube3a™P™ mice as a single severity score
that is reliably different from wild-type controls and is sensitive to
treatment. Multidimensional behavioral analysis represents a tool
that may be used to evaluate the effectiveness of preclinical
treatments for AS and related neurodevelopmental disorders.
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