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Abstract. Professional service firms (PSFs) such as management consulting, law, account-
ing, investment banking, architecture, advertising, and home-repair companies provide
services for complicated turnkey projects. A firm bids for a project and, if successful in the
bid, assigns employees to work on the project. We formulate this as a revenue management
problem under two assumptions: a quality-revelation setup, where the employees that
would be assigned to the project are committed ex ante, as part of the bid, and a quality-
reputation setup,where the bid’swin probability depends onpast performance, say, an aver-
age of the quality of past jobs. We first model a stylizedMarkov chain model of the problem
amenable to analysis and show that up-front revelation of the assigned employees has subtle
advantages. Subsequent to this analysis, we develop an operational stochastic dynamic pro-
gramming framework under the revelationmodel to aid the firm in this bidding and assign-
ment process. We show that the problem is computationally challenging and provide a
series of bounds and solution methods to approximate the stochastic dynamic program.
Based on our model and computational methods, we are able to address a number of inter-
esting business questions for a PSF, such as the optimal utilization levels and the value of
each employee type. Our methodology provides management with a tool kit for bidding on
projects aswell as to performworkforce analytics and tomake staffing decisions.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2351.

Keywords: professional services • staffing • workforce analytics

1. Introduction
Aprofessional service firm (PSF), such as amanagement
consulting firm, has employees of varying skills, back-
grounds, qualifications, and experience (Nachum 1996).
Clients request a quote for their project, and the probabil-
ity of winning a bid depends both on the price quoted
(for the entire duration of the project) as well as the qual-
ity and suitability of the employees assigned to the job. If
the firm wins the project, it is committed to executing it
at that price and dedicating its resources to it.

This operational problem of PSFs, abstracting away
specific industry details, can be summarized as a bid-
ding-cum-matching problem where the probability of
winning depends on the quality of the employees prom-
ised for the job as well as the price quoted in the bid.
When the set of employees is specified as part of the bid,
we call it the quality-revelation model. This typically
happens in high-impact high-profile projects, or when
the customer is a new one, or when the PSF is competing
with larger rivals and needs to reassure the client on
quality. This is the primary model we consider in this
paper. We also consider an alternate model, the quality-

reputation model, where the bid does not name specific
employees and the winning probability depends on a
quality reputation that is accumulated over past projects.
This latter model is more appropriate for lower-end
PSFs and for simpler, shorter-term projects with estab-
lished relationshipswith the client.1

Although many papers in the literature have ad-
dressed various concomitant research issues for service
firms in general (aswe discuss in Section 1.1), relatively
little work has been done specific to this operational
and computational problem faced by PSFs. In this
paper, we formulate it as a revenue management prob-
lem where the area partner (throughout, we assume
the PSF is run by partners, as is typical in law or con-
sulting) assesses each project, client, future work, and
employees, and evaluates win probabilities and decides
on a bid to maximize expected revenue. Although
employee salaries are sunk in the short term, their
opportunity cost—as the employee will be tied up with
the project for a duration—has to be considered in the
bid. We model the success of the bid as depending on
the bid as well as the quality of the employees assigned
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to the project, which is a new dimension for revenue
management. As we mentioned, quality comes into the
equation either ex ante, revealed along with the bid, or
as an accumulated reputation effect.

We first resort to a stylized Markov chain model to
study the revelation versus reputation effects for a two-
employee, one-project-type case. The analysis yields
insights in favor of the transparency of the revelation
model, onwhichwe subsequently focus our attention.

Because the problem has a temporal dimension with
uncertainty about new requests for quotes as well as
bid wins, the appropriate framework is stochastic
dynamic programming. Unfortunately, the dynamic
program is impossible to solve exactly in practice, and
we show that it is inapproximable to any constant fac-
tor (unless P � NP) when projects require greater than
two employees, motivating a search for good tractable
approximations. Because of the nonlinearity inherent
in price optimization, we show that a deterministic
math programming formulation does not approximate
the dynamic program as well, so we look for more
sophisticated value-function approximations. We pro-
pose a simple and fast greedy heuristic to calculate
bids and use the approximations to bound its revenue
performance numerically.

Our methodology is useful not just for the bid opti-
mization problem, but also for performing workforce
analytics and Monte Carlo simulations to determine
the number of employees of each skill set to hire and
when and the marginal value of each employee type,
to guide the firm’s overall resource management.

We summarize the main contributions of our work
as follows:

1. On the modeling side, we formulate a stylized
one-project, two-employee Markov chain model to
gain managerial insights into the PSF’s revenue man-
agement problem. In particular, we find that a counter-
intuitive strategy of bidding higher for lower-quality
employees is optimal under the reputation model. We
also show that in a hybrid reputation–revelationmodel,
where a percentage of customers are perceptive and can
infer the quality from the bid, the optimal revenue is
lower than in the two pure models that generate identi-
cal revenue, thus illustrating the value of transparency.
This motivates us to focus on the operational problem
of themore transparent revelationmodel.

2. For the revelation model, we formulate the opera-
tional version of the problem as a dynamic program
that is flexible enough to allow many modeling varia-
tions but, unfortunately, is intractable computationally.
The main difficulty is the combinatorial effect of bun-
dling employees to a project and the nonlinearity of the
win-probability and revenue functions. We outline
below our technical contributions in this regard.

a. We show that the problem for projects requiring
more than one employee is inapproximable to any

constant factor (assuming P≠NP). On the positive
side, somewhat surprisingly given the nonlinearity
inherent in our problem, the methodology developed
in Rusmevichientong et al. (2020) in the context of
assortment optimization for reusable resources with
fixed prices can be partly extended to our setup: we
show that for one-employee projects, the revenue from
a greedy algorithm has a guarantee of at least 50% of
the maximum expected revenue.

b. Then, we consider the online single-stage prob-
lem and the many technical challenges that even this
raises.We showhowone can solve it via a two-step pro-
cedure: the first step involves solving a two-constraint
knapsack problem, and the second step maximizing a
univariate log-concave function.

c. Next, we obtain a relatively tight bound on the
value function of the dynamic program by approxi-
mately solving an affine approximation linear program
(LP) via constraint generation, in the spirit of Adelman
(2007). Our innovation is in the solution of the separa-
tion problemwhich, unlike in Adelman (2007), is a diffi-
cult nonconvex problem. We solve this problem locally
to obtain fast cuts and also develop an algorithm to
obtain an upper bound to the global optimum. To that
end, we use dual ideas as well as a trick to isolate the
nonconvexity of the auxiliary problem to one variable.

d. Finally, we show how our revenue management
formulation and its solution methods can be used to
obtain valuable insights on staffing and utilization lev-
els. There are very few analytical tools available for
project-bidding and staffing of PSFs, so our framework
provides a valuable tool kit for workforce management.

The remainder of this paper proceeds as follows. We
give a survey of the literature in Section 1.1. In Section 2,
we analyze a stylized Markov chain model. In Section 3,
we formulate the operational problem, and in Section 4,
we give analytical bounds and solution methods. Finally,
in Section 5, we give numerical results on the perform-
ance of the algorithms as well as their application in
workforce analytics. All proofs are relegated to the online
appendix. In addition, in Section A of the online appen-
dix, we describe our problem in the larger context of
bidding and staffing for a PSF.

1.1. Literature Review
The literature on operations of PSFs is relatively
sparse and spread out over many disciplines, includ-
ing profession-specific areas such as accounting or
law practice. Gilson and Mnookin (1985), for instance,
provide an early survey specific to the law profession,
which draws connections to economic principal–agent
theories and remains highly relevant. Two further in-
dustry publications, by Cotterman (2016) and Mudrick
(1990), describe the operations of law and accounting
firms. In contrast, relatively little has been documented
for management consulting firms, except for a few older
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articles (Maister 1982) and management books such as
that by Maister (2012). Of a more academic and insight-
ful nature are papers by Teece (2003) and a survey by
Roth andMenor (2003) who bothmention the paucity of
research into the operations of a PSF.

Quality of an employee and reputation of a PSF are
of course rather intangible concepts. Nachum (1996)
surveys these aspects for large advertising PSFs. Two
proxies they use for quality of employees are average
salary and productivity of the employee.

On the subject of reputation there are many articles
in the management science literature. Most empirical
studies in this area are based on online customer feed-
back, either numerical ratings or textual reviews (for
instance, Moreno and Terwiesch 2014). Unfortunately
there is little of that sort of information for PSFs like
large advertising firms or management consulting or
law firms. However, both their clients and those in the
industry are acutely aware of the reputations of the
players, and past performance invariably contributes
to such reputation.

