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ABSTRACT
Background  Common low-risk variants are presently 
not used to guide clinical management of familial 
breast cancer (BC). We explored the additive impact of a 
313-variant-based Polygenic Risk Score (PRS313) relative 
to standard gene testing in non-BRCA1/2 Dutch BC 
families.
Methods  We included 3918 BC cases from 3492 Dutch 
non-BRCA1/2 BC families and 3474 Dutch population 
controls. The association of the standardised PRS313 with 
BC was estimated using a logistic regression model, 
adjusted for pedigree-based family history. Family history 
of the controls was imputed for this analysis. SEs were 
corrected to account for relatedness of individuals. Using 
the BOADICEA (Breast and Ovarian Analysis of Disease 
Incidence and Carrier Estimation Algorithm) V.5 model, 
lifetime risks were retrospectively calculated with and 
without individual PRS313. For 2586 cases and 2584 
controls, the carrier status of pathogenic variants (PVs) in 
ATM, CHEK2 and PALB2 was known.
Results  The family history-adjusted PRS313 was 
significantly associated with BC (per SD OR=1.97, 
95% CI 1.84 to 2.11). Including the PRS313 in BOADICEA 
family-based risk prediction would have changed 
screening recommendations in up to 27%, 36% and 
34% of cases according to BC screening guidelines 
from the USA, UK and the Netherlands (National 
Comprehensive Cancer Network, National Institute 
for Health and Care Excellence, and Netherlands 
Comprehensive Cancer Organisation), respectively. 
For the population controls, without information on 
family history, this was up to 39%, 44% and 58%, 
respectively. Among carriers of PVs in known moderate 
BC susceptibility genes, the PRS313 had the largest impact 
for CHEK2 and ATM.
Conclusions  Our results support the application of the 
PRS313 in risk prediction for genetically uninformative 
BC families and families with a PV in moderate BC risk 
genes.

INTRODUCTION
Breast cancer (BC) is the most common cancer 
among women.1 Current screening strategies to 

reduce the burden of the disease have several disad-
vantages, including overdiagnosis.2 By taking into 
account all relevant risk factors, personalised esti-
mation of risk of BC could help to target preventive 
measures to those who would benefit the most and 
to reduce screening for women in the lowest risk 
categories.

One of the main risk factors for BC is having a 
positive family history of the disease.3 The familial 
relative risk of ~2 is partly explained by germline 
pathogenic variants (PVs) in the BC susceptibility 
genes BRCA1/2, PALB2, ATM and CHEK2. Further-
more, another important part is explained by 
common low-risk variants,4 5 which if summarised 
in the Polygenic Risk Score (PRS) are useful in strati-
fying the population into different risk categories.5 6 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The Polygenic Risk Score (PRS) is useful in 
stratifying women into different risk categories 
but is presently not used to guide clinical 
management of familial breast cancer (BC).

WHAT THIS STUDY ADDS
	⇒ Including the PRS313 in addition to family 
history-based risk prediction may change 
screening recommendations in up to 34% of 
individuals from BC families with no pathogenic 
variant in any of the five BC genes modelled 
in BOADICEA (Breast and Ovarian Analysis 
of Disease Incidence and Carrier Estimation 
Algorithm) and up to 18% and 26% for 
ATM and CHEK2 pathogenic variant carriers, 
respectively.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study supports the implementation 
of a comprehensive risk prediction and 
shows the impact on clinical management 
recommendations for women from BC families 
as seen in the context of clinical genetic 
services.
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A similar stratification of risk of BC by the PRS is observed in 
the familial setting,7–10 providing an opportunity to personalise 
risk and clinical management of women from BC families who 
are seen at clinical genetic services. Furthermore, the PRS can be 
useful in refining the risk of women carrying a PV in BRCA1/2, 
PALB2, CHEK2 or ATM.11–14 However, using the PRS for risk 
prediction is not yet implemented in the practice of genetic 
counselling for familial BC in the Netherlands.

Currently, risk prediction for women from non-BRCA1/2 BC 
families is mainly based on family history, which can be calcu-
lated by various well-validated risk prediction algorithms,15 16 
such as the Breast and Ovarian Analysis of Disease Incidence and 
Carrier Estimation Algorithm (BOADICEA).17 Several studies 
have shown improved discriminative power between BC cases 
and controls by combining the PRS with other risk factors in a BC 
risk prediction tool.18–21 Previously, we showed that in a selected 
group of high-risk non-BRCA1/2 BC families, a 161-variant 
PRS alone would have led 20% of women to receive different 
screening recommendations based on the Dutch screening guide-
line (Netherlands Comprehensive Cancer Organisation (IKNL) 
guideline).22 Currently, an established PRS based on 313 variants 
(PRS313)

5 is one of the several PRS incorporated in the validated, 
comprehensive risk prediction model BOADICEA,17 which was 
recently made easily accessible to clinicians through the CanRisk 
webtool.23

Here, we explore the clinical applicability of the PRS313 for 
risk prediction in a new cohort of 3918 familial Dutch BC cases 
who tested negative in a diagnostic setting for PVs in BRCA1/2 
and of whom the majority were evaluated for PVs in PALB2, 
CHEK2 and ATM in a research setting. The clinical impact of 
the PRS313 on BC risk prediction based on family history and 
PV carrier status was investigated by determining the potential 
change in clinical management, as stipulated by three currently 
used guidelines (National Comprehensive Cancer Network 
(NCCN),24 National Institute for Health and Care Excellence 
(NICE),25 and IKNL guidelines).22

MATERIALS AND METHODS
We used the Strengthening the Reporting of Observational 
Studies in Epidemiology case–control checklist when writing 
our report.26

Study cohorts
Dutch familial BC cases, henceforth ‘cases’, were derived from 
three different cohorts: the Hereditary Breast and Ovarian 
cancer study in the Netherlands (HEBON),27 the Amsterdam 
Breast Cancer Study-Familial (ABCS-F),28 and the Rotterdam 
Breast Cancer Study (RBCS)29 (online supplemental methods). 
All three studies included participants who visited a clinical 
genetic centre in the Netherlands for familial BC counselling. 
During this counselling, a DNA test was performed according 
to the clinical guidelines applicable at the time. Women with BC 
who met the following criteria were eligible for this study: (1) 
negative DNA test result for BRCA1/2 PVs; (2) family without 
BRCA1/2 PVs; (3) available DNA sample or genotyping data; 
(4) European ancestry based on genotyping data; and (5) avail-
able pedigree. In total, 3918 cases were included (online supple-
mental figure S1). All cancers were verified by linkage to the 
Dutch Cancer Registry and the Pathological Anatomical National 
Automated Archive (HEBON cases) or by clinical confirmation 
from medical records in the hospital (ABCS-F and RBCS cases).

In total, 3474 Dutch population controls of age 18 years or 
older were included. These controls were healthy female blood 

donors (ABCS, Oorsprong van borstkanker integraal onderzocht 
(ORIGO)) or healthy women who were included after DNA 
diagnostic testing for cystic fibrosis carrier status (RBCS)4 29 
for which age of last follow-up was known. For the ABCS and 
ORIGO control cohorts, BC status was known to be negative at 
age of last follow-up. For the RBCS control cohort, BC status 
was unknown. In total, 2584 controls were known to be nega-
tive for BRCA1/2 PVs. For the remaining 890 controls, BRCA1/2 
status was unknown.

Informed consent was obtained from all included cases. All 
controls were anonymised.

Gene panel
As part of the BRIDGES project (Breast cancer RIsk after Diag-
nostic GEne Sequencing), 2586 cases and 2584 controls were 
sequenced for a panel of 34 genes, as described elsewhere.30 
For all controls and 2037 cases, we received variant call files 
of all 34 genes, including their last exons. Truncating and 
missense variants were reported as described previously.30 In 
summary, pathogenic truncating variants were defined as frame-
shift insertions/deletions, stop/gain or canonical splice variants 
as classified by the Ensembl Variant Effect Predictor,31 with 
the exception of variants in the last exon of each gene. In our 
study, we included truncating variants in the last exon of PALB2 
as this exon encodes an important functional domain and vari-
ants in this exon were shown to destabilise the resulting PALB2 
protein.32 Missense variants were included if their frequency in 
the gnomAD database or among the BRIDGES project control 
data set30 was below 0.001. For genes with evidence of an asso-
ciation with BC,30 pathogenicity was reported for missense vari-
ants based on the ClinVar archive.33 Variants that were classified 
as (likely) pathogenic by at least one submitter were manually 
curated by two experts according to the ACMG/ACP (American 
College of Medical Genetics and Genomics/American College of 
Physicians) variant classification guidelines. For the remaining 
549 cases, however, only pseudo-anonymised results of trun-
cating variants in the three additional BC genes, ATM, CHEK2 
and PALB2, were received, excluding truncating variants in the 
last exon.

