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Abstract Background: Grading and classification of IDH-mutant astrocytomas has shifted

from solely histology towards histology combined with molecular diagnostics. In this system-

atic review, we give an overview of all currently known clinically relevant molecular markers

within IDH-mutant astrocytomas grade 2 to 4.

Methods: A literature search was performed in five electronic databases for English original

papers on patient outcome with respect to a molecular marker as determined by DNA/

RNA sequencing, micro-arrays, or DNA methylation profiling in IDH-mutant astrocytomas

grade 2 to 4. Papers were included if molecular diagnostics were performed on tumour tissue

of at least 15 IDH-mutant astrocytoma patients, and if the investigated molecular markers

were not limited to the diagnostic markers MGMT, ATRX, TERT, and/or TP53.

Results: The literature search identified 4508 unique articles, published between August 2012

and December 2021, of which ultimately 44 articles were included. Numerous molecular

markers from these papers were significantly correlated to patient outcome. The associations

between patient outcome and non-canonical IDH mutations, PI3K mutations, high expression

of MSH2, high expression of RAD18, homozygous deletion of CDKN2A/B, amplification of

PDGFRA, copy number neutral loss of chromosomal arm 17p, loss of chromosomal arm 19q,

the G-CIMP-low DNA methylation cluster, high total CNV, and high tumour mutation

burden were confirmed in multiple studies.
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Conclusions: Multiple genetic and epigenetic markers are associated with survival in IDH-

mutant astrocytoma patients. Commonly affected are the RB signalling pathway, the RTK-

PI3K-mTOR signalling pathway, genomic stability markers, and (epigenetic) gene regulation.

ª 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the 2016 revision of the World Health Organiza-

tion (WHO) classification of central nervous system

(CNS) tumours, the taxonomy of adult-type diffuse
gliomas has shifted from purely histological evaluation

towards molecular diagnostics after [1]. Astrocytomas

and oligodendrogliomas became characterised by the

presence of an IDH mutation, and separated by the

absence or presence of combined deletion of chromo-

somal arms 1p and 19q (1p/19q codeletion) regardless of

histological characteristics. In addition to these classifi-

cation markers, the WHO of 2021 introduced molecular
grading of IDH-mutant astrocytomas: IDH-mutant as-

trocytomas with homozygous deletion of CDKN2A/B

are now appointed as grade 4 even when lacking ne-

crosis and microvascular proliferation [2]. Although

associations with prognosis of several other molecular

markers have been described, no other molecular

markers than CDKN2A/B are currently linked to a

specific grade. While the clinical relevance of other
molecular markers remains to be determined, these

markers may provide insights into the composition of

IDH-mutant astrocytomas, aid further tumour grading,

and provide opportunities for targeted therapy. Thus, in

this systematic review we set out to describe all molec-

ular markers within IDH-mutant astrocytomas grade 2

to 4 which have reported to be of potential clinical

significance.

2. Materials and methods

We performed a literature search for original papers

written in English on adult human patients with IDH-

mutant astrocytomas grade 2 to 4 investigating patient

outcome with respect to a molecular marker as deter-
mined by DNA sequencing, RNA sequencing, micro-

arrays, or DNA methylation profiling. The literature

search was performed on the 7th of January 2022 using

the electronic databases Embase, Medline, Web of Sci-

ence, Cochrane, and the top 200 hits of Google Scholar

with the search queries as mentioned in Supplementary

Table 1.

After deduplication, papers were screened for inclu-
sion based on title and abstract, and subsequently full-

text assessment was performed. We specifically excluded

conference abstracts, in vitro experiments, animal

studies, papers with an IDH-mutant astrocytoma
sample size <15, papers measuring a molecular marker

in the cerebrospinal fluid or serum, and papers limited to

the assessment of MGMT, ATRX, TERT, and/or TP53.