Queueing models with k-identical servers and pric-
ing control have a similar flavor as the problem faced
by PSFs. This is usually stated as admission control
using state-dependent pricing and no buffers. The
well-known square-root staffing rule and the litera-
ture surrounding it provide great insight into how
staffing grows with load, but the literature generaliz-
ing the rule usually does not consider all three ele-
ments in our model: matching, quality, and pricing.
An exception is a recent article by Zhan and Ward
(2019), which studies the problem of staffing where
quality is a concern; the pricing part in that paper,
however, is distinct from ours, as it is about the pay-
ments to the employees. A good recent survey of the
area is provided by van Leeuwaarden et al. (2019).

As PSFs match employees to jobs dynamically,
online bipartite matching is another relevant area.
This has been extensively studied in the context of
online advertisements with quality of the match being
an important modeling element. In this application,
web page requests are matched with an inventory of
ads to show on the page. The resources are perishable,
that is, not released back, so there is no concept of
duration of the service. As in our model, decisions are
online and irrevocable, and there is also a pricing ele-
ment in the sense that the advertisers bid to place their
ads on the page (real-time bidding model) and the
highest bidder wins. Note that the logistic model that
we use is a probabilistic version of the max-net-utility
or envy-free pricing models used in this stream of lit-
erature. This is related to our problem as follows:
Each ad corresponds to an employee, with the number
of such employees corresponding to the number of ads
of that type to be shown. Projects are users visiting the

site, and each project has to be matched to at most one
ad. The duration of a job is ∞ (so it exhausts the ad
inventory). In our PSF model, each job requires a bun-
dle of resources and can have arbitrary durations;
hence, we are dealing with a significantly more difficult
computational problem.

The problem is also related to network revenue
management (Talluri and van Ryzin 2004) that is used
to model the sale control process for hotels, railways,
and airlines. The PSF revenue management problem
is a generalization of the standard network revenue
management problem—with a pricing and matching
component and an underlying bipartite graph struc-
ture with qualities as weights on the edges. The differ-
ence from PSFs is that there is no matching based on
qualities, and the prices are not personalized. Rusme-
vichientong et al. (2020) study the assortment optimi-
zation problem of such reusable resources. Because
employees can be considered reusable resources, the
computational techniques of Rusmevichientong et al.
(2020) are relevant to us, and we discuss and extend
them further in this paper. By adapting revenue man-
agement solution techniques, our paper brings new
tools for use in workforce analytics for PSFs.

In the operations management area, there are a few
important articles that study reputation for quality for
service firms. Specific to PSFs, the papers by Boone
et al. (2008) and Roels et al. (2010) are two such
papers, but they concentrate on organizational and
contracting aspects, respectively, in contrast to our
revenue management focus. Adelman and Mersereau
(2013) model a situation where customers remember
past fill rates, which leads to goodwill that is updated
by an exponentially smoothed average, and the firm
faces the problem of allocating limited capacity—
roughly corresponding to our quality-reputation regime,
but at a personalized level. The customer demand is a
function of the accumulated goodwill and an exogenous
shock. They analyze the performance of a greedy policy
and give an approximate dynamic programming
approach. Using numerical studies, they evaluate the
dynamics for a two-customer case to gain insights. In
contrast, we primarily concentrate on the quality-
revelationmodel.

The empirical paper by Bolton et al. (2006) is very rel-
evant to the issues that we study in this paper. They
study firms’ contract renewal decisions as a function of
the suppliers’ service operation metrics over time.
Based on a data set of support service contracts for
high-tech systems, they find that a firm with very favor-
able experiences is more likely to renew that contract
after controlling for average service levels. A similar
study was performed by Sriram et al. (2015) based on a
video-on-demand data set, focusing on the role of serv-
ice variability in influencing retention.
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In a very recent paper, DeCroix et al. (2021) studied
quality variability and how it affects personalized
dynamic pricing. Their concerns are concordant to
ours, but in a different setting. We focus specifically on
PSFs and the problem of bidding for projects as well as
allocation of resources. Our quality-reputation model-
ing shares many similarities, however; firms’ reputation
for quality follows an exponential-smoothing process,
and the purchase decision has a logit probability.

2. Markov Chain Model: Reputation
vs. Revelation

When reputation is the driver behind the win probabil-
ity, a PSF may be tempted to follow the dictum (men-
tioned to us by a PSF partner), “promise the best and
assign what is available.” This, however, has long-term
consequences in terms of reputation and the possibility of
winning future bids. To gain insight into the interactions
of short-term revenues and long-term reputation, we
develop a stylized model of the problem with one project
type and two employees. The model leads to tractable
near-closed-form solutions in steady state under both the
revelation and reputation schemes, and allows us to com-
pare them for insight into the main drivers and effects.

Assume we have two employees of qualities q1 and
q2 (q1 > q2; referred to as high-quality and low-quality,
respectively) and a unique project type that arrives with
probability λ in each period and requires a single
employee for a duration of exactly two periods; thus, an
employee assigned at time t is not available in period
t+1. Also assume zero employee cost (i.e., it is a sunk
cost). We model the probability to win the project as

w(b,q) � 1

1+ eβ0−βqq+βbb
, (1)

where b is the bid, and q is the supplied quality under
the revelation scheme. The parameters βq,βb are as-
sumed positive, so that the winning probability is
increasing in quality and decreasing in bid amount.
Equation (1) also yields the win probability under the
reputation model, where q now represents the reputa-
tion of the firm. The reputation of the firm is taken to
be the average over all qualities up to time t.

The system will transition between three states
(1, 0), (0, 1), and (1, 1), where the elements of the tuple
represent the first and second employee respectively,
and the value one represents availability for assign-
ment and zero otherwise. For example, (1, 0) repre-
sents a state where the higher-quality employee 1 is
available and the lower quality employee 2 is on a
project and not available. Note that there will always
be an employee available (hence, (0, 0) is not a reach-
able state), as only one project arrives per period, each
project lasts exactly two periods, and a maximum of
one employee is assigned to a project.

Remark 1. Under both the reputation and revelation
models, we should always greedily assign the high-
quality employee, if available, over the low-quality
employee. Indeed, there are two possibilities at state
(1, 1). Either we assign the hiqh-quality employee or
the low-quality employee (i.e., we do not have to con-
sider the case of not assigning anyone, as we can
always bid high enough to make an assignment prof-
itable). If it is optimal to assign the high-quality
employee, the state is identical to (1, 0), as (1, 1) and
(1, 0) are indistinguishable in terms of both immediate
revenue and transition to the next state. Similarly, if it
is optimal to assign the low-quality employee, the
state is identical to (0, 1).

But under both models, being in the state (1, 0) is
preferable to being in state (0, 1); that is, we would
prefer to have the high-quality employee available
more often, and therefore the state (1, 1) is equivalent
to the state (1, 0), whence assigning the high-quality
employee is preferable.

In view of Remark 1, we collapse the states (1, 0)
and (1, 1) into one and consider a two-state model
(Figure 1) with the following collapsed states:

• A—A high-quality individual is available;
• N—A high-quality individual is not available

(which implies a low-quality individual is available).
Then, a policy is defined by the bidding strategy (bA,

bN) in the revelation model and (bA(q̄),bN(q̄)) in the rep-
utation model. For a given quality, in both models,
there is a one-to-one correspondence between bid
amount and winning probability. Therefore, when con-
venient, we can also define the policies with respect to
the winning probabilities (wA,wN) in the revelation
model and (wA(q̄),wN(q̄)) in the reputation model.

In the reputation model, if τt projects have been won
up to time t, then if a project is won and assigned to
employee i at time t, we will have q̄t+1 � q̄t + 1

τt+1 (qi −
q̄t), whereas if the project is not won, we will have
q̄t+1 � q̄t. Thus, in all cases there holds

|q̄t+1 − q̄t| ≤
|q1 − q2|
τt + 1

:

Because of the long-term infinitesimal effect of a single
period on reputation, we consider only stationary

Figure 1. (Left) TheMarkov Chain with Three States and
(Right) Two States

N A
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policies, and thus at steady state, we can assume that
reputation stabilizes to a time-invariant q̄. Indeed,
consider a constant winning rate wN at state N. The
state N is reached exactly as many times as a high-
quality individual is assigned to a project and the
project is won. For every one of these times, exactly
λwN times a project is won and a low-quality individ-
ual is assigned. Therefore, in the limit, the ratio of
high-quality individuals to low-quality individuals is
1

λwN
, and the average reputation converges to q2 +

1
1+λwN

(q1 − q2).
We thus take as a given a constant q̄ in the steady

state and constant policies (bA(q̄),bN(q̄)) for the subse-
quent analysis. For any fixed such policy, the system
can be analyzed as a two-state Markov chain.