Genotyping and imputation
The DNA samples of all included individuals were genotyped 
for common variants with either the iCOGS,34 OncoArray4 
or Global Screening Array (GSA), containing 211 155, 499 
170 and 642 824 SNPs, respectively. Genotyping and quality 
control of the samples genotyped with iCOGS and OncoArray 
were performed as part of association studies conducted by the 
Breast Cancer Association Consortium (BCAC).4 34 Genotyping 
and quality control of the samples genotyped with the GSA are 
described in the online supplemental methods.

The variants that were not directly genotyped were imputed 
using the Michigan Imputation Server,35 using the Haplotype 
Reference Consortium (HRC) V.1.1 reference panel,36 including 
both the reference panels 1000 Genomes Phase 3 and Genome 
of the Netherlands.37 38 In total, 72 of the 313 variants could 
not be imputed with the HRC V.1.1 reference panel and were 
imputed with the 1000 Genomes Phase 3 reference panel only38 
(online supplemental table S1).

Polygenic Risk Score
The PRS was calculated as described previously.5 The three 
PRS (for overall BC, estrogen receptor (ER)-positive BC and 
ER-negative BC) were calculated for all included individuals. 
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The variants and their corresponding weights used in the PRS 
as published previously5 and the imputation quality are listed 
in online supplemental table S1. The PRS for each individual 
was standardised to the mean of all population controls in this 
study and to the SD in the BCAC population controls that were 
included in the validation data set.5 These SDs were 0.6093, 
0.6520 and 0.5920 for the overall BC PRS, ER-positive BC PRS 
and ER-negative BC PRS, respectively. Using these SDs, the OR 
estimates for the associations of the standardised PRS313 in our 
study are directly comparable with the OR estimates reported in 
the BCAC population-based study.5

Pedigree collection
Pedigrees were collected for all families and were drawn previ-
ously in the clinical genetic centres during counselling and DNA 
diagnostic testing of BRCA1/2 PVs. The pedigrees were used as 
they were drawn in the clinic, including at least all known first-
degree and second-degree relatives of the genotyped individuals. 
Imputation of missing data is described in the online supple-
mental methods.

Family history score
A model-based family history score for BC, also called the ‘poly-
genic load’, was derived from the BOADICEA V.3 model based 
on the available pedigree, as described previously.7 The poly-
genic load in BOADICEA is a latent polygenetic component 
representing the combined effect of a large number of variants, 
each of small effect to capture the residual familial aggregation 
of BC and is therefore a measure of the BC family history,7 10 
henceforth referred to as BOADICEAFH. No pedigree or family 
history data were available for the controls. Therefore, BOADI-
CEAFH was imputed based on the distribution of BOADICEAFH 
(normally distributed with mean=0 and SD=1).

BC lifetime risk
As all cases had developed BC, the lifetime risks of developing 
a first breast tumour were calculated for all included individuals 
with the BOADICEA V.5 model,17 simulating an individual to be 
aged 1 year and unaffected. Initial lifetime risks (BOADICEAILR) 
were calculated based on BRCA status (all negative), pedigree 

Table 1  Characteristics of the participants

Population 
controls

Family-based 
cases

Family-based 
cases: subset*

n 3474 3918 1968

Families 3492 1602

Relatives per family included

 � 1 3474 3099 1263

 � 2 0 364 309

 � 3 0 25 25

 � 4 0 4 3

Study

 � ABCS 1563 904 82

 � HEBON 0 2248 1671

 � ORIGO 987 0 0

 � RBCS 924 766 215

Array

 � GSA 1781 1781

 � iCOGS 2388 1680 163

 � OncoArray 1086 457 24

Age

 � Mean 45.6 45.1 46.8

 � Range 18–93 21–91 21–91

First breast cancer

 � Invasive NA 3575 1630

 � In situ NA 312 308

 � Unknown NA 31 30

ER status

 � Positive NA 1755 927

 � Negative NA 488 213

 � Unknown NA 1675 828

 � Second breast tumour (n) NA 719 327

Age

 � Mean NA 52.6 52.9

 � Range NA 26–80 26–79

 � Unknown NA 130 29

Invasiveness

 � Invasive NA 460 220

 � In situ NA 116 77

 � Unknown NA 144 30

ER status

 � Positive NA 290 153

 � Negative NA 49 21

 � Unknown NA 380 153

Gene panel results

 � All 2584 2586 1586

 � No PV 2537 2369 1463

 � CHEK2 PV 31 167 98

 � ATM PV 9 39 18

 � CHEK2+ATM PV 0 2 1

 � PALB2 PV† 7 10 6

Standardised PRS313 (SD)

 � Overall BC 0 (1.03) 0.71 (0.96) 0.64 (0.88)

 � ER+ BC 0 (1.03) 0.72 (0.97) 0.65 (0.88)

 � ER− BC 0 (1.01) 0.45 (0.94) 0.29 (0.85)

BOADICEAFH

 � Mean (SD) 0 (0.99) 0.55 (0.39) 0.69 (0.35)

Affected FDR

 � 0 NA 1125

 � 1 NA 1454

Continued

Population 
controls

Family-based 
cases

Family-based 
cases: subset*

 � 2 NA 555

 � >2 NA 176

Affected SDR

 � 0 NA 1360

 � 1 NA 1086

 � 2 NA 583

 � >2 NA 281

 � Unknown NA 615

*Cases included in the association analyses which were not part of the 
development data set for the PRS313 as described in Mavaddat et al.5

†Excluding variants in the last exon of PALB2 to make it uniform for all 2586 cases.
ABCS, Amsterdam Breast Cancer Study; BC, breast cancer; BOADICEAFH, polygenic 
load calculated in the Breast and Ovarian Analysis of Disease Incidence and Carrier 
Estimation Algorithm; ER, Estrogen Receptor; FDR, first-degree relatives; GSA, 
Global Screening Array; HEBON, Hereditary Breast and Ovarian cancer study in the 
Netherlands; n, number of individuals; NA, Not Applicable; ORIGO, Oorsprong van 
borstkanker integraal onderzocht; PRS, Polygenic Risk Score; PV, pathogenic variant; 
RBCS, Rotterdam Breast Cancer Study; SDR, second-degree relatives.

Table 1  Continued
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information (for cases) as described above and birth year. The 
BRCA1 and BRCA2 mutation detection sensitivity in BOADICEA 
was set at 0.9. For individuals in whom information regarding 
PVs in the BC genes CHEK2, PALB2 and ATM was available, 
initial risks included the PV carrier status of these genes as well. 
To make it uniform for all included cases, PVs in the last exon 
of PALB2 were ignored. The initial lifetime risks were compared 
with the lifetime risks calculated with the above information and 
the PRS313 (BOADICEAPRS313).

Statistical analysis
The BC lifetime risks for cases and controls with (BOADI-
CEAPRS313) and without (BOADICEAILR) inclusion of the PRS313 
were compared to define the change in risk category and thus 
advice for BC surveillance according to three different guide-
lines: NICE,25 NCCN24 and IKNL.22

To define how much of the variance in the PRS313 is explained 
by family history in this study, the degree of correlation between 
the standardised PRS313 and the BOADICEAFH for cases was 
determined by the Pearson correlation coefficient. This coeffi-
cient was calculated as well to estimate the linear correlation 
between the PRS313 of the proband (ie, youngest BC diagnosis) 
and the PRS313 of other affected family members. If more than 
two family members were included, the average PRS313 of the 
family members was used. The association between overall BC 
(first breast tumour, invasive or in situ) and the PRS313 was deter-
mined with logistic regression using generalised estimating equa-
tions, adjusting for age and family history (BOADICEAFH). SEs 
were corrected to account for relatedness of individuals using a 
robust estimator of the variance. To reduce overfitting, associa-
tion analyses included only cases that were not part of the devel-
opment data set for the PRS313, as described in Mavaddat et al.5

In a secondary analysis, we determined the association of the 
PRS313 with invasive and in situ BC risk separately. Cases that 

developed an invasive BC after the development of an in situ BC 
were only included in the invasive BC analysis with the age of 
diagnosis of the invasive breast tumour. Two of these cases were 
excluded because the age of diagnosis of invasive breast tumour 
was unknown.

In addition, the association between risk of BC and the prev-
alence of a truncating variant in each of the 34 genes included 
in the BRIDGES gene panel30 was determined with a two-sided 
Fisher’s exact test.