Screening of titles and abstracts, full-text assessment,

and data extraction were performed manually and in

duplicate by the two first authors (CMST and WRV).
After individual assessment, results were compared and

final decisions were made by consensus. Quality assess-

ment was not performed, and therefore no papers were

excluded due to poor quality. From the included papers

we extracted the number of IDH-mutant astrocytoma

patients, the investigated molecular marker, survival

data, the WHO tumour grades, if the cohort was pub-

licly available, and whether the cohort was used as a
discovery or validation cohort if applicable. Full gene

names are summarised in Supplementary Table 2. When

the sample size with or without the molecular marker

was not mentioned in the text of the articles, the number

of patients per group was extracted from the

KaplaneMeier curve if possible. For the survival data,

no confidence intervals were calculated nor were median

survival times measured by the authors of this review.
The review was not registered, nor was a review protocol

prepared. All used data has been reported in the

manuscript.

3. Results

The literature search identified 9087 articles, of which

4508 unique papers remained after deduplication. After

screening of titles and abstracts, 4311 articles were

deemed irrelevant for our review and were hence

excluded. A full-text assessment of the remaining 197

articles resulted in exclusion of 153 additional articles.

The majority of these papers did not look into IDH-

mutant astrocytoma patients specifically (n Z 132) or
described a cohort of IDH-mutant astrocytoma patients

smaller than 15 (n Z 10). As described in our flowchart

(Fig. 1), we ultimately included 44 articles [3e46]. All

included articles were published between August 2012

and December 2021. Articles described either personally

assembled data sets, freely available public data sets

such as The Cancer Genome Atlas (TCGA) and the

Chinese Glioma Genome Atlas (CGGA), or a combi-
nation of personal and public data sets. In total 26

different data sets were used for the included articles.

The investigated molecular markers are summarised

both below and in Table 1, subdivided in the following

http://creativecommons.org/licenses/by/4.0/


Fig. 1. Flowchart describing the systematic approach for the inclusion of articles.
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categories: single gene mutations, RNA expression of

single genes, copy number alterations (CNAs) of single

genes, larger CNAs, genome-wide changes, and a com-

bination of mutation signatures, copy number signa-
tures, signalling pathways and RNA expression

signatures.

3.1. Gene mutations

Mutations in KMT2D [21] were associated with pro-

longed overall survival in one cohort. The presence of

so-called ‘non-R132H IDH mutations’ [33], as opposed
to the canonical IDH1R132H mutation, was associated

with improved overall survival in two out of three

investigated cohorts. Mutations in PI3K genes in gen-

eral [18], and mutations in PIK3R1 [6] alone, were
significant markers of poor prognosis in multiple co-

horts, although this clinical effect was not replicated in

every cohort [6,34]. Mutations in PIK3CA [6] alone and

mutations in PTEN [39] were not associated with overall
survival.

3.2. Gene expression

High expression of multiple individual genes were nega-

tively associated with prognosis in single cohorts of IDH-

mutant astrocytoma grade 2 to 4, i.e. HOTAIRM1 [3],

HOXD11 [36], MCM6 [9], and MPC2 [20]. High
expression of PROX1 [31] was associated with poor

overall survival in two independent cohorts. However, it

was evaluated as a grouped value in one cohort and as a

continuous value in another cohort, thereby the same
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statistical analysis to assess the expression of PROX1 was

strictly speaking not validated in an independent cohort.

A negative association was found between overall sur-

vival and increased expression of MSH2 and RAD18

when expression was used as a continuous variable in

both the CGGA and TCGA cohorts [24]. However, when

expression was dichotomised, high expression of RAD18

was correlated with a worse outcome only in the TCGA
cohort, and high expression of MSH2 did not show any

correlation with overall survival in both cohorts. Upre-

gulation of other genes, such as FREM2 [46], TXNDC12

[38], and the eIF3-complex [11] were only associated with

poor prognosis in one cohort per gene, but were not

significant in other cohorts. High expression of ADAR3

[44], PER1 [16] and WDFY3-AS2 [42] were associated

with improved overall survival in grade 2 and 3 IDH-
mutant astrocytomas, and for PER1 and WDFY3-AS2

also in grade 4 IDH-mutant astrocytomas. The expres-

sion of TGM2 [3] and MPC1 [20] were not associated

with overall survival.