For the rest of this section, unless explicitly stated,
the discussion and equations refer to both the reputa-
tion and revelation models. At the steady state, let πA

and πN be the probabilities of being in the two states,
respectively (see Table 1).

The transition probabilities given the policy are

1 − λwA λwA
1 0

[ ]
,

and the corresponding steady state probabilities are
πA � 1

1+λwA
and πN � λwA

1+λwA
:

The percentage of periods where we win a project
and assign the high-quality employee is λπAwA, and
the percentage of periods where we win a project and
assign the low-quality employee is λπNwN. Therefore,
the average quality, also confirming an earlier state-
ment, is

q̄ � λπAwAq1 +λπNwNq2
λπAwA +λπNwN

� λwAq1 +λ2wAwNq2
λwA +λ2wAwN

� q1 +λwNq2
1+λwN

� q2 + 1
1+λwN

(q1 − q2),

and the average revenue per period extracted by the
policy is λπAbAwA +λπN bNwN:

When a project arrives, the average revenue
extracted is bAwA when at state A and bNwN when at
state N. In Proposition 1, we show that when operat-
ing optimally, the average revenue that can be ex-
tracted is the same under both models.

Proposition 1. When operating optimally, the average
revenue per period under the revelation model is equal to
the average revenue per period under the reputation model.

We next show that even though the same revenue
can be generated under both models, this is possible
in the reputation model only by adopting a counterin-
tuitive policy that bids higher for the lower-quality
employee. The revelation model behaves predictably
in this respect, as we first show in Proposition 2.

Proposition 2. For the optimal bidding policy (b∗A,b∗N)
under the revelation model, there holds b∗A > b∗N.

Proposition 3 is somehow counterintuitive. It says
that in the reputation model, we should bid higher
when supplying the low-quality employee. As we
extract value only from our reputation, we can extract
equal value from high- and low-quality employees in
the current period. Reputation considerations imply
that we benefit in the long term from assigning good
employees when winning; therefore, we are inclined
to ask for higher compensation for assigning a low-
quality employee. As dictated by intuition and shown
in Lemma 1, in spite of the higher bidding for the low-
quality employee, we generate more revenue when
the high-quality employee is available.

Lemma 1. For the optimal bidding policy (b∗A,b∗N) under
the reputation model with corresponding win probabilities
(w∗

A,w
∗
N), there holds w∗

Ab
∗
A ≥ w∗

Nb
∗
N.

Proposition 3. For the optimal bidding policy (b∗A,b∗N)
under the reputation model, there holds b∗N ≥ b∗A.

We have seen that the firm gets the same revenue in
the reputation and revelation cases. Let us examine the
situation from the customer’s point of view. From sym-
metry, the total fees are equal in the two cases. But
what is the utility for the customer with respect to the
number of projects assigned for these fees and the dis-
tribution of high- and low-quality employees? It follows
from the reasoning of the proof of Proposition 1 that the
optimal reputation and revelation policies will have the
same wA and wN, which also implies an identical quality
distribution. What changes is the payment schedule,
and we next discuss a couple of things that may make
the reputation schedule unattractive.

2.1. Reputation vs. Revelation, and Signaling
One could argue that the bidding “inversion” under
the reputation model reflects the absence of signaling
effects in the model: if we were to implement the bid-
ding strategy of the reputation model, customers would
be likely to infer, at least to some degree, the quality
from the bid. If we assume all customers are highly
observant and infer the bid-to-quality relationship
exactly, then we converge to the revelation model. The

Table 1. Notation for the Markov-Chain Model

State
State

probability Resource Bid
Win

probability Revenue

A πA 1 bA wA bAwA

N πN 2 bN wN bNwN
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reputation model, as studied in this section, is the other
extreme, where customers do not learn at all.

But what about an in-between zone, where some
customers can deduce the quality of the employee
from the bid while others cannot and act based on the
firm’s reputation? The core of the insight remains rele-
vant: the reputation drop associated with winning
using low-quality employees is a force pushing toward
biding highwhen supplying such employees. In such a
hybrid regime, we face a dilemma. Using “revelation
bidding” leads to higher acceptance of low bids and
lower acceptance of high bids by naïve customers, low-
ering our revenues. Using “reputation bidding” leads
to exploitation by perceptive customers. In Proposition 4,
we resolve this dilemma, showing that under a hybrid
regime, we cannot achieve the same revenue as in either
of the pure cases. Thus, there is value in the clarity of
knowing all customers behave in the same way, some-
thingwe can achieve by revealing quality ex ante.

Proposition 4. Consider a hybrid regime where a fraction
0 < α < 1 of the customers can deduce the quality of the
employee from the bid and (1− α) cannot and decide based
on reputation, where the reputation q̄ is the average quality of
the wins of the naïve customers. The optimal revenue gen-
erated when operating under this hybrid regime is strictly
less than the optimal revenue of the revelation regime.

Remark 2. A secondary, somewhat unsatisfying prop-
erty of reverse bidding is related to employee incen-
tives. Although total revenue for the firm does not
change under the two models, the division of billing is
different. Even though in both models the hiqh-quality
employee brings in more revenue, the difference is
higher in the revelation model, as we demonstrate in
Proposition 5. Thus, employees may be less incentiv-
ized for quality work under the reputation model.

Proposition 5. In both the reputation and revelation mod-
els, the high-quality employee brings in more revenue than
the low-quality employee. The difference, however, is higher
under revelation.

Motivated by the results of this section, we focus
the rest of this paper on studying the PSF problem
under the revelation model.

3. An Operational Model Under
Quality Revelation

In this section, we consider the PSF revenue manage-
ment problem with quality revelation under a general
setup, allowing for an arbitrary number of employees,
multiple project types of varying durations, and emp-
loyee quality match metrics that may vary by project.
We formulate the problem as a dynamic program that
unfortunately is computationally difficult to solve: the
state space of the dynamic program explodes even for

small problems; so the goal is to obtain “good” poli-
cies via approximations (in Section 4).

Time is discrete and runs over a horizon from one to
T. We assume a set P of project types and a set I of
employees i ∈ I. Each project type p ∈ P has a fixed
requirement of kp individuals for a duration of dp. A
project of type p arrives with probability λpt in period t,
with at most one project arrival per period

∑
p∈Pλpt ≤ 1.

We assume that λpt � 0 for t > T− dp. When it is clear
from the context, we write a project p instead of a project
of type p. We denote by qp the vector of size |I| of quality
measures of assigning individuals to project p.

3.1. The State Space
The state s is a vector in Z

|I|
+ , with the ith element si

representing the number of periods after which that
individual i becomes free. So if si � 0, employee i is cur-
rently free and can be assigned immediately, whereas if
si > 0, he or she is working on some other project and
will become available in si periods.

We also use the indicator

1s,i � 1 if si � 0;
0 otherwise

{

to indicate that at state s individual i is available, or 1s

in vector notation.

3.2. The Controls
The decision variables are how much to bid and the as-
signment of individuals to the project. The feasible assign-
ments F p

s to project p when at state s are the set of
assignments that assign only among available resources,
that is,

F p
s � {x ∈ {0,1}|I| | x ≤ 1s, 1Tx � kp}: (2)

The feasible assignments if all resources are available
are F p

0.

3.3. The State Dynamics
If a project is won and x is a feasible assignment of
employees, then we have st+1 � [st − 1+ dpx]+. If no
project is won, then no employee is assigned, and we
have st+1 � [st − 1]+.
Remark 3. Additional constraints can be imposed on
F p

s . For example, one can introduce employee types and
enforce that at least klp employees of type l are assigned
to the project via imposing constraints

∑
i∈Ilxi ≥ klp,

where Il ⊂ I are the employees of type l. We do not con-
sider such constraints, however, as they affect the diffi-
culty of the combinatorial single-period subproblem
that we examine in Section 4.1.3.

3.4. Win Probabilities
Given a feasible assignment x ∈ F p

s and a bid b per
person-day, we win the project with a probability that
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is a function of the bid and the average quality q̄T
px of

the assignment where q̄p �
qp
kp
. Specifically, we assume

that the probability of winning project p is given by the
logistic function

wp(b, q̄T
px) �

1

1+ eβ
p
0+βpbb−β

p
q q̄T

p x
, (3)

with βpq > 0 and β
p
b > 0, so that the probability to win is

increasing as a function of quality and decreasing as a
function of the bid.

If the project is won, we incur a cost cTpx. If we assume
the daily cost to be c, that is, independent of p, then we
can set cp � dpc. The costs c capture nonsunk costs only,
if any. Employee salaries that do not depend on the
workload are not part of the dynamic program; how-
ever, they play a role in optimal hiring decisions that we
investigate in our numerical simulations of Section 5.