Statistical significance was established at 5%. Analysis was 
performed using R V.4.0.3.39

RESULTS
The analyses included 3918 cases from 3492 families and 3474 
female population controls. In the association analyses, a subset 
of cases were included, that is, those not included previously in 
the development data set of the PRS313.

5 These comprised 1968 
cases from 1602 families (online supplemental figure S1 and 
table 1).

The characteristics of the included cases and controls are 
shown in table 1. The mean age at last follow-up for controls and 
age at diagnosis for cases was similar, 45 years, with an age range 
between 18 and 93 years. Most of the included cases had an 
invasive breast tumour (91%), 8% an in situ breast tumour and 
1% a tumour of unknown invasiveness. Of all included cases, 
18% developed a second breast tumour. The standardised PRS313 
was higher for cases compared with controls, with a mean of 
0.71 (SD=0.96) compared with 0 for controls (SD=1.03). The 
distribution curves and descriptives of the standardised PRS313, 
ER-positive PRS313 and ER-negative PRS313 are shown in online 
supplemental figures S2 and S3 and online supplemental tables 
S2 and S3. In total, 218 (8.4%) cases and 47 (1.8%) controls 
were carriers of a truncating PV in either ATM, CHEK2 or 
PALB2, excluding PVs in the last exon.

Gene panel results
The BRIDGES study30 completed sequencing for 2037 cases with 
clinical data and 2584 controls. Truncating (likely) PVs were 
found in 22 of 34 genes for 227 (11.1%) cases and 105 (4.1%) 
controls (online supplemental table S4). The majority (6.4% of 
cases, 1.2% of controls) had a truncating variant in CHEK2, 
which, in all except one, was the founder PV c.1100delC. In 
addition, truncating variants were relatively frequently found in 
ATM, FANCM and PALB2 (1.8%, 0.7% and 0.6% of cases and 
0.3%, 0.6% and 0.3% of controls, respectively). The number of 
(pathogenic) missense variants is listed in online supplemental 
table S5.

PRS-based individualised risk score
Adding the PRS313 into the BOADICEA model (BOADICEAPRS313) 
changed the absolute lifetime risk of almost all women (figure 1) 
to a maximum of 34.5% for cases and to a maximum of 22.1% 
for controls (online supplemental figure S4 and online supple-
mental table S6). Clinically relevant shifts, that is, from one to 
another screening category, based on the IKNL,22 NICE25 or 
NCCN24 guidelines, were 32.4%, 36.0% and 25.7%, respec-
tively, for 1331 cases without a gene test result (ie, only tested 
negative for a BRCA1/2 PV in diagnostic setting) (table 2 and 
online supplemental tables S7 and S8). Similar results were 
seen for 2369 cases that were known non-carriers of a PV in 
PALB2, CHEK2 and ATM. In both groups and all age catego-
ries, a higher percentage of cases shifted to the moderate-risk 
and high-risk category compared with the lowest risk category 

Figure 1  Change in individual breast cancer lifetime risk after including 
the PRS313. Scatter plot of the change in breast cancer lifetime risk. For 
every individual, BOADICEAILR was plotted against BOADICEAPRS313. Non-
carriers do not have a pathogenic variant in ATM, CHEK2 or PALB2 in 
addition to BRCA1/2. The solid lines represent the 20% and 30% breast 
cancer lifetime risk cut-off levels based on the Dutch IKNL breast cancer 
screening guideline.22 BOADICEA, Breast and Ovarian Analysis of Disease 
Incidence and Carrier Estimation Algorithm; BOADICEAILR, initial breast 
cancer lifetime risk at age 80 based on BRCA status (all negative), CHEK2, 
ATM and PALB2 status (if applicable), pedigree information (for cases), 
and birth year. BOADICEAPRS313, breast cancer lifetime risk at age 80 
including the PRS313 in addition to initial breast cancer lifetime risk; IKNL, 
Netherlands Comprehensive Cancer Organisation; PRS, Polygenic Risk 
Score; PV, pathogenic variant.
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(online supplemental table S9). Change towards higher risk cate-
gories was less frequent in controls than in cases (online supple-
mental tables S7 and S8). For cases carrying a PV in ATM or 
CHEK2, the proportions changing risk category were 26.3% 
and 17.9%, respectively, for IKNL, and 23.4% and 17.9% for 
NICE guidelines, but substantially lower based on the NCCN 
guideline (6.7% and 0.0%); this was due to the single cut-off 
point of 20% in the NCCN guideline. The 10 PALB2 PV carriers 
in the study did not change risk category based on any of the 
three guidelines.

Of the 890 controls without a gene test result for ATM, CHEK2 
or PALB2 status, 4.4%, 12.0% and 4.4% changed to another 
risk category based on the IKNL, NICE and NCCN guidelines, 
respectively. Similar results were seen for the group where no PV 
was found. For CHEK2 PV carriers, and to a lesser extent ATM 
PV carriers, these percentages were higher. Similar to cases, no 
change in risk category was seen for the seven controls with a 
PALB2 PV carrier with either of the three guidelines.

The distributions of the absolute lifetime risk after including 
the PRS313 for all groups (BOADICEAPRS313) are shown in online 
supplemental figure S5.

Correlation analysis
For cases, there was a very weak correlation between the PRS313 
and the BOADICEAFH (r=0.053, p=8.23×10−4); only 0.3% of 
the variance in the PRS313 is explained by family history. This 
poor correlation is visualised in online supplemental figures 
S6 and S7, where respectively the continuous and categorical 
BOADICEAFH are shown versus the PRS313.

In contrast, there was a significant correlation between the 
PRS313 of the 393 probands and that of their affected family 
members (r=0.333, p=1.00×10−11; figure 2).

Association analyses of PRS and BC
The PRS313 was significantly associated with overall BC (OR per 
SD=1.97, 95% CI 1.84 to 2.11, p≤2.00×10−16) (table  3 and 

online supplemental figure S8). The analyses per decile followed 
the trend for the continuous PRS313, despite the CIs of the two 
lowest and highest categories not overlapping with the contin-
uous line (table 3 and online supplemental figure S9).

Secondary analyses for invasive BC showed similar results. 
In situ BC was also significantly associated with the PRS313 
(OR=1.69, 95% CI 1.50 to 1.89, p≤2.00×10−16) (table 3 and 
online supplemental figure S8).

DISCUSSION
In this study, we have shown that including a well-validated PRS 
for BC based on 313 variants5 leads to substantially different 
patient stratification from current clinical practice, in which only 
family history is included in risk prediction. This supports the 
implementation of the PRS313 in standard care for individuals 

Table 2  Breast cancer lifetime risk category change based on the IKNL guideline

Group

BOADICEA lifetime risk No gene test result Non-PV carriers CHEK2 PV carriers* ATM PV carriers* PALB2 PV carriers

Without PRS313 
(%)

Including 
PRS313 (%) n % change n % change n % change n % change n % change

Cases <20 <20 697 30.4 1126 30.1 3 70.0 NA NA

>20 305 486 7

20–30 20–30 161 42.5 376 43.5 27 52.6 0 100.0 NA

<20 37 149 4 0

>30 82 141 26 5

>30 >30 42 14.3 65 28.6 93 7.0 32 5.9 10 0.0

<30 7 26 7 2 0

Overall change 32.4 33.9 26.3 17.9 0.0

Upward change 29.1 26.4 19.8 12.8 0.0

Controls <20 <20 851 4.4 2429 4.7 NA NA NA

>20 39 118

20–30 20–30 NA NA 13 58.1 4 55.6 NA

<20 12 1

>30 6 4

>30 >30 NA NA NA NA 7 0.0

<30 0

Overall change 4.4 4.7 58.1 55.6 0.0

Upward change 4.4 4.7 19.4 44.4 0.0

In total, 1331 cases and 890 controls were included without a gene test result; 2369 cases and 2537 controls in the non-PV carrier group; 167 cases and 31 controls in the CHEK2 PV carrier group; 39 cases and 9 
controls in the ATM PV carrier group; and 10 cases and 7 controls in the PALB2 PV carrier group.
*Two individuals with both a pathogenic variant in CHEK2 and ATM were excluded.
BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; IKNL, Netherlands Comprehensive Cancer Organisation; NA, Not Applicable; PRS, Polygenic Risk Score; PV, pathogenic 
variant.