3.3. Gene copy number alterations

The homozygous deletion of CDKN2A/B was found to

be associated with poor prognosis in multiple studies

[6,7,21,29,32,34,44]. Homozygous deletion of RB1 was
associated with poor overall survival in grade 2 to 4

IDH-mutant astrocytoma in one study [32], while in two

other cohorts no significance association with overall

survival and progression-free survival was seen [7,34].

FOCAD loss [8] was negatively associated with overall

survival in one cohort, and PDGFRA [32,34] amplifi-

cation in two separate cohorts. CDK4 [34], MYCN [32]

and MET [34] amplification were associated with poor
prognosis in a single cohort, but this association could

not be replicated in other cohorts [7,28,32,34]. None of

the other single gene deletions or amplifications were

associated with overall survival [26,28,32,43].

3.4. Large copy number alterations

We defined large CNAs as copy number changes the size

of single chromosomal bands up to entire chromosomes.

A positive association was demonstrated between over-
all survival and copy number neutral loss of heterozy-

gosity (CNLOH) of chromosomal arm 17p [22] in

patients with grade 2 to 4 IDH-mutant astrocytomas.

Negative correlations were found between overall sur-

vival and loss of chromosomal arms 9p [6], 10q [39], 11p

[6], 19q [4], and 22q [6]. However, correlations between

overall survival and losses of chromosomal arms 9p,

11p, and 22q, were not found in other tested cohorts [6],
and the correlation for chromosomal arm 10q was only

reported in one patient cohort [39]. The negative cor-

relation for loss of 19q was demonstrated in two cohorts

of grade 2 IDH-mutant astrocytomas but not in two

cohorts of mixed grade 2 and 3 IDH-mutant
astrocytomas [4,6]. Gains of chromosome 7 [39] and

chromosomal arm 8q [27] were found to be associated

with a worse overall survival, but could not be validated

in other cohorts [6,39]. No significant association with

patient outcome were found for other losses or gains of

chromosomal arms or chromosomal bands [6,39].

3.5. Genome-wide changes

Genome-wide DNA methylation profiles with a higher
methylation state such as the Heidelberg cluster ‘IDH-

mutant astrocytomas lower-grade’ (A_IDH), and the

so-called ‘high methylation cluster’ were correlated with

a prolonged overall survival in a single patient cohort

[32]. Conversely, DNA methylation profiles with a lower

methylation state such as glioma-CpG island methylator

phenotype (G-CIMP)-low [10,40] in two cohorts, and

risk of progression to G-CIMP-low [17] in one cohort
are correlated with a worse overall survival in grade 2 to

4 IDH-mutant astrocytoma patients. Other genome-

wide aberrances such as a high total copy number

variation (CNV) [25,30,32,34], or high tumour muta-

tional burden [5] had an unambiguously negative

outcome on survival in multiple patient cohorts as well.

3.6. Pathways and signatures

The individual genes and miRNAs comprising the
investigated pathways and signatures are mentioned in

Table 2 [6]. The chromosomal instability signature

described a set of gene mutations which were associated

with poor overall and progression-free survival in a

single cohort [30]. A combination signature of

CDKN2A/B homozygous deletion and CDK4 amplifi-

cation showed that harbouring either of these CNAs

was negatively associated with overall survival and
progression-free survival in the grade 2 and 3 IDH-

mutant astrocytomas of the TCGA [25]. However, this

association was not observed in the grade 4 IDH-mutant

astrocytoma cohort [25].

Five of the investigated pathways were taken from

one article using two databases (a personal database and

TCGA) in which altered signalling pathways were

defined as mutations or CNVs in at least two genes of
the pathway [6]. Of these, the RB pathway was nega-

tively correlated with overall survival in both databases,

whereas the receptor tyrosine kinase (RTK)-PI3K-

mTOR pathway only displayed this negative correlation

within the personal database but not the TCGA data-

base [6]. The histone methyltransferase (HMT) pathway,

the NOTCH pathway, and the switch/sucrose non-

fermentable (SWI/SWF) pathway were not correlated
to survival in either database [6].