Let Vt(s) be the value function representing optimal
expected revenue from a project-bidding and resource-
allocation policy. Noting that project p has kpdp work-
days, the dynamic program is

Vt(s) �
∑
p∈P

λpt max
xp∈F p

s

bp∈R+ [(kpdpbp − cTpx

+Vt+1([s− 1+ dpxp]+))wp(bp, q̄T
pxp)

+ (1−wp(bp, q̄T
pxp))Vt+1([s− 1]+)]

+ 1−∑
p∈P

λpt

( )
Vt+1([s− 1]+): (4)

The dynamic program recursion is easy to interpret.
We decide on the bids and assignments (as this is
quality revelation) to maximize the current period’s
expected revenue and the future profits given some of
our employees become unavailable.

Writing �Vp
dt(s,xp) � Vt+1([s− 1]+) −Vt+1([s− 1+ dpxp]+),

we have

Vt(s) � Vt+1([s− 1]+) +∑
p∈P

λpt max
xp∈F p

s

bp∈R+ (kpdpbp

− cTpxp −�Vp
dt(s,xp))wp(bp, q̄T

pxp):

(5)

The problem is difficult as formalized in Proposition 6.

Proposition 6. Assuming P≠NP, the bidding-and-match-
ing problem of the PSF cannot be approximated to any con-
stant factor whenmaxp kp ≥ 2.

4. Bounds and Solution Methods
The dynamic program (5) is computationally intractable
to solve exactly, as the state space explodes even for a
small number of employees. We thus first present a lin-
ear approximation to the value function and a greedy
policy with respect to the approximation. Based on this
approximation, we derive a theoretical upper bound
on the optimal expected revenue. We show that when

projects require exactly one employee, this approach
gives a performance guarantee of being within twice the
optimal value (see Proposition 6). Subsequently, we
derive two increasingly tighter upper bounds on the
dynamic program, the motivation being that the tighter
the bounds comparedwith the values from the policy, the
greater our confidence that policies derived from the
bounds reflect the behavior of an optimal solution. The
first bounding technique is based on a nonlinear program
(NLP), akin to the deterministic version of the problem,
that is an upper bound on the value function. The second
bound is obtained via restricting the variables of the linear
programming formulation of the dynamic program to lin-
ear policieswhile retaining thenonlinearity of the revenue
function and calculating it using various optimization
techniques. In Section 5, we first investigate how the
boundsperformnumerically and thenuse the greedypol-
icy to study somequestions of interest to a PSF.

4.1. Linear Approximation
A natural strategy for approximating the value func-
tion is to replace it with a linear approximation. The
terms of the approximation can be interpreted as mar-
ginal values of employees, which we can approximate
either via a recursive heuristic (Section 4.1.1) or via
the solution of an affine approximation linear pro-
gram (16) (in Section 4.3).

Let dm be the maximum duration over all projects.
Consider the approximation of the value function

V̂t(s) � ν̂tc +
∑
i∈I

ν̂ti,si ,

parameterized by ν̂tc, ν̂
t
i,si for i ∈ I, t ∈ {1, : : : ,T}, si ∈

{0, : : : ,dm − 1}. The parameter ν̂ti,si denotes the marginal
value at time t of employee i if he or she were to be avail-
able in si periods.We use the vector notation n̂t

s to contain
the corresponding information ν̂ti,si for all individuals.

4.1.1. Recursive Heuristic. Computing the optimal
parameters ν̂ti,j is not trivial, and in this section, we
propose a fast recursive greedy heuristic as a tractable
approximation, similar to the one in (Rusmevichien-
tong et al. 2020) in the context of assortment optimiza-
tion with fixed prices:

Initialization: Set ν̂Tc � 0 and ν̂Ti,j � 0 for all i ∈ I, j ∈
{0, : : : ,dm − 1}.

Recursion: For t � T − 1, : : : , 1:
1. For every project p with λpt > 0, compute the opti-

mal allocation x̂tp and bidding b̂
t
p under the assumption

that all resources are available:

x̂tp, b̂
t
p

( )
� arg max

xp∈F p
0

bp∈R+

(
kpdpbp − cTpxp

− 1T n̂t+1
0 − n̂t+1

[0−1+dpxp]+
( ))

wp(bp, q̄T
pxp):
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2. Once (x̂tp, b̂
t
p) is calculated for every project p, com-

pute, for all j ∈ {t, : : : t− dm},
ν̂ti,j � ν̂t+1i,j−1 ∀i ∈ I, j ∈ {1, : : : ,dm − 1}, (6)

n̂t
0 � n̂t+1

0 +∑
p∈P

λpt

(
kpdpb̂

t
pc

t
p ◦ x̂tp − c ◦ x̂tp

− (n̂t+1
0 − n̂t+1

[0−1+dpxp]+ )
)
wp

(
b̂
t
p, q̄

T
p x̂

t
p

)
, (7)

where ◦ denotes the Hadamard product (element-wise
product), and the condition ctp

Tx̂tp � 1 holds, with ctp dis-
tributing the revenue among the participating individu-
als.We also set

ν̂tc � 1Tn̂t
0:

There is some flexibility in picking the parameter ctp,
which leaves space for different variants of the heuris-
tic. However, we should always make a choice that
satisfies the following condition to guarantee monoto-
nicity of the marginal values (Lemma 3):

kpdpb̂
t
pc

t
p ◦ x̂tp − cp ◦ x̂tp − (n̂t+1

0 − n̂t+1
[0−1+dpxp]+ ) ≥ 0, ∀p ∈ P:

(8)

Lemma 2. There exist ctp ≥ 0 with ctp
Tx̂tp � 1 that satisfies

condition (8).
From the definition of n̂t

0 the following is obvious.

Lemma 3. If the choice of ctp satisfies condition (8), then
n̂t
0 ≥ n̂t+1

0 .

Proposition 7 yields a first upper bound on the opti-
mal value of the dynamic problem.

Proposition 7. If the choice of ctp satisfies condition (8),
then V1(0) ≤ 2 · 1Tn̂1

0.

We call the right-hand side of the inequality in Proposi-
tion 7 the theoretical upper bound. In our numerical simu-
lations, it turns out not to be particularly tight, but it gives
us a reference value to compare tighter bounds with.

4.1.2. Greedy Policy. In this section, we explore a sim-
ple greedy policy to calculate the bids and assign-
ments under the quality-revelation model once we fix
the marginal values according to the recursive heuris-
tic of the previous section. This gives a lower bound
on the value function. In Section 4.3, we will discuss
an alternative way to compute the marginal values.

For fixed n̂t
s, the greedy policy with respect to the

approximation is given by

(xtp(s),btp (s)) ∈ arg max
xp∈F p

s

xp∈F p
s

(
kpdpbp − cTpxp −1t

s
T
(
n̂t+1
0

− n̂t+1
[0−1+dpxp]+

))
wp bp, q̄T

pxp
( )

, (9)

where the dependence on the state is through F p
s , 1

t
s.

Proposition 6 shows the problem cannot be app-
roximated to any constant factor even when projects are
restricted to a maximum of two employees. We now
show that if projects need at most one employee, the
greedy policy with respect to the value function
approximation V̂ is guaranteed to obtain at least 50% of
the optimal total profit.

Theorem 1. If kp � 1 for all p ∈ P, the total expected profit
of the greedy policy with respect to the value function
approximation V̂ is at least 50% of the optimal.

The proofs of Proposition 7 and Theorem 1 follow
similar lines of argument as lemma 3.3 and theorem
3.2 of Rusmevichientong et al. (2020). Next we exam-
ine the single-stage problem that appears in the com-
putation of n̂t

s and the greedy policy with respect to
the approximation.

4.1.3. Implementing the Single-Stage Problem. We
want to solve

max
b∈R+
x∈F p

s

(kpdpb − c̃Tx)wp(b, q̄T
px), (10)

where b is the bid and c̃ � cp + (n̂t+1
0 − n̂t+1

[0−1+dp1]+ ) is the
base cost plus the opportunity cost of the resources.

It is convenient to rewrite (10) as

max
b∈R+
x∈F p

s

(kpdpb − C)wp b,
Q
kp

( ) ∣∣∣∣∣ qTpx � Q, c̃Tx � C

{ }
: (11)

Note that it is natural to assume integrality for qp, but not
for c̃ because of the inclusion of the opportunity costs.

The function r(b,C,Q) � (kpdpb−C) 1= 1+ eβ
p
0+βpbb−

β
p
q
kp
Q

( )( )

is log-concave, as can be easily verified. With the feasible
assignment set F p

s as in (2), we can solve (11) via a two-
step procedure:

1. Solve the two-constraint knapsack problem

max
x∈{0,1}|I|
x≤1s

{qTpx : c̃Tx ≤ C, 1Tx � kp} (12)

for every 0 ≤ C ≤ 1Tc̃ producing a Pareto front of
(C, Q) pairs.