Figure 2  Correlation between the PRS313 of the proband and their family 
members. Scatter plot of the PRS313 of the proband (youngest breast cancer 
diagnosis) and their family members. Families with two individuals included 
are shown as blue dots, three individuals included with orange dots and 
four individuals included with red dots. PRS, Polygenic Risk Score.
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from these families in clinical genetic services. Using a validated, 
comprehensive risk prediction model, BOADICEA,17 40 pedigree-
based family history can be easily combined with the individual 
PRS313, as well as with gene panel results, to calculate personal 
BC lifetime risk. We have shown that this procedure leads to 
a different risk category and corresponding clinical advice for 
substantial numbers of both non-carriers and carriers of a PV 
in a moderate BC risk gene. Furthermore, our results confirm 
the association between risk of BC and the PRS313 in familial BC 
cases in the Dutch population.5 41

For ATM and CHEK2 PV carriers, previous studies showed 
that including the PRS is of additive value for risk prediction 
and risk management.13 14 42 A population-based study using a 
PRS of 105 variants13 and a case–control study using a PRS of 
86 variants14 found similar results for CHEK2 PV carriers and 
showed that there is no need for intensified breast screening for 
about 30% of the women. Dissimilar percentages were found for 
ATM carriers; about 50% based on the PRS105 but a substantially 
lower percentage using the PRS86 would not need intensified 
screening after including the PRS.13 14 These results were based 
on the NCCN guideline, with a single cut-off of 20% guiding 
clinical management. Compared with these results and using the 
same guideline, we found a slightly higher percentage of CHEK2 
carriers in the unaffected population would have received 
different screening advice (39%), but a much lower percentage 
(7%) for cases with a positive family history. Although we did 
not see a shift in screening category for PALB2 carriers, there was 
an absolute risk difference, with a maximum of 9.8% for cases 
and 4.8% for population controls, corresponding to a lifetime 
risk range of 47%–91% for cases and 48%–56% for controls. A 
previous study found a similar effect for cases by including the 
PRS.43 Such differences in risk could inform choices regarding 
preventive surgeries. It is to be expected that we will have 
a more extensive PRS for BC in the future, knowing that the 
PRS313 explains about half of the estimated part of the familial 
relative risk that could be explained by common low-risk vari-
ants4 5 and that recent studies already discovered 38 novel BC 
susceptibility loci at genome-wide significance level.44 45 Using 
a more extensive PRS in the future possibly gives an even better 

risk stratification and may lead to a higher percentage of women 
shifting to another risk category.

Our study did not have enough power to perform an asso-
ciation analysis between the PRS and BC for PV carriers in 
PALB2, CHEK2 or ATM. However, previous studies showed 
that the per-SD effect size of a PRS with BC in PV carriers of 
moderate BC genes, such as CHEK2, is similar as in non-carriers 
or untested individuals,13 46 but lower in carriers of PV in 
BRCA1/2.12 Few studies have been performed on ATM or PALB2 
carriers, but a recent study showed that the effect sizes of the 
associations were in between those for BRCA1/2 and CHEK2.14 
However, BOADICEA assumes that the effect of the PRS is 
similar for non-PV carriers and carriers of a PV in the genes 
PALB2, ATM and CHEK2, that is, PVs and the PRS contribute 
to risk independently. This may need some adjustment once the 
exact per-SD effect sizes and interactions are known for these 
specific genes.

We found a higher effect size for the association between BC 
and the PRS313 (OR=1.97, 95% CI 1.84 to 2.11) than found 
in the population-based cohorts of BCAC (OR=1.61, 95% CI 
1.57 to 1.65)5 or the Dutch population (HR=1.56, 95% CI 1.40 
to 1.73).41 This can possibly be explained by a higher genetic 
predisposition in families that visit the clinical genetic centre 
for counselling. Although we adjusted for family history, the 
weak correlation between the PRS and family history showed 
that adjustment for family history does not suffice to correct for 
the higher genetic predisposition based on the common low-
risk variants. Furthermore, family history (BOADICEAFH) of the 
controls was imputed based on the assumption that the family 
history in controls was normally distributed with mean=0. This 
might have introduced bias since the real family history of each 
control is unknown.

The virtually absent correlation between family history and 
the PRS313 was found in previous studies as well,7 10 19 under-
scoring the additive value of including the PRS in family-based 
risk prediction. However, to avoid double-counting this requires 
careful joint consideration of family history and an explicitly 
measured PRS as provided by the BOADICEA algorithm. Alto-
gether, risk stratification using the PRS in addition to family-
based risk prediction in non-carriers and PV carriers highlights 
the need for using a comprehensive model including the PRS 
to calculate individual BC lifetime risks to guide screening and 
prevention advice. Of note, there is also no evidence that the 
per-SD PRS313 OR differs across strata defined by lifestyle and 
hormonal risk factors.47

The strengths of this study include the detailed family history 
that was available for the cases. As we used only cases who 
visited clinical genetic centres for counselling, this cohort is a 
good representation of the families that are seen in a clinical 
genetic context. Furthermore, our results are based on a well-
validated, comprehensive risk prediction model, BOADICEA, 
which has been shown to have accurate risk predictions for the 
general population and in familial setting.40 41

A limitation of this study is that we had only data for women 
of European ancestry, even though some studies have shown that 
(a subset of) the PRS313 is associated with BC in other ances-
tries as well.48 49 For Asian48 and Latina49 populations, the PRS 
showed similar performance as in the European population, but 
for the African population50 there was an attenuated effect size. 
Therefore, caution is needed for comprehensive risk prediction 
including the PRS for women of African ancestry.

In summary, including the PRS313 in family history-based 
risk prediction may change screening recommendations in up 
to 34% of individuals from families with no PVs in any of the 

Table 3  Results of the association analyses between breast cancer 
and the PRS313

Cases (n) OR 95% CI P value

Main analysis

 � Overall breast cancer 1968 1.97 1.84 to 2.11 <2.00×10−16

Secondary analyses*

 � Invasive breast cancer 1701 2.00 1.86 to 2.15 <2.00×10−16

 � In situ breast cancer 262 1.69 1.50 to 1.89 <2.00×10−16

Categorical PRS313†

 � 0–10 21 0.10 0.06 to 0.17 <2.00×10−16

 � 10–20 58 0.30 0.21 to 0.42 2.30×10−11

 � 20–40 222 0.66 0.52 to 0.82 2.20×10−04

 � 40–60 (reference) 354 1.00 NA NA

 � 60–80 491 1.37 1.13 to 1.66 1.10×10−3

 � 80–90 396 2.27 1.84 to 2.79 1.10×10−14

 � 90–100 426 2.29 1.86 to 2.83 8.90×10−15

*Individuals with unknown invasiveness (n=3) and individuals with unknown age 
of diagnosis of the (second) invasive breast tumour (n=2) were excluded.
†Category boundaries of the PRS313 were −3.93, −1.27, −0.88, −0.26, 0.23, 0.84, 
1.34 and 3.41.
PRS, Polygenic Risk Score.
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five BC genes modelled in BOADICEA. Adding the PRS313 also 
had a large impact on screening recommendations for ATM and 
CHEK2 PV carriers. Because BOADICEA has been prospectively 
validated and calibrated,40 41 clinical implementation of compre-
hensive risk prediction should be considered, although this will 
be a logistic challenge for clinical genetic centres and would 
require clinical geneticists to become aware of its limitations.
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Lakeman et al. Clinical applicability of the Polygenic Risk Score for breast cancer risk prediction in 

familial cases.  
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Supplementary methods 

 

Study cohorts 

HEBON 

The HEBON study1 (initiated in 1999) is an ongoing nationwide retrospective cohort study among breast cancer 

families with prospective follow up. Participants were invited after visiting one of the Clinical Genetic Centers 

in the Netherlands for breast and/or ovarian cancer counselling. Participants were asked to fill in a 

questionnaire about lifestyle, family history and risk factors for breast cancer. Linkage with the nationwide 

cancer and pathology registries is possible for follow up. 

Additional selection criteria for HEBON participants included: 

- At least two breast cancer cases in a family with available DNA samples 

- Breast cancer diagnosis below the age of 60 years and a positive family history: 

o One first degree family member with breast cancer diagnosis below the age of 50 OR 

o Two first or second-degree family members with breast cancer diagnosis below the age of 60 

 

ABCS-F and RBCS 

The ABCS-F2 and RBCS3 case-cohorts included also breast cancer cases who visited the Clinical Genetic Centres 

of the Netherlands Cancer Institute in Amsterdam or the Erasmus Medical Center in Rotterdam, respectively. 

No additional selection criteria were used for ABCS-F and RBCS cases. 151 individuals from the ABCS-F study 

and 469 individuals from the RBCS study are included in the HEBON study as well and shown as HEBON cases 

in Table 1.  