Almost all of the signatures based on RNA

expression were uniformly negatively correlated with

overall survival in patients with IDH-mutant astrocy-

tomas, i.e. the 25-gene 1p/19q risk signature [12], the 2-
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gene DNA damage response (DDR) signature [24], the

4-gene signature [35], the 4-miRNA risk classifier [14],

the 6-gene risk signature [13], the 70 genes of chro-

mosomal instability (CIN70) expression signature [30],

the hypoxia-related survival (HRS) score [15], and the

Set1, Set2, and Set3 high-risk genes [5]. Of these, the 4-

gene signature [35], the 4-miRNA risk classifier [14],

and the HRS score [15], were only assessed in a single
patient cohort per signature. The 6-gene expression

signature [41] showed a negative correlation with

overall survival in patients with grade 2 and 3 IDH-

mutant astrocytomas, but mixed results (negative cor-

relation versus no correlation) in patients with grade 4

IDH-mutant astrocytomas. Similarly, mixed results

were also observed in the 5-gene risk signature [45], the

7-gene signature [19], and the tumour microenviron-
ment (TME) signature [37]. The lymphocyte

activation-associated gene signature [23] and the three

FREM2 associated pathway activation levels (PAL1,

PAL2, and PAL3) [46] were not associated with patient

outcome.
4. Discussion

Grading of IDH-mutant astrocytomas is still pri-

marily performed by histology alone, though many

molecular markers are associated with patient outcome.
In this systematic review we have described all currently

known clinically relevant markers in IDH-mutant as-

trocytomas grade 2 to 4, identified with DNA/RNA

sequencing or DNA methylation profiling. These mo-

lecular markers include individual gene mutations,

altered expression of individual genes, copy number al-

terations of individual genes, large copy number alter-

ations, genome-wide changes, altered gene pathways,
and (gene) risk signatures. Though many molecular

markers were significantly associated with patient

outcome, few markers were validated in separate patient

cohorts. Non-canonical IDH mutations, PI3K muta-

tions, high expression of MSH2, high expression of

RAD18, homozygous deletion of CDKN2A/B, amplifi-

cation of PDGFRA, copy number neutral loss of chro-

mosomal arm 17p, loss of chromosomal arm 19q, the G-
CIMP-low DNA methylation cluster, high total CNV,

and high tumour mutation burden, were confirmed

clinically relevant molecular markers, either in a sepa-

rate cohort in the same manuscript or in a cohort of a

different manuscript. We have highlighted the biological

significance of these validated markers, and their pro-

posed role in the formation and maintenance of IDH-

mutant astrocytomas below. Pathways and signatures
will not be discussed in detail since it is unclear to what

extent the individual genes, included in these pathways

and signatures, are related to survival. Moreover, the

individual genes and proteins with confirmed clinical
relevance, i.e. non-R132H IDH, CDKN2A/B, PDGFRA,

PI3K, RAD18, and MSH2, are also summarised in their

respective pathways in Fig. 2.

4.1. CDKN2A/B and RTK-PI3K-mTOR signalling

pathway

The proteins that are encoded by CDKN2A (p16INK4A

and p14ARF) and CDKN2B (p15INK4B) act as tumour
suppressors by regulating the cell cycle and apoptosis.

The absence of p14ARF, removes the inhibition on

MDM2-mediated degradation of the p53 tumour sup-

pressor, ultimately inhibiting apoptosis [47]. In addition,

homozygous deletion of both CDKN2A and CDKN2B

removes the inhibition of CDK4 and CDK6 by

p16INK4A and p15INK4B, resulting in the phosphoryla-

tion of the RB protein. Phosphorylation of the RB
protein renders it unable to repress the E2F transcrip-

tion factors, thereby inducing the transcription of E2F

target genes that are essential for irreversibly driving the

cell cycle into S phase, and for initiation of DNA syn-

thesis [48].