2. For each Pareto-optimal (C, Q), maximize the uni-
variate log-concave function r(·,C,Q) obtaining a corre-
sponding bidding price. Pick the Pareto-optimal (C, Q)
and the corresponding bid price that yields the overall
maximum.

In the online appendix, we illustrate how to pro-
duce all Pareto points of Step 1 in one go by utilizing
a variation of the dynamic programming algorithm
for knapsack problems (Kellerer et al. 2004) after an
appropriate transformation. The single-stage problem
turns out to be computationally fast in practice.

Remark 4. For more complex feasible assignment sets,
as mentioned in Remark 3, Step 1 of the above procedure
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would involve the solution of a series of binary pro-
grams to obtain the Pareto front.

4.2. Deterministic Upper Bound
In this section, we develop a compact deterministic upper
bound akin to the deterministic linear programming
bound of network revenue management (Talluri and
van Ryzin 2004), but with a nonlinear objective function.
We effectively treat the arrivals and wins of projects to
be deterministic and equal to their expectations. Then,
Jensen’s inequality shows that we can obtain an upper
bound via the solution of a convex nonlinear program.
The advantage of this bound is that it can be solvedusing
standard nonlinear programming packages. However,
as we show in Section 5, the bound is not as tight as the
more complicated bound of Section 4.3.

Recall that project p requires kp individuals and lasts
dp intervals. Let us define a 0–1 incidence matrix A
with |I| × |P| × T columns and |I| × T rows, represent-
ing resource usage. The column (i, p, t), corresponding
to an assignment of individual i to project p at time t,
will have ones in rows (i, t) to (i, t+ dp − 1), corre-
sponding to employee i being occupied from time t
up to and including time t+ dp − 1.

Consider the nonlinear convex deterministic program

max
w∈R|P|·T
z∈R|I|·|P|·T

∑T
t�1

∑
p∈P

kpdp

[
βpq

β
p
b

q̄T
pz

t
p −

β
p
0

β
p
b

λt
pw

t
p

+ 1
β
p
b

λt
pw

t
plog

1 − wt
p

wt
p

( )]
s:t: Az ≤ 1

1Tztp � kpwt
p, ztp ≤ λpt1, ztp ≤ wt

p1 ∀t, p
0 ≤ z ≤ 1 (DWu)

where the decisions are expressed in terms of the
assignment ztp to project p at time t, and the corre-
sponding win probability wt

p, rather than the bid
btp—a one-to-one relationship. We show that the opti-
mal value of (DWu) yields an upper bound to the opti-
mal value of the dynamic program.

Proposition 8. The optimal value of (DWu) is greater than
or equal to V1(0).

In practice, we can tighten the above bound by simulat-
ing project arrivals and averaging the optimal solutions of
the corresponding NLPs. Another advantage of simula-
tion is that theNLPs have smaller sizes, asweonly have to
consider the project that actually arrived in every period,
counterbalancing the effort of solvingmultipleNLPs.

To that end, assume that at a simulation iteration a
project p(t) ∈ P arrived at time t. Now our incidence
matrix A has |I| × T columns and |I| × T rows. The
column (i, t), corresponding to an assignment of indi-
vidual i at time t, will have ones in rows (i, t) to

(i, t+ dp(t) − 1), corresponding to employee i being occ-
upied from time t up to and including time t+ dp(t) − 1.
The corresponding NLP is

max
w∈RT

z∈R|I|·T

∑T
t�1

kp(t)dp(t)
βp(t)q

β
p(t)
b

q̄T
p(t)z

t −wt β
p
0

β
p
b

+ 1
β
p
b

wtlog
1−w
w

( )[ ]

s:t: Az ≤ 1,
1Tzt � kp(t)wt, zt ≤ 1, zt ≤ wt1 ∀t,
0 ≤ z ≤ 1, (DWu

p(t))

where p(t) is theproject that arrivedat time t. In the above,
to avoid notational complications, we assumed a project
arrives in every period. Time periods where no project
arrives can be left out of the summation in the objective,
and the correspondingvariables can bedropped.

The optimal value of (DWu
p(t)) is a random quantity,

as it depends on the random arrivals.

Proposition 9. Let O(DWu
p(t)) be the optimal value of

DWu
p(t) and O(DWu) be the optimal value of (DWu). Then

O(DWu) ≥ E[O(DWu
p(t))] ≥ V1(0):

We omit the proof as it is similar to the last step of the
proof of Proposition 8.

4.3. Affine Bound via Linear Programming
In this section, we investigate solving for the marginal
values in the approximation using linear program-
ming as pioneered in revenue management by Adel-
man (2007). This bound is in general tighter than the
bound of Section 4.2 and gives us confidence that our
heuristic algorithms for the bidding and assignment
are reasonably close to the optimal solution.

Consider the linear program

min Ṽ1(0)
s:t: Ṽt(s) ≥ Ṽt+1([s − 1]+)+

+∑
p

λpt

(
kpdpbtp − cTpx

t
p −�Ṽ

p
dt(s, xtp)

)
wp(btp, q̄T

px
t
p)

∀t, s, btp, x
t
p ∈ F p

s ,

(13)
where the decision variables of the LP are the Ṽt(s)’s.

Solving (13) yields an optimal solution to the dynamic
program, but is intractable because of the exponential
number of variables and constraints. We can obtain an
upper bound by solving instead the LP corresponding to
the approximate dynamic program that reduces the num-
ber of variables to something we can handle numerically:

min ν̃1c + 1Tñ1
0 (14)

s:t: ν̃t+1c − ν̃tc + 1t
s
T(ñt+1

0 − ñt
0) + (1 − 1t

s)T(ñt+1
s−1 − ñt

s) +∑
p∈P

λpt

(
kpdpbtp − cTpx

t
p − 1T

(
ñt+1
0 − ñt+1

[0−1+dpxp]+
))

× wp(btp, q̄T
px

t
p) ≤ 0, ∀t, s, btp, x

t
p ∈ F p

s : (15)
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To move from (13) to (14)–(15) we constrain the fully
general decision variables Ṽt(s) to be affine in the state.
Thus, the problem (14)–(15) is a restriction of (13) and
indeed yields an upper bound. We can further restrict
the problem, retaining the bounding property, by add-
ing the constraints ñt

j � ñt+1
j−1 for all t, j > 0, which can be

interpreted as saying that the marginal value of an
employee that is to become available after j > 0 periods
at time t is equal to the marginal value of the same
employee that is to become available after j – 1 periods
at time t + 1. In view of these additional constraints, we
can drop the term (1−1t

s)T(ñt+1
s21 − ñt

s) from (15). The
constraints now depend on the state s only via the avail-
able resources in the definitions of F p

s , 1
t
s, a fact that

will be critical computationally:

min ν̃1c + 1Tñ1
0 (16)

s:t: ν̃t+1c − ν̃tc +1t
s
T(ñt+1

0 -ñt
0) +∑

p∈P
λpt

(
kpdpbtp − cTpx

t
p − 1T

(
ñt+1
0 − ñt+1

[0−1+dpxp]+
))

× wp(btp, q̄T
px

t
p) ≤ 0, ∀t,s,btp,x

t
p ∈ F p

s , (17)
ñt
j � ñt+1

j−1, ∀t, j > 0: (18)

The LP (16)–(18) has T · dm · |I| +T variables but an
exponential number of constraints. Because now the
dependence of (17) on the state is via the available
resources, to consider the constraints corresponding
to all states, we just need to consider all possible com-
binations of resource availability. Using y to denote
the vector of available resources and X � x1, : : : ,x|P|,
we can rewrite (17) as

ν̃t+1c − ν̃tc + gñ ,t(y,X,b) ≤ 0, ∀b ∈ R
|P|
+ , ∀(y,X) ∈ Z,

(19)

where

gñ,t(y,X,b) � (ñt+1
0 − ñt

0)Ty+
∑
p
λpt

(
kpdpbp − cTpxp

− 1T
(
ñt+1
0 − ñt+1

[0−1+dpxp]+
))
wp(bp, q̄T

pxp),
Z � {(y,x1, : : : ,x|P|) | y ∈ {0,1}|I|,xp ∈ X p,xp ≤ y},
X p � F

p
0 � {x ∈ {0,1}|I| | 1Txp � kp}:

If we relax Xp to its linear relaxation X
p
R, we are effec-

tively increasing the number of constraints. It follows
that the optimal value of the corresponding restricted
version of (16)–(18) remains a valid upper bound on the
dynamic program.We aim to solve this restricted version
of (16)–(18) by constraint generation, generating cuts iter-
atively by solving for every t the separation problem

max{gñ,t(y,X,b)|b ∈ R
|P|
+ , y ∈ {0,1}|I|, xp ∈ X

p
R, xp ≤ y},

(20)

where ñt
s are obtained by solving the (master prob-

lem) bounding LP with a subset of the constraints.