 

Quality control procedure 

For the 2,179 breast cancer cases without a BRCA1/2 pathogenic variant that were genotyped with the GSA 

array, quality control was performed with Plink version 1.9, which excluded 8,408 SNPs with a call rate below 

95%. Another 712 SNPs were removed because of a deviation from Hardy-Weinberg equilibrium in controls at 

P<1x10-12. In total, 124 individuals were excluded of which 62 individuals with a call rate below 95%, 7 

individuals because they were genotypically not female or the gender was uncertain, and 17 individuals 

because of a sample swab. After population stratification analysis, 28 individuals were excluded because of 

non-European genotype (>3 SD).   

 

Imputation pedigrees 

In total, 3,492 pedigrees were collected for this study. These pedigrees consisted of 202,680 individuals (49% 

female) of which 12,785 individuals were affected with breast cancer. If the age of breast cancer diagnosis for 

a family member was not known (n=1,272), a conditional average age was estimated given the age at last 
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follow up of the individual and the breast cancer incidence in the Netherlands. Furthermore, for all affected 

individuals with breast cancer, ovarian cancer, prostate cancer or pancreatic cancer the year of birth was 

imputed, if this was not yet available, based on the year of birth of the closest relative (25 year difference for 

parents and children, average for siblings). If the age of last follow up was not known, this age was calculated 

based on the date of the last update of a pedigree and the year of birth.    
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Figure S2: Density curves of the PRS313 

Distribution of the PRS313 in the included 3,474 population controls (grey line) and 3,918 and 1,968 breast cancer cases (red line) in the total and subset cohort respectively. 

For the invasiveness figure, 3 cases were excluded for which invasiveness for the first and/or second breast tumour was unknown. In the total cohort 3,653 and 262 cases 

were included with invasive (purple line) and in situ (pink line) breast cancer respectively. For the subset cohort this was 1,703 and 262. In the right figure, 719 and 327 

breast cancer cases with a second breast tumour (blue line) were included in the total and subset cohort respectively.  

Abbreviations: BC, Breast Cancer; PRS, Polygenic Risk Score.
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Figure S3: Density curves of the ER-positive and ER-negative PRS313 

Distribution of the ER-negative (left figures) and ER-positive (right figures) PRS313 for cases with an ER-negative 

(purple line) and ER-positive (orange line) first breast tumour. As a reference, the distribution of these PRS in 

population controls are shown as well (grey line). In the total cohort, 1,755 and 488 breast cancer cases are 

included with a first ER-positve and ER-negative breast tumour respectively. For the subset cohort this was 927 

and 213 respectively.  

Abbreviations: ER, Estrogen Receptor; PRS, Polygenic Risk Score 
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Figure S4: Difference in breast cancer lifetime risk score calculated by BOADICEA 

Boxplot of the difference in breast cancer lifetime risk between the basic calculation in BOADICEA and after 

including the PRS313. The basic calculation included birth year, gene panel results and for cases a pedigree of 

their family in addition. Non-carriers are the group of which we know that they do not have a pathogenic 

variant in ATM, CHEK2 and PALB2 in addition to BRCA1/2. 

Abbreviations: BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; 

PV, Pathogenic Variant. 
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Figure S5. Distribution of breast cancer lifetime risk after including the PRS313  

Density plots of the distribution in breast cancer lifetime risk calculated with BOADICEA including birth cohort, 

gene panel results, pedigree-based family history for cases and the PRS313. 

Abbreviations: BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; 

PV, Pathogenic Variant; PRS, Polygenic Risk Score 
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Figure S6. Correlation plot between de BOADICEAFH and the PRS313 

For all included breast cancer cases (N=3,918), the individual BOADICEAFH (polygenic load) is plotted against 

the PRS313. BOADICEAFH was calculated with BOADICEA based on the pedigree without inclusion of the PRS313. 

Abbreviations: BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; 

FH, Family History; PRS, Polygenic Risk Score.   
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Figure S7: PRS313 distribution by quartiles of BOADICEAFH 

The PRS313 distribution for all included cases (N=3,918) separated by quartiles of the individual BOADICEAFH 

(polygenic load). BOADICEAFH was calculated with BOADICEA based on the pedigree without inclusion of the 

PRS313.  

Abbreviations: BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; 

FH, Family History; PRS, Polygenic Risk Score. 
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Figure S8: Association between the PRS313 and breast cancer  

Visualisation of the effect sizes and 95% confidence intervals of the association between the PRS313 and breast 

cancer. The corresponding OR and included breast cancer cases are shown in Table 3.  Abbreviations: BC, 

Breast Cancer; OR, Odds Ratio; PRS, Polygenic Risk Score  
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Figure S9: Association between the PRS and breast cancer by percentiles of the PRS313 

Plot of the effect size of the association between the continuous PRS313 (grey line) and breast cancer and the 

categorical PRS313 (blue dots) and breast cancer. Corresponding OR and 95% confidence intervals are shown in 

Table 3.  

Abbreviations: CI, Confidence Interval; OR, Odds Ratio; PRS, Polygenic Risk Score.  
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Supplementary tables 

 

Table S1: common low risk variants included in the PRS313 (large Excel file) 

This table is partly published before by Mavaddat et al.4 We added the imputation quality in this study 
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Table S2: Descriptives of the standardised PRS313 

 Group 

  

Total cohort Family-based cases – subsetc 

N Mean PRS313 SD PRS313 N Mean PRS313 SD PRS313 

All cases 3,918 0.71 0.96 1,968 0.64 0.88 

Invasive casesa 3,653 0.73 0.96 1,703 0.65 0.86 

In situ only casesb 262 0.56 0.96 262 0.56 0.96 

1 breast tumour 3,199 0.66 0.95 1,641 0.60 0.87 

2 breast tumours 719 0.95 1.01 327 0.83 0.90 

Population controls 3,474 0 1.03 NA NA NA 

aInvasive first or second tumour 
bno invasive first or second tumour 
cCases included in the association analyses which were not part of the development dataset for the PRS313 as 

described in Mavaddat et al.4 

Abbreviations: N, Number; NA, Not Applicable; PRS, Polygenic Risk Score 
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Table S3: Descriptives of the standardised ER-positive and ER-negative PRS313 

Group PRS Total cohort 
 

Family-based cases – subsetc 

N Mean PRS SD PRS N Mean PRS SD PRS 

ER-positive BC ER-positive PRS 1,755 0.78 0.92 927 0.68 0.86 

ER-negative BC ER-positive PRS 488 0.43 0.98 213 0.51 0.85 

ER-positive BC ER-negative PRS 1,755 0.76 0.93 927 0.66 0.85 

ER-negative BC ER-negative PRS 488 0.46 0.97 213 0.52 0.85 

aInvasive first or second tumour 
bno invasive first or second tumour 
cCases included in the association analyses which were not part of the development dataset for the PRS313 as 

described in Mavaddat et al.4 

Abbreviations: N, Number; NA, Not Applicable; PRS, Polygenic Risk Score 
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Table S4: Truncating variants in BRIDGES gene panel 