Both amplification of PDGFRA and activating mu-

tations in PI3K genes, exert their downstream effect by

overactivation of the RTK-PI3K-mTOR signalling
pathway [49e51]. Under physiological conditions, acti-

vated RTKs, such as PDGFRA, recruit PI3K to the

plasma membrane where it catalyses the phosphoryla-

tion of phosphatidylinositol 4,5-bisphosphate (PIP2) to

form phosphatidylinositol 3,4,5-trisphosphate (PIP3)

[50,51]. PIP3 recruits AKT to the plasma membrane

where AKT is fully activated through phosphorylation.

Active AKT phosphorylates a large array of target
proteins which are involved in cell survival, cell growth,

cell proliferation, cell migration and angiogenesis [52].

Hyperactivation of the RTK-PI3K-mTOR signalling

pathway can, for instance, induce cell cycle progression

by removing the inhibition on the CDK2 protein, and

subsequently phosphorylate the RB protein [53e55]. It

may also block tumour cell apoptosis by inhibition of

pro-apoptotic proteins such as caspase 9, or by activa-
tion of anti-apoptotic proteins such as MDM2 [56,57].

4.2. DNA damage repair and genomic instability

Genomic instability refers to the increased tendency of

cells to gain genomic alterations, such as mutations and

CNAs, hereby driving tumourigenesis, intratumoural

heterogeneity, malignant progression, and therapy

resistance [58e60]. RAD18 and MSH2 are DNA dam-
age repair genes, which are essential for the maintenance

of genomic stability [59,61]. RAD18 is involved in the

activation of the translesion synthesis pathway, and

promotes homologous recombination [61], whereas

MSH2 encodes a DNA mismatch repair protein that



Fig. 2. Graphical overview of molecular markers in their respective pathways. Individual genes and proteins which were associated with

survival in at least two independent data sets are coloured in this figure. The pathways concerning CDKN2A/B, PDGFRA, PI3K, RAD18,

and MSH2 portray the physiological processes of these molecular markers. The IDH pathway occurs only due to the specific gain of

function mutations. The hexagons represent genes or proteins, the circles represent downstream pathways, and the diamond represents the

upstream initiator.
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recognises DNA mismatches and initialises DNA repair

[59]. Counterintuitively, increased expression of the

genomic protectors RAD18 and MSH2 were negatively

associated with overall survival. A possible explanation

could be treatment inefficacy at these higher levels of

gene expression; both high expression of RAD18 and

MSH2 have been correlated to temozolomide resistance
in vitro [62,63]. However, a retrospective multicenter

study on MSH2 protein expression in high-grade gli-

omas did not find any association with overall survival

when correcting for IDH-mutation status [64].

Furthermore, high tumour mutational burden and

high total CNV are both indicators of genomic insta-

bility. It is unclear if specific affected genes are
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responsible for the survival differences, or if these dif-

ferences are caused by the genomic instability itself. In

addition, several CNAs of whole chromosomes and

chromosomal arms were shown to be associated with

survival. Unfortunately, it is difficult to speculate which

genes on these large stretches of DNA may be causal for

these survival differences.

4.3. IDH mutations and genome-wide DNA methylation

Wild type IDH1 and IDH2 catalyse the conversion of

isocitrate to alpha-ketoglutarate (a-KG), in turn both

mutant IDH1 and IDH2 convert a-KG to the onco-
metabolite D-2-hydroxyglutarate (D-2-HG). This con-

version effectively results in the competitive inhibition of

a large family of a-KG-dependent enzymes which play

crucial roles in tissue homoeostasis and (epigenetic) gene

regulation including DNA methylation [65]. IDH-

mutant glioma are known to display genome-wide

DNA-hypermethylation which is most likely due to

the inhibition of the a-KG-dependent TET family 5mC
hydroxylases [10,66,67]. DNA methyltransferases catal-

yse DNA methylation by adding a methyl group at the

50 carbon of the cytosine ring, resulting in 5-

methylcytosine (5mC). TET hydroxylases catalyse

DNA demethylation by oxidation of 5mC to 5-

hydroxymethylcytosine (5hmC), which is subsequently

replaced with unmethylated cytosine through various

downstream mechanisms [68e70]. Gliomas with non-
canonical IDH mutations, the so-called ‘non-R132H

IDH mutations’, are presumed to have further elevated

D-2-HG production compared to tumours with an

IDH1R132H mutation, which would result in even higher

genome-wide DNA methylation levels, which are asso-

ciated with improved outcome [10,66,71].