Problem (20), however, is nonconvex and hard to
solve. We use two procedures, a fast one that pro-
vides valid cuts but does not theoretically guar-
antee an upper bound, and a slower one that needs
to be called only once, when the values of the re-
laxed LP converge, to provide an upper bound
certificate.

4.3.1. Weak Fast Cuts. The cuts are generated sepa-
rately for every period t. Given ñt

s values, we find a
local maximum of (20) to obtain a local solution
(y∗,X∗,b∗). The cut
ν̃tc ≥ ν̃t+1c +

(
y∗ −∑

p∈P
λptwp(bt∗p , q̄T

px
t∗
p )xt∗p

)T
ñt+1
0 − y∗Tñt

0

+∑
p∈P

λpt

(
kpdpbt∗p +

(
ñt+1
[0−1+dpxt∗p ]+ − cp

)T
xt∗p

)
wp(bt∗p , q̄T

p x̂
t∗
p ),

where, to simplify the expression, we used

1T
(
ñt+1
0 − ñt+1

[0−1+dpxt∗p ]
)
� xt∗

T

p

(
ñt+1
0 − ñt+1

[0−1+dpxt∗p ]
)
,

is valid. Indeed, for any feasible point nc,nts of
(16)–(18), we have

νt+1c − νtc + gn,t(y∗,x∗,b∗) ≤ νt+1c − νtc +max
y,x,b

gn,t(y,x,b) ≤ 0:

4.3.2. Upper Bound Certificate. As should be clear,
solving the bounding LP (13) with only a subset of
constraints will not lead to an upper bound on the
optimal revenue. Here we provide an upper bound
certificate using dual ideas. Proposition 10 provides
an upper bound certificate for Problem (16)–(18) and
thus also for the dynamic program.

Proposition 10. Let ñt
j with ñt

j � ñt+1
j−1 for j > 0. If ĝt is an

upper bound on the optimal value of the separation problem
(20), then an upper bound on the optimal value of (16)–(18)
is given by 1Tñ1

0 +∑T−1
t�1 ĝt:

Remark 5. Proposition 10 yields an upper bound for
any choice of ñt

s satisfying the last constraints of the
bounding LP. An unfortunate choice, however, of
such ñt

s may lead to a weak bound. The generation
of fast cuts and the solutions of the relaxed LP
are thus used to select ñt

s’s that will lead to better
bounds.

Remark 6. The marginal values of ñt
j obtained by the

upper bounding process can also be used to drive an
approximate policy, in place of the n̂t

j ’s of Section 4.1.1.
To obtain the upper bounds ĝt we will solve the

dual of (20) with respect to the constraints xp ≤ y,

min
p∈RI×P+

max
xp ∈ XR

p

y ∈ {0,1}|I|
b ∈ R

P
+

gñ,t(y,X,b) +∑
p∈P

(y− xp)pp: (21)
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Using the definition of gñ,t, the inner problem decom-
poses and yields subproblems

max
yi∈{0,1}

(∑
p∈P

πip + (ν̃t+10i − ν̃t0i)
)
yi, (22)

max
xtp∈[0,1]|I|
btp∈R+

λpt

(
kpdpbtp − cTpx

t
p − 1T

(
n̂t+1
0 − n̂t+1

[0−1+dpxp]+
))

× wp(btp, q̄T
px

t
p) − pTpxp (23)

s:t: 1Txtp � kp:

Problem (22) is trivially solved by setting yi � 1 when-
ever its coefficient in (22) is positive and to yi � 0 oth-
erwise. Although Problem (23) is nonconvex, the
nonconvexity can be isolated in one dimension and
solved by a one dimensional branch-and-bound
search. To that end, let

F(ρ) �
max

xtp∈[0,1]|I|
btp∈R+

log
[
λpt

(
kpdpbtp − cTxtp − 1T

(
n̂t+1
0

− n̂t+1
[0−1+dpxp]+

))
wp(btp, q̄T

px
t
p)
]

s:t: 1Txtp � kp, pTpx
t
p ≤ ρ,

and note that the objective function of the defining
problem is concave, because the logistic distribution
wp is log-concave. In turn, this implies concativity of
F(·), as a perturbation function of a concave maximiza-
tion problem with convex constraints.

Problem (23) can be reformulated as the univariate
optimization problem

max
ρ∈[0,1Tpp]

{eF(ρ) − ρ}

with a nonconvex objective function. Note that evalu-
ating eF(ρ) − ρ at a given ρ is an easy concave problem.
To find the optimal ρ∗ via branch and bound, given an
interval [ρl,ρu], we further need a concave overesti-
mator of eF(ρ) − ρ in [ρl,ρu], with the property that as
the interval [ρl,ρu] gets smaller, the overestimator
becomes arbitrary tight (see Horst and Tuy 2013).

By replacing the exponential with its secant in the seg-
ment [ρl,ρu], we obtain such a concave overestimator,

eF(ρl) + eF(ρu) − eF(ρl)

F(ρu) − F(ρl)
(F(ρ) − F(ρl)) − ρ,

and we observe that the overestimator is exact at the
edges of the interval [ρl, ρu]. In turn, because of con-
tinuity, this implies that the overestimator can be
made arbitrary tight by shrinking the corresponding
interval. We emphasize that although branch and
bound is in general an exponential algorithm, in our
case, it is efficient, as we have isolated the nonconvex-
ity of the problem in one variable.

Remark 7. The dual does not have to be solved to
optimality. Any p ≥ 0 leads to a valid upper bound. In

our numerical experiments, we use the subgradient
algorithm with a modest number of iterations to cal-
culate p.

5. Numerical Study
In this section, we use our computational procedures
to numerically investigate questions of great interest
for a PSF, namely, what the right utilization level is
and what employee types to hire. Our first experi-
ment, in Section 5.1, however, is technical and focuses
on examining the tractability and relative tightness of
the different bounds as well as giving some insight on
the optimality gap of the greedy policy. In the second
experiment, in Section 5.2, we perform simulations
based on the approximate solution of the dynamic
program to explore the interplay between operational
and hiring decisions, and in the third set of experi-
ments, in Section 5.3, we look at optimal hiring. The
focus is not so much on the specific insights, as they
are dependent on parameters, but on illustrating the
potential uses of our tool kit and that the value of our
formulation and solution methods extends beyond
just the bidding and assignment problem and can be
useful in workforce analytics and staffing decisions.

We generate instances parameterized by the num-
ber of employees |I|, the number of project types |P|,
durations dmin and dmax, and k, where k is a proxy for
the number of employees per project. In each period, a
project p arrives with probability λp, which is sampled
from a uniform [0, 1] distribution and subsequently
normalized so that exactly one project arrives in each
period, that is,

∑
p∈Pλp � 1. The project duration dp is

taken to be a random integer between dmin and dmax,
and kp � 
k̄p�, where k̄p is sampled from a uniform dis-
tributionwith support [0:7k, 1:3k].

We assume we have three types of employees, A, B,
and C, and each project type belongs to one of three
classes, a, b, and c, all with equal probability. We
emphasize that there are more than three project types,
as a project type, apart from its class, is defined by its
duration, its workforce requirements, and its sensitivity
to quality and price. The suitability of an employee type
to a project class is denoted by Sip and takes values
from Table 2. Furthermore, each employee has generic
capability Ci, which is an integer between one and five.
The overall quality of assigning employee i to project p
is qip � Ci · Sip; it is a combination of the inherent capa-
bility of the employee and the suitability to the project

Table 2. Employee Capabilities

a b c

A 3 2 1
B 2 3 2
C 1 2 3
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and takes values in [1, 15]: We assume all labor costs
are sunk and set cp � 0.

The price sensitivity β
p
b and the quality sensitivity βpq

are sampled uniformly from [0:008, 0:012] and [0:3,
0:5], respectively, whereas we set βp0 � ε− 1, 000βpb + 9βpq
with ε sampled uniformly from [−0:5, 0:5]. Figure 2
shows the winning probability as a function of the bid
for different average qualities Q̄. Note that ε�0 and the
parameters β

p
b, β

p
q being at the centers of their corre-

sponding intervals leads to a probability of 50% of win-
ning the project if we bid 1,000 per workday and supply
a bundle of employees with an average quality of nine.

5.1. Tightness of Bounds and Computational
Performance

For our first experiment, we pick the type of an
employee to be A with probability 50%, B with proba-
bility 30%, and C with probability 20%. The capabil-
ities are picked randomly, with equal probabilities.
The computations are to examine the tractability and
relative tightness of the different bounds, as well as to
give some insight on the optimality gap of the greedy
policy.