Gene Cases, N=2,037a Controls, N=2,584a 
OR 95% CI P-value 

N % N % 
   

ABRAXAS1 1 0.0 0 0.0 NA NA NA 

AKT1 0 0.0 0 0.0 NA NA NA 

ATM 36 1.8 9 0.3 5.15 2.42-12.18 1.00x10-06 

BARD1 1 0.0 1 0.0 1.27  0.02-99.55 1.00 

BRCA1 NA NA NA NA NA NA NA 

BRCA2 NA NA NA NA NA NA NA 

BRE 0 0.0 0 0.0 NA NA NA 

BRIP1 4 0.2 5 0.2 1.01 0.20-4.72 1.00 

CDH1 0 0.0 0 0.0 NA NA NA 

CHEK2 131 6.4 31 1.2 5.66 3.78-8.70 <2.00x10-16 

c.1100delCb 130 
 

30 
    

Other 1 
      

EPCAM 0 0.0 2 0.1 NA NA NA 

FANCC 5 0.2 8 0.3 0.79  0.20-2.75 0.80 

FANCM 14 0.7 16 0.6 1.11  0.50-2.44 0.90 

GEN1 0 0.0 0 0.0 NA NA NA 

MEN1 0 0.0 0 0.0 NA NA NA 

MLH1 0 0.0 0 0.0 NA NA NA 

MRE11A 1 0.0 3 0.1 0.42 0.01-5.27 0.60 

MSH2 0 0.0 2 0.1 NA NA NA 

MSH6 1 0.0 0 0.0 NA NA NA 

MUTYH 3 0.1 2 0.1 1.9 0.22-22.81 0.70 

NBN 2 0.1 3 0.1 0.85 0.07-7.39 1,00 

NF1 2 0.1 0 0.0 NA NA NA 

PALB2 12c 0.6 7 0.3 2.18 0.79-6.55 0.10 

PIK3CA 0 0.0 0 0.0 NA NA NA 

PMS2 1 0.0 2 0.1 0.63 0.01-12.19 1.00 

PTEN 1 0.0 1 0.0 1.27 0.02-99.55 1.00 

RAD50 4 0.2 7 0.3 0.72  0.16-2.85 0.80 

RAD51C 1 0.0 0 0.0 NA NA NA 

RAD51D 5 0.2 0 0.0 NA NA NA 

RECQL 2 0.1 3 0.1 0.85 0.07-7.39 1.00 

RINT1 0 0.0 2 0.1 NA NA NA 

STK11 0 0.0 0 0.0 NA NA NA 

TP53 0 0.0 0 0.0 NA NA NA 

XRCC2 0 0.0 1 0.0 NA NA NA 

Total 227 11.1 105 4.1 - - - 

aCases and controls were included in the analyses described by Dorling et al.5 
bof which 6 homozygous in cases and 1 homozygous in controls 
cIn addition to inclusion criteria for truncating variants in BRIDGES, 4 PALB2 truncating variants in the last exon 

were added. 

Abbreviations: CI, Confidence Interval; N, Number; NA, Not Applicable; OR, Odds Ratio. 
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Table S5: Missense variants in BRIDGES gene panel 

Gene Cases; N=2,038a  Controls, N=2,584a 

Totalb  P/LPc  Totalb P/LPc 

ABRAXAS1 3  NA  5 NA 

AKT1 2  NA  6 NA 

ATM 121  5  113 4 

BARD1 25  0  26 0 

BRCA1 42  NA  49 NA 

BRCA2 109  NA  127 NA 

BRE 0  NA  0 NA 

BRIP1 34  NA  41 NA 

CDH1 26  NA  28 NA 

CHEK2 64  8  34 2 

EPCAM 9  NA  18 NA 

FANCC 28  NA  23 NA 

FANCM 64  NA  62 NA 

GEN1 38  NA  32 NA 

MEN1 4  NA  2 NA 

MLH1 19  NA  21 NA 

MRE11A 16  NA  19 NA 

MSH2 42  NA  56 NA 

MSH6 51  NA  52 NA 

MUTYH 28  NA  33 NA 

NBN 35  NA  23 NA 

NF1 30  NA  34 NA 

PALB2 23  0  23 0 

PIK3CA 6  NA  10 NA 

PMS2 37  NA  28 NA 

PTEN 3  NA  7 NA 

RAD50 50  NA  46 NA 

RAD51C 9  1  9 0 

RAD51D 6  0  10 0 

RECQL 16  NA  20 NA 

RINT1 39  NA  47 NA 

STK11 0  NA  1 NA 

TP53 14  4  10 0 

XRCC2 6  NA  13 NA 

Total 999  18  1,028 6 

aCases and controls were included in the analyses described by Dorling et al.5 
bTotal number of missense variants detected, not corrected for individuals who carry more than one missense 

variant in a single gene.   
cFor genes in which pathogenic variants are associated with breast cancer5, missense variant interpretation 

was performed by using the ClinVar database6.  

Abbreviations: N, Number; NA, Not Applicable; P, Pathogenic; LP, Likely Pathogenic.  
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Table S6: Absolute change in breast cancer lifetime risk after including the PRS313  
Cases Controls 

 
Min  Mean Max Min  Mean Max 

No gene-test result 0.0 5.0 34.5 0.0 3.5 21.3 

Non-carriers 0.0 4.5 27.0 0.0 3.3 22.1 

ATM PV carriersa 0.4 8.0 19.8 2.6 5.9 9.6 

CHEK2 PV carriersa 0.3 8.1 29.3 0.1 5.9 20.1 

PALB2 PV carriers 0.7 4.4 9.8 0.3 2.2 4.8 

aTwo cases with both a pathogenic variant in CHEK2 and ATM were excluded.  

In total, 1,331 cases and 890 controls were included without a gene-test result for PALB2, ATM and CHEK2; 

2,369 cases and 2,537 controls in the non-PV carrier group; 167 cases and 31 controls in the CHEK2 PV carrier 

group; 39 cases and 9 controls in the ATM PV carrier group; 10 cases and 7 controls in the PALB2 PV carrier 

group. 

Abbreviations: Min, Minimum; Max, Maximum; PRS, Polygenic Risk Score; PV, Pathogenic Variant.  
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Table S7: Breast cancer lifetime risk category change based on the NCCN guideline 

Group BOADICEA Lifetime risk No gene-test result Non-PV carriers CHEK2 PV carriersa ATM PV carriersa PALB2 PV carriers 

Without PRS313 Including PRS313 N % change N % change N % change N % change N % change 

Cases <20% <20% 697 30.4 1,126 30.1 3 70.0 0 0.0 0 0.0 

>20% 305   486   7   0   0   

>20% >20% 292 11.2 605 20.1 153 2.5 39 0.0 10 0.0 

<20% 37   152   4   0   0   

Overall change   25.7   26.9   6.6   0.0   0.0 

 Upward change  22.9  20.5  4.1  0.0  0.0 

Controls <20% <20% 851 4.4 2,419 4.7 NA   NA   NA   

>20% 39   118         

>20% >20% NA   NA   19 38.7 8 11.1 7 0.0 

<20%     12   1   0   

 Overall change   4.4   4.7   38.7   11.1   0.0 

 Upward change  4.4  4.7  0.0  0.0  0.0 

aTwo cases with both a pathogenic variant in CHEK2 and ATM were excluded.  

In total, 1,331 cases and 890 controls were included without a gene-test result (no BRCA1/2 PV); 2,369 cases and 2,537 controls in the non-PV carrier group; 167 cases and 

31 controls in the CHEK2 PV carrier group; 39 cases and 9 controls in the ATM PV carrier group; 10 cases and 7 controls in the PALB2 PV carrier group. 

Abbreviations: BOADICEA, the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; NCCN, the National Comprehensive Cancer Network 

guideline; PRS, Polygenic Risk Score; PV, Pathogenic Variant. 
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Table S8: Breast cancer lifetime risk category change based on the NICE guideline  

Group BOADICEA Lifetime risk No gene-test result Non-PV carriers CHEK2 PV carriersa ATM PV carriersa PALB2 PV carriers 

Without PRS313 Including PRS313 N % change N % change N % change N % change N % change 

Cases 
<17% 

<17% 478 38.5 699 37.1 1 0.0 NA   NA   

>17% 299   413   0       

17-30% 

17-30% 332 34.3 799 31.5 34 48.5 0 100.0 NA   

<17% 68   203   1   0     

>30% 105   164   31   5     

>30% 
>30% 42 14.3 65 28.6 93 7.0 32 5.9 10 0.0 

<30% 67   26   7   2   0   

Overall change   36.0   34.0   23.4   17.9   0.0 

Upward change  29.0  24.4  18.6  12.8  0.0 

Controls 
<17% 

<17% 783 12.0 2,289 9.8 NA   NA   NA   

>17% 107   248         

17-30% 

17-30% NA   NA   20 35.5 5 44.4 NA   

<17%     5   0     

>30%     6   4     

>30% 
>30% NA   NA   NA   NA   7 0.0 

<30%         0   

Overall change   12.0   9.8   35.5   44.4   0.0 

 Upward change  12.0  9.8  19.4  44.4  0.0 

aTwo cases with both a pathogenic variant in CHEK2 and ATM were excluded.  