Previous studies have shown that G-CIMP-low IDH-

mutant astrocytomas are more frequently hypomethy-
lated at CCCTC-binding factor (CTCF) binding sites

than G-CIMP-high tumours [10,72]. CTCF proteins

simultaneously bind to specific hypomethylated DNA

sequences and to other CTCF proteins, thereby forming

CTCF homodimers. As a result, the bound DNA on

either side of the homodimer are brought together to

form a chromatin loop [73]. These chromatin loops can

prevent enhancers to come into physical proximity of
the transcription start site of their gene of interest

[72,73]. Since CTCF only binds to hypomethylated

binding sites, G-CIMP-low tumours, and likely other

lower genome-wide DNA methylation subgroups as

well, are able to form more chromatin loops than G-

CIMP-high tumours which might alter the overall gene

expression of the tumour.

Exempt from the aforementioned molecular markers,
most other molecular markers associated with patient

outcome were either only found in a single patient

cohort with IDH-mutant astrocytomas, or validation

cohorts were unable to replicate the results from the
discovery cohort. We were therefore unable to confirm

the clinical relevance of these molecular markers. Even

for the molecular markers confirmed in two independent

data sets the level of evidence might be insufficient for

the marker to be readily used for patient prognostica-

tion, e.g. loss of 19q was negatively associated with

overall survival in two cohorts whereas no correlation

was found in two other cohorts. Novel independent data
sets are necessary to evaluate the clinical significance of

molecular markers especially for those with conflicting

data.

On a separate note, for the RNA expression of in-

dividual genes, patient cohorts are often dichotomised

on the median value of the markers in high and low

subgroups. It is unclear whether these divisions translate

into any biological differences, and exploratory analyses
into (biologically) relevant cut-off points per expression

marker would be advisable.

Furthermore, all reported articles were based on

either retrospective patient cohorts or post-hoc analyses

of prospective patient cohorts. Most of these articles

predated the 2021 WHO classification of CNS tumours,

and relevance of the identified markers therefore re-

quires confirmation in this setting. The prognostic rele-
vance of the molecular markers in IDH-mutant

astrocytomas should ideally be verified in clinical trials

in patients which are prospectively selected for the

presence or absence of a molecular marker to prevent

biases such as differences in post-operative treatment.

Since follow-up in IDH-mutant astrocytoma patients

can extend to 20 years, a more pragmatic approach is

retrospective patient accrual via international consortia
to increase the sample size of patients with the presence

of a rare molecular marker with in theory readily

available follow-up. However, in current large publicly

available retrospective data sets on IDH-mutant astro-

cytomas the clinical annotation is often incomplete or

absent, and there is often a publication bias for molec-

ular markers with a significant association with overall

survival. This emphasises the need for international
consensus on uniform data collection, and standardised

publication of all survival results.

Despite the detailed molecular characterisation of

IDH-mutant astrocytomas, no effective targeted therapy

has yet emerged from these efforts. However, this sys-

tematic review has highlighted molecular markers for

which inhibitors are available, but have not yet been

tested in this specific target population. The identified
markers may also lead to the development of novel

agents against targets for which no drug is currently

available.

In summary, multiple genetic and epigenetic changes

are associated with survival in IDH-mutant astrocytoma

patients, and commonly affected are the RB signalling

pathway, the RTK-PI3K-mTOR signalling pathway,

genomic stability markers, and (epigenetic) gene regu-
lation. However, only a select set of molecular markers
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was validated in independent patient cohorts. Since

validation studies without an association with overall

survival are often underreported, the clinical relevance

of unconfirmed molecular markers, i.e. identified in a

single patient cohort, requires careful consideration.

With the increased importance of molecular diagnostics

for the grading of gliomas, the need for clinically and

biologically relevant validated markers becomes
apparent. To this end, international collaborations

should be initialised to establish large patient cohorts

with consensus on uniform data collection and stand-

ardised publication protocols.
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