We run our experiments on a Linux worksta-
tion with 10 cores clocked at 2.8 GHz and 64 gigabytes
of memory. All LPs are solved via Gurobi (Gurobi
Optimization 2022), and all NLPs via SNOPT (Gill
et al. 2005).

We solve instances for eight project types and 50 peri-
ods, and we scale the number of individuals from 15 to
75. Because exactly one project arrives per period, as we
increase the number of individuals, we also increase the
durations and resource requirements of the project
types, in order tomaintain a reasonable balance of work-
load with demand. In this section, we report on one
instance of each size, whereas in the online appendix, we
provide an additional four instances for each problem
size. We do not observe any qualitative difference in the
results of the additional instances.

In our implementation of the bound of Section 4.3,
we terminate the weak cut generation when the cumu-
lative change in the value of the LP in 10 consecutive
iterations is smaller than 0.33%. Subsequently, we com-
pute an upper bounding certificate using 40 iterations
of the subgradient algorithm for the outside minimiza-
tion of (21). We note that these criteria for terminating
the generation of cuts and themultiplier searchmay be

Table 3. Numerical Results for |P| � 8 and T � 50

Problem Revenue/employee ($1,000) Performance

|I| k Duration Simh SimNLP SimAFF UBT UBNLP UBAFF Perf

15 6 3–6 28.4 6 0.21 27.4 6 0.22 28.5 6 0.2 48.8 39.7 33.7 84.6
15 7 4–7 25.5 6 0.18 24.1 6 0.19 25.4 6 0.18 58.0 42.4 34.5 73.9
20 6 4–7 24.4 6 0.21 23.6 6 0.18 24.7 6 0.19 40.5 33.4 29.3 84.3
20 8 4–7 26.3 6 0.2 25.3 6 0.21 26.3 6 0.21 58.2 42.4 33.6 78.3
25 7 4–7 22.0 6 0.17 21.1 6 0.18 22.1 6 0.16 38.8 31.8 27.1 81.5
25 8 5–8 26.8 6 0.2 25.8 6 0.19 26.9 6 0.19 53.7 41.6 34.7 77.5
30 7 5–8 26.0 6 0.19 24.9 6 0.2 26.4 6 0.21 44.6 35.9 31.1 84.9
30 9 5–8 25.1 6 0.18 24.3 6 0.18 25.7 6 0.18 46.3 36.5 32.5 79.1
35 8 5–8 31.5 6 0.21 30.5 6 0.22 31.7 6 0.22 52.1 42.3 37.7 84.1
35 9 6–9 28.2 6 0.2 26.7 6 0.19 28.3 6 0.2 46.1 39.5 34.9 81.1
40 8 6–9 25.9 6 0.2 23.8 6 0.18 25.8 6 0.22 43.5 36.0 31.5 82.2
40 10 6–9 28.2 6 0.22 26.9 6 0.2 28.5 6 0.19 48.6 41.9 36.3 78.5
45 9 6–9 29.1 6 0.18 27.8 6 0.19 29.0 6 0.2 48.9 40.1 36.2 80.4
45 10 7–10 24.2 6 0.21 22.4 6 0.16 24.6 6 0.21 39.5 33.4 29.0 84.8
50 9 7–10 25.2 6 0.21 24.5 6 0.19 25.6 6 0.21 38.5 34.3 30.5 83.9
50 11 7–10 28.5 6 0.2 27.5 6 0.2 28.9 6 0.2 51.0 41.1 36.5 79.2
55 10 7–10 25.1 6 0.22 23.9 6 0.18 25.5 6 0.2 39.8 35.2 31.2 81.7
55 11 8–11 24.4 6 0.19 23.6 6 0.17 25.1 6 0.18 43.6 35.6 32.7 76.8
60 10 8–11 20.5 6 0.19 20.2 6 0.15 21.1 6 0.18 32.7 26.7 24.9 84.7
60 12 8–11 28.1 6 0.21 26.5 6 0.19 28.4 6 0.2 47.1 39.0 36.8 77.2
65 11 8–11 28.5 6 0.2 26.4 6 0.16 29.0 6 0.2 46.4 38.8 36.7 79.0
65 12 9–12 25.9 6 0.2 23.9 6 0.18 26.0 6 0.21 44.9 35.7 33.7 77.2
70 11 9–12 29.4 6 0.21 27.6 6 0.19 29.4 6 0.24 46.0 38.8 37.3 78.8
70 13 9–12 27.8 6 0.2 26.6 6 0.17 28.3 6 0.22 51.4 40.4 38.9 72.8
75 12 9–12 28.2 6 0.21 26.0 6 0.18 28.0 6 0.23 45.5 38.2 36.3 77.7
75 13 10–13 26.9 6 0.21 25.0 6 0.16 26.8 6 0.24 43.6 36.7 35.0 76.9

Notes. The column UBT shows the theoretical bound of Proposition 7. Column UBNLP shows the upper bound obtained via the deterministic
NLP method described in Section 4.2 with the tightening based on simulated arrivals: we simulate arrivals 50 times, and we report the upper
end of the 99% confidence interval of E[O(DWu

p(t))] as an upper bound. Column UBAFF shows the upper bound obtained via the methodology of
Section 4.3.
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changed for a different trade-off between bound tight-
ness and computation time. We have kept all parame-
ters constant for all instances.

We also report 90% confidence intervals for the
expected revenue generated by the greedy policy (9)
via forward simulation of 500 paths. The confidence
interval obtained when using the marginal values n̂
from the heuristic of Section 4.1 is given in column
Simh of Table 3. In column SimNLP, we give the interval
we obtain if we instead substitute the opportunity
cost 1t

s
T(n̂t+1

0 − n̂t+1
[0−1+dpxp]+ ) in (9) with the opportunity

cost of assigning xp at time t for duration dp, as esti-
mated via the dual solutions of (DWu

p(t)), averaged
over the 50 runs. Column SimAFF contains the interval
corresponding to the marginal values ñ coming from
the upper bounding LP of Section 4.3. In the last column,
Perf, we define performance as the best of the three poli-
cies using the ratio max{SimLP,Simh,SimNLP}

min{UBAFF,UBNLP,UBT} : Because in the
denominator we substitute the best upper bound in
place of the unknown optimal expected revenue,
the reported performance metric is a conservative
estimate.

It is evident that both numerical bounds consistently
outperform the theoretical bound of Proposition 7,
although the affine bound is consistently tighter than the
NLP bound. Furthermore, the policy implied by the affine
bound is in general generatingmore revenue, but not via a
large margin. As the heuristic is much more efficient, it
might become a sensible choice if no upper bound is
needed and computational resources are limited. The
(classical) policy implied via theNLP is clearly dominated.

Computational times of all procedures can be found
in Table 4. We implemented a parallel version of all pro-
cedures in this paper, and we report the impact on com-
putational efficiency of using 10 parallel threads.
Parallelizing the forward simulations is straightforward,
as we can run the 500 paths in parallel. The same goes
for the simulation-based bound of UBNLP, for which we
simulate arrivals 50 times. In the computation of UBAFF,
we run concurrently per period (a) the local optimization
problems (20) in the weak cut generation process and (b)
the upper bound certificate process. The only part of the
UBAFF that cannot be parallelized is the LP (16)–(18),
which we solve repeatedly during the constraint genera-
tion process.