In total, 1,331 cases and 890 controls were included without a gene-test result; 2,369 cases and 2,537 controls in the non-PV carrier group; 167 cases and 31 controls in the 

CHEK2 PV carrier group; 39 cases and 9 controls in the ATM PV carrier group; 10 cases and 7 controls in the PALB2 PV carrier group. Abbreviations: BOADICEA, the Breast 

and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; NICE, the National Institute for Health and Care Excellence guideline; PRS, Polygenic Risk Score; 

PV, Pathogenic Variant. 
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Table S9: Breast cancer lifetime risk by age of breast cancer diagnosis for cases based on the Dutch IKNL guideline 

Group 
 

<40 years 40-50 years ≥50 years 

BOADICEA LTR Without PRS313 Including PRS313 Without PRS313 Including PRS313 Without PRS313 Including PRS313 

No gene-test 

result 

<20% 403 (87%) 305 (66%) 377 (74%) 257 (50%) 222 (62%) 172 (48%) 

20-30% 58 (13%) 127 (27%) 111 (22%) 186(36%) 111 (31%) 122 (34%) 

>30% 1 (0%) 30 (6%) 24 (5%) 69 (13%) 24 (7%) 63 (17%) 

Non-PV 

carriers 

<20% 475 (81%) 367 (62%) 706 (65%) 557 (52%) 431 (61%) 354 (50%) 

20-30% 96 (16%) 183 (31%) 328 (30%) 395 (37%) 242 (34%) 267 (38%) 

>30% 17 (3%) 38 (6%) 44 (4%) 126 (12%) 30 (4%) 82 (12%) 

CHEK2 PV 

carriersa 

<20% 4 (8%) 3 (6%) 4 (5%) 1 (1%) 2 (4%) 3 (7%) 

20-30% 17 (35%) 12 (24%) 22 (30%) 11 (15%) 18 (40%) 13 (29%) 

>30% 28 (57%) 34 (69%) 47 (46%) 61 (84%) 25 (56%) 29 (64%) 

ATM PV 

carriersa 

<20% NA NA NA NA NA NA 

20-30% 2 (20%) 1 (10%) 2 (12%) 1 (6%) 1 (8%) 0 (0%) 

>30% 8 (80%) 9 (90%) 15 (88%) 16 (94%) 11 (92%) 12 (100%) 

PALB2 PV 

carriers 

<20% NA NA NA NA NA NA 

20-30% NA NA NA NA NA NA 

>30% 4 (100%) 4 (100%) 5 (100%) 5 (100%) 1 (100%) 1 (100%) 

 
aTwo cases with both a pathogenic variant in CHEK2 and ATM were excluded.  

In total, 1,331 cases were included without a gene-test result; 2,369 cases in the non-PV carrier group; 167 cases in the CHEK2 PV carrier group; 39 cases in the ATM PV 

carrier group; 10 cases in the PALB2 PV carrier group.  

Abbreviations: BOADICEA, the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; IKNL, Netherlands Comprehensive Cancer Organisation 

guideline; LTR, Life Time Risk; PRS, Polygenic Risk Score; PV, Pathogenic Variant. 
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Supplementary information 

 

Lakeman et al. Clinical applicability of the Polygenic Risk Score for breast cancer risk prediction in 

familial cases.  
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Supplementary methods 

 

Study cohorts 

HEBON 

The HEBON study1 (initiated in 1999) is an ongoing nationwide retrospective cohort study among breast cancer 

families with prospective follow up. Participants were invited after visiting one of the Clinical Genetic Centers 

in the Netherlands for breast and/or ovarian cancer counselling. Participants were asked to fill in a 

questionnaire about lifestyle, family history and risk factors for breast cancer. Linkage with the nationwide 

cancer and pathology registries is possible for follow up. 

Additional selection criteria for HEBON participants included: 

- At least two breast cancer cases in a family with available DNA samples 

- Breast cancer diagnosis below the age of 60 years and a positive family history: 

o One first degree family member with breast cancer diagnosis below the age of 50 OR 

o Two first or second-degree family members with breast cancer diagnosis below the age of 60 

 

ABCS-F and RBCS 

The ABCS-F2 and RBCS3 case-cohorts included also breast cancer cases who visited the Clinical Genetic Centres 

of the Netherlands Cancer Institute in Amsterdam or the Erasmus Medical Center in Rotterdam, respectively. 

No additional selection criteria were used for ABCS-F and RBCS cases. 151 individuals from the ABCS-F study 

and 469 individuals from the RBCS study are included in the HEBON study as well and shown as HEBON cases 

in Table 1.  

 

Quality control procedure 

For the 2,179 breast cancer cases without a BRCA1/2 pathogenic variant that were genotyped with the GSA 

array, quality control was performed with Plink version 1.9, which excluded 8,408 SNPs with a call rate below 

95%. Another 712 SNPs were removed because of a deviation from Hardy-Weinberg equilibrium in controls at 

P<1x10-12. In total, 124 individuals were excluded of which 62 individuals with a call rate below 95%, 7 

individuals because they were genotypically not female or the gender was uncertain, and 17 individuals 

because of a sample swab. After population stratification analysis, 28 individuals were excluded because of 

non-European genotype (>3 SD).   

 

Imputation pedigrees 

In total, 3,492 pedigrees were collected for this study. These pedigrees consisted of 202,680 individuals (49% 

female) of which 12,785 individuals were affected with breast cancer. If the age of breast cancer diagnosis for 

a family member was not known (n=1,272), a conditional average age was estimated given the age at last 
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follow up of the individual and the breast cancer incidence in the Netherlands. Furthermore, for all affected 

individuals with breast cancer, ovarian cancer, prostate cancer or pancreatic cancer the year of birth was 

imputed, if this was not yet available, based on the year of birth of the closest relative (25 year difference for 

parents and children, average for siblings). If the age of last follow up was not known, this age was calculated 

based on the date of the last update of a pedigree and the year of birth.    
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Figure S2: Density curves of the PRS313 

Distribution of the PRS313 in the included 3,474 population controls (grey line) and 3,918 and 1,968 breast cancer cases (red line) in the total and subset cohort respectively. 

For the invasiveness figure, 3 cases were excluded for which invasiveness for the first and/or second breast tumour was unknown. In the total cohort 3,653 and 262 cases 

were included with invasive (purple line) and in situ (pink line) breast cancer respectively. For the subset cohort this was 1,703 and 262. In the right figure, 719 and 327 

breast cancer cases with a second breast tumour (blue line) were included in the total and subset cohort respectively.  

Abbreviations: BC, Breast Cancer; PRS, Polygenic Risk Score.
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Figure S3: Density curves of the ER-positive and ER-negative PRS313 

Distribution of the ER-negative (left figures) and ER-positive (right figures) PRS313 for cases with an ER-negative 

(purple line) and ER-positive (orange line) first breast tumour. As a reference, the distribution of these PRS in 

population controls are shown as well (grey line). In the total cohort, 1,755 and 488 breast cancer cases are 

included with a first ER-positve and ER-negative breast tumour respectively. For the subset cohort this was 927 

and 213 respectively.  

Abbreviations: ER, Estrogen Receptor; PRS, Polygenic Risk Score 
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Figure S4: Difference in breast cancer lifetime risk score calculated by BOADICEA 

Boxplot of the difference in breast cancer lifetime risk between the basic calculation in BOADICEA and after 

including the PRS313. The basic calculation included birth year, gene panel results and for cases a pedigree of 

their family in addition. Non-carriers are the group of which we know that they do not have a pathogenic 

variant in ATM, CHEK2 and PALB2 in addition to BRCA1/2. 

Abbreviations: BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; 

PV, Pathogenic Variant. 
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Figure S5. Distribution of breast cancer lifetime risk after including the PRS313  

Density plots of the distribution in breast cancer lifetime risk calculated with BOADICEA including birth cohort, 

gene panel results, pedigree-based family history for cases and the PRS313. 

Abbreviations: BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; 

PV, Pathogenic Variant; PRS, Polygenic Risk Score 
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Figure S6. Correlation plot between de BOADICEAFH and the PRS313 

For all included breast cancer cases (N=3,918), the individual BOADICEAFH (polygenic load) is plotted against 

the PRS313. BOADICEAFH was calculated with BOADICEA based on the pedigree without inclusion of the PRS313. 

Abbreviations: BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; 

FH, Family History; PRS, Polygenic Risk Score.   
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Figure S7: PRS313 distribution by quartiles of BOADICEAFH 

The PRS313 distribution for all included cases (N=3,918) separated by quartiles of the individual BOADICEAFH 

(polygenic load). BOADICEAFH was calculated with BOADICEA based on the pedigree without inclusion of the 

PRS313.  

Abbreviations: BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; 

FH, Family History; PRS, Polygenic Risk Score. 
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Figure S8: Association between the PRS313 and breast cancer  

Visualisation of the effect sizes and 95% confidence intervals of the association between the PRS313 and breast 

cancer. The corresponding OR and included breast cancer cases are shown in Table 3.  Abbreviations: BC, 

Breast Cancer; OR, Odds Ratio; PRS, Polygenic Risk Score  
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Figure S9: Association between the PRS and breast cancer by percentiles of the PRS313 

Plot of the effect size of the association between the continuous PRS313 (grey line) and breast cancer and the 

categorical PRS313 (blue dots) and breast cancer. Corresponding OR and 95% confidence intervals are shown in 

Table 3.  