Table 4. Elapsed Times for |P| � 8 and T � 50

Problem Elapsed time: 10 threads Elapsed time: 1 thread

|I| k Duration Sim UBNLP UBAFF Sim UBNLP UBAFF

15 6 3–6 1 21 56 + 6 6 126 239 + 5
15 7 4–7 1 9 58 + 4 6 58 252 + 4
20 6 4–7 1 21 62 + 12 7 97 296 + 11
20 8 4–7 1 34 85 + 15 12 160 407 + 16
25 7 4–7 2 42 78 + 38 16 379 402 + 34
25 8 5–8 3 24 83 + 47 17 129 420 + 50
30 7 5–8 3 33 111 + 89 23 222 540 + 100
30 9 5–8 3 45 91 + 161 22 240 562 + 156
35 8 5–8 4 54 150 + 237 30 341 897 + 234
35 9 6–9 3 94 118 + 220 26 490 745 + 217
40 8 6–9 4 44 133 + 239 34 411 860 + 233
40 10 6–9 7 111 146 + 429 47 630 957 + 404
45 9 6–9 6 99 177 + 652 45 531 1,203 + 645
45 10 7–10 6 49 132 + 302 47 349 910 + 292
50 9 7–10 7 200 163 + 498 49 526 1,194 + 511
50 11 7–10 9 566 175 + 1,136 66 2,579 1,284 + 1,157
55 10 7–10 11 100 202 + 1,110 76 568 1,570 + 1,110
55 11 8–11 10 393 182 + 1,349 78 2,519 1,408 + 1,375
60 10 8–11 10 783 178 + 930 66 5,214 1,428 + 932
60 12 8–11 15 127 212 + 2,028 108 805 1,688 + 2,038
65 11 8–11 13 287 246 + 2,195 93 886 1,989 + 2,219
65 12 9–12 10 197 203 + 2,077 87 907 1,620 + 2,103
70 11 9–12 17 154 283 + 2,235 124 805 2,316 + 2,256
70 13 9–12 16 366 259 + 2,781 135 1,886 2,048 + 2,812
75 12 9–12 17 363 228 + 4,642 129 2,030 1,828 + 4,679
75 13 10–13 18 386 236 + 4,117 135 1,397 1,936 + 4,168

Notes. In column Sim, we report the elapsed time of the forward simulation based on the heuristic of Section 4.1. Elapsed times of the forward
simulation when using marginal values based on the bounding procedures are of similar scale, but the corresponding upper bounds have to be
computed first. For the affine bound, the running time in column UBAFF is decomposed into two parts: the (parallelizable) time for the cut
generation and bound verification plus the time spent in the LP (which dominates for larger problems).
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The (500 paths of the) forward simulation using the
heuristic is quite efficient and terminates for all instances
in a couple ofminutes, and in the parallel implementation,
in less than 20 seconds. The NLP bound is also quite effi-
cient, especially in the parallel version, where for all prob-
lems, we can compute it in under 800 seconds. The LP
bound is more challenging computationally. Somehow
surprisingly, the bottleneck is neither the nonlinear sepa-
ration problem nor the rather involved verification step,
which can be parallelized and take less than 300 seconds
in total for all instances. In the latter case, the isolation of
the nonconvexity to one variable plays a critical role in
keeping the times of the branch-and-bound algorithm
low. Rather, the bottleneck is the repetitive solution of the
LP itself, which cannot be parallelized, grows in size, and
becomes time-consuming to solve. Still, it is evident that
the methodology is applicable to moderate-size instances,
as all instances can be handledwithin a couple of hours.

5.2. Effect of the Labor Force
As a buildup to Section 5.3 on optimal hiring, we per-
form experiments to determine various workforce
performance measures as a function of employee hir-
ing. We use parameters |P| � 8, T � 100, dmin � 8, dmax

�14, and k � 6, and vary the number of resources |I|
between 15 and 75. The first 15 employees are one of
each type of each capability. The rest are generated
randomly as described in Section 5.1, and thus the
pool includes both high- and low-quality employees.
This is in contrast with the next section, where we will
be selecting employees (at different costs) to optimize

profit. We simulate 500 paths, and we collect statistics
on the performance of the greedy policy implied by
the heuristic as we add employees. On average, in
every period, a demand of D �∑

pλpkpdp workdays
arrives, which, for this particular experiment, is just
under 53. We report the workforce as a percentage of
D. As we start with 15 employees, one of each type,
the minimum workforce size we consider is 15

53.
In Figure 3, we observe that as the workforce

increases, both the bid and the win probability
increase. With more employees, we have more flexi-
bility to assign quality bundles, and thus we win proj-
ects more often even if we bid higher. A second
observation is that although the utilization drops as
expected with an increase in workforce, the drop is
subproportional. This is due to the increased probabil-
ity of winning projects as well as the decrease in cases
where we do not have enough personnel to staff a
project. The latter is a dominating factor when we are
low on resources. Of course, if we look at utilization
separately for each capability group, the utilization of
weak employees drops very fast as stronger employ-
ees become available. The revenue per day per
employed person initially increases, as a very small
pool of employees results in inefficient teams and a
high probability of missed opportunities, but rela-
tively early, at a workforce of around 0:55D, it starts
to decrease as utilization approaches 70%.

Let us now assume that the total labor cost σi per
person-day of an employee depends on their capabil-
ity only, and these costs are $250,$350, $450, $500, and
$700, respectively, for employees of capabilities one to
five. With these labor costs, the profit and profit per
person-day for the random selection (after the first 15)
of employees is given in panels (d) and (e) of Figure 3.
We observe that the optimal profit is realized for a
workforce between 0:65D and 0:8D. Any of these
choices is close to optimal (modulo random hiring).
The corresponding operational policies are similar in
terms of the average bid, where the higher labor cost
as we approach 0:8D is compensated via higher com-
peting and project win ratios, due to the increased
availability of resources, which also has a secondary
effect on assignment quality. Eventually, the increase
in revenue cannot counterbalance the increased labor
costs, and the profits rapidly drop.

5.3. Hiring Decisions
In Section 5.2, we explored the effect of the labor force
on utilization and profit, when employee capability is
randomly distributed. Here we explore how we can
use our framework tomake informed hiring decisions.

We perform a simulation to staff the firm. We keep
all parameters identical to those in Section 5.2 (|P| � 8,
T � 100, dmin � 8, dmax � 14, and k � 6). Just like in

Figure 2. (Color online) Win Probability for βpb � 0:01 and
βpq � 0:4 for Different Values of Q̄

600 800 1,000 1,200 1,400

0.2

0.4

0.6

0.8

Bid($/workday)

W
in

p
ro

b
a
b
il
it
y

5 7 9 11 13

Talluri and Tsoukalas: Revenue Management of a PSF
14 Operations Research, Articles in Advance, pp. 1–17, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

80
.5

7.
15

.1
43

] 
on

 1
4 

O
ct

ob
er

 2
02

2,
 a

t 0
5:

56
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Figure 4. (Color online) Effect of Increasing Randomly HiredWorkforce According to Hiring Rule (24)
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Section 5.2, initially we start with 15 employees, one
for each combination of type (A–C) and capability
(1–5). Then we hire employees, one at a time, as
follows:

1. We estimate the increase in revenue from hiring
an extra employee of type j ∈ (a,b, c) and capability l ∈
{1, 2, 3, 4, 5} to be R+

l,j �mini∈I{ν̂0i,0|C(i) � l, type(i) � j};
that is, if we have multiple employees of the same
type/capability, we take the minimum marginal value
of those employees to be an estimate for the increase in
revenue from hiring one more.

2. Wemake the hire that maximizes

R+
l,j − σl: (24)

In Figure 4, we observe that the optimal profit is
achieved with a workforce of around 0:75D, with an
approximate 20% increase in profit compared with
that achieved by random hiring, whereas the corre-
sponding utilization is slightly below 70%.

Initially, as we increase the workforce up to 0:45D,
the utilization does not drop and stays close to 75%.
As long as we cannot compete for most of the projects,
we can effectively just scale up. The average labor cost,
which reflects average workforce capability, stays fairly
constant until we reach 0:6D and then starts to increase.
This reflects the initial need to increase availability of
resources to be able to compete for more projects, when
quality is a secondary concern. Once we can compete
for close to 80% of projects, quality becomes a primary
concern, and we hire employees of higher quality (see
Figure 4(c)).

We note that even in the early stages, although we
do not focus on hiring capable employees, the average
bid increases. This is because, in contrast to the initial
random selection of employees, we select the type of
our hires according to demand, increasing the quality
of the matches.

The peak profit per employed person is achieved
earlier for a workforce of 0:45D. The same goes for the
revenue per employed person, which reaches the
maximum at around 0:45D and stays fairly constant
until 1D, when it starts decreasing. To maintain this
revenue per person-day, however, we invest in increas-
ingly more qualified employees, raising the average
labor costs from 0:6D onward.

A point worth discussing is when to stop hiring.
We caution that whereas the selection criterion of
maximizing Rl,j − σl is sensible, a stopping criterion of
stopping when this maximal value reaches zero
would stop too late. The reason is that the estimate
Rl,j is optimistic (see Figure 5).

6. Conclusions
In this paper, we examined some common workforce
analytical and decision problems of a PSF in a revenue
management framework. Using a stylized Markov
chain model, we first argued that it is in the PSF’s inter-
est to be transparent on the supplied quality rather than
wait for its delayed effects on reputation. By formulat-
ing the problem rigorously and developing good com-
putational procedures, we are able to analyze a number
of interesting questions and gain clear insights on the
optimal number and mix of staff skills. For a managing
partner of a PSF, our paper gives a tool kit for making
bidding and assignment decisions under a quality-
revelation model, which applies to important, large-
scale projects. We hope that this paper spurs research
into the operations of PSFs and brings modern analyti-
cal tools to help their management.
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Endnote
1 We further elaborate on the different settings and their relevance
to industry in the online appendix.
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