Abbreviations: CI, Confidence Interval; OR, Odds Ratio; PRS, Polygenic Risk Score.  
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Supplementary tables 

 

Table S1: common low risk variants included in the PRS313 (large Excel file) 

This table is partly published before by Mavaddat et al.4 We added the imputation quality in this study 
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Table S2: Descriptives of the standardised PRS313 

 Group 

  

Total cohort Family-based cases – subsetc 

N Mean PRS313 SD PRS313 N Mean PRS313 SD PRS313 

All cases 3,918 0.71 0.96 1,968 0.64 0.88 

Invasive casesa 3,653 0.73 0.96 1,703 0.65 0.86 

In situ only casesb 262 0.56 0.96 262 0.56 0.96 

1 breast tumour 3,199 0.66 0.95 1,641 0.60 0.87 

2 breast tumours 719 0.95 1.01 327 0.83 0.90 

Population controls 3,474 0 1.03 NA NA NA 

aInvasive first or second tumour 
bno invasive first or second tumour 
cCases included in the association analyses which were not part of the development dataset for the PRS313 as 

described in Mavaddat et al.4 

Abbreviations: N, Number; NA, Not Applicable; PRS, Polygenic Risk Score 
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Table S3: Descriptives of the standardised ER-positive and ER-negative PRS313 

Group PRS Total cohort 
 

Family-based cases – subsetc 

N Mean PRS SD PRS N Mean PRS SD PRS 

ER-positive BC ER-positive PRS 1,755 0.78 0.92 927 0.68 0.86 

ER-negative BC ER-positive PRS 488 0.43 0.98 213 0.51 0.85 

ER-positive BC ER-negative PRS 1,755 0.76 0.93 927 0.66 0.85 

ER-negative BC ER-negative PRS 488 0.46 0.97 213 0.52 0.85 

aInvasive first or second tumour 
bno invasive first or second tumour 
cCases included in the association analyses which were not part of the development dataset for the PRS313 as 

described in Mavaddat et al.4 

Abbreviations: N, Number; NA, Not Applicable; PRS, Polygenic Risk Score 
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Table S4: Truncating variants in BRIDGES gene panel 

Gene Cases, N=2,037a Controls, N=2,584a 
OR 95% CI P-value 

N % N % 
   

ABRAXAS1 1 0.0 0 0.0 NA NA NA 

AKT1 0 0.0 0 0.0 NA NA NA 

ATM 36 1.8 9 0.3 5.15 2.42-12.18 1.00x10-06 

BARD1 1 0.0 1 0.0 1.27  0.02-99.55 1.00 

BRCA1 NA NA NA NA NA NA NA 

BRCA2 NA NA NA NA NA NA NA 

BRE 0 0.0 0 0.0 NA NA NA 

BRIP1 4 0.2 5 0.2 1.01 0.20-4.72 1.00 

CDH1 0 0.0 0 0.0 NA NA NA 

CHEK2 131 6.4 31 1.2 5.66 3.78-8.70 <2.00x10-16 

c.1100delCb 130 
 

30 
    

Other 1 
      

EPCAM 0 0.0 2 0.1 NA NA NA 

FANCC 5 0.2 8 0.3 0.79  0.20-2.75 0.80 

FANCM 14 0.7 16 0.6 1.11  0.50-2.44 0.90 

GEN1 0 0.0 0 0.0 NA NA NA 

MEN1 0 0.0 0 0.0 NA NA NA 

MLH1 0 0.0 0 0.0 NA NA NA 

MRE11A 1 0.0 3 0.1 0.42 0.01-5.27 0.60 

MSH2 0 0.0 2 0.1 NA NA NA 

MSH6 1 0.0 0 0.0 NA NA NA 

MUTYH 3 0.1 2 0.1 1.9 0.22-22.81 0.70 

NBN 2 0.1 3 0.1 0.85 0.07-7.39 1,00 

NF1 2 0.1 0 0.0 NA NA NA 

PALB2 12c 0.6 7 0.3 2.18 0.79-6.55 0.10 

PIK3CA 0 0.0 0 0.0 NA NA NA 

PMS2 1 0.0 2 0.1 0.63 0.01-12.19 1.00 

PTEN 1 0.0 1 0.0 1.27 0.02-99.55 1.00 

RAD50 4 0.2 7 0.3 0.72  0.16-2.85 0.80 

RAD51C 1 0.0 0 0.0 NA NA NA 

RAD51D 5 0.2 0 0.0 NA NA NA 

RECQL 2 0.1 3 0.1 0.85 0.07-7.39 1.00 

RINT1 0 0.0 2 0.1 NA NA NA 

STK11 0 0.0 0 0.0 NA NA NA 

TP53 0 0.0 0 0.0 NA NA NA 

XRCC2 0 0.0 1 0.0 NA NA NA 

Total 227 11.1 105 4.1 - - - 

aCases and controls were included in the analyses described by Dorling et al.5 
bof which 6 homozygous in cases and 1 homozygous in controls 
cIn addition to inclusion criteria for truncating variants in BRIDGES, 4 PALB2 truncating variants in the last exon 

were added. 

Abbreviations: CI, Confidence Interval; N, Number; NA, Not Applicable; OR, Odds Ratio. 
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Table S5: Missense variants in BRIDGES gene panel 

Gene Cases; N=2,038a  Controls, N=2,584a 

Totalb  P/LPc  Totalb P/LPc 

ABRAXAS1 3  NA  5 NA 

AKT1 2  NA  6 NA 

ATM 121  5  113 4 

BARD1 25  0  26 0 

BRCA1 42  NA  49 NA 

BRCA2 109  NA  127 NA 

BRE 0  NA  0 NA 

BRIP1 34  NA  41 NA 

CDH1 26  NA  28 NA 

CHEK2 64  8  34 2 

EPCAM 9  NA  18 NA 

FANCC 28  NA  23 NA 

FANCM 64  NA  62 NA 

GEN1 38  NA  32 NA 

MEN1 4  NA  2 NA 

MLH1 19  NA  21 NA 

MRE11A 16  NA  19 NA 

MSH2 42  NA  56 NA 

MSH6 51  NA  52 NA 

MUTYH 28  NA  33 NA 

NBN 35  NA  23 NA 

NF1 30  NA  34 NA 

PALB2 23  0  23 0 

PIK3CA 6  NA  10 NA 

PMS2 37  NA  28 NA 

PTEN 3  NA  7 NA 

RAD50 50  NA  46 NA 

RAD51C 9  1  9 0 

RAD51D 6  0  10 0 

RECQL 16  NA  20 NA 

RINT1 39  NA  47 NA 

STK11 0  NA  1 NA 

TP53 14  4  10 0 

XRCC2 6  NA  13 NA 

Total 999  18  1,028 6 

aCases and controls were included in the analyses described by Dorling et al.5 
bTotal number of missense variants detected, not corrected for individuals who carry more than one missense 

variant in a single gene.   
cFor genes in which pathogenic variants are associated with breast cancer5, missense variant interpretation 

was performed by using the ClinVar database6.  

Abbreviations: N, Number; NA, Not Applicable; P, Pathogenic; LP, Likely Pathogenic.  
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Table S6: Absolute change in breast cancer lifetime risk after including the PRS313  
Cases Controls 

 
Min  Mean Max Min  Mean Max 

No gene-test result 0.0 5.0 34.5 0.0 3.5 21.3 

Non-carriers 0.0 4.5 27.0 0.0 3.3 22.1 

ATM PV carriersa 0.4 8.0 19.8 2.6 5.9 9.6 

CHEK2 PV carriersa 0.3 8.1 29.3 0.1 5.9 20.1 

PALB2 PV carriers 0.7 4.4 9.8 0.3 2.2 4.8 

aTwo cases with both a pathogenic variant in CHEK2 and ATM were excluded.  

In total, 1,331 cases and 890 controls were included without a gene-test result for PALB2, ATM and CHEK2; 

2,369 cases and 2,537 controls in the non-PV carrier group; 167 cases and 31 controls in the CHEK2 PV carrier 

group; 39 cases and 9 controls in the ATM PV carrier group; 10 cases and 7 controls in the PALB2 PV carrier 

group. 

Abbreviations: Min, Minimum; Max, Maximum; PRS, Polygenic Risk Score; PV, Pathogenic Variant.  
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Table S7: Breast cancer lifetime risk category change based on the NCCN guideline 

Group BOADICEA Lifetime risk No gene-test result Non-PV carriers CHEK2 PV carriersa ATM PV carriersa PALB2 PV carriers 

Without PRS313 Including PRS313 N % change N % change N % change N % change N % change 

Cases <20% <20% 697 30.4 1,126 30.1 3 70.0 0 0.0 0 0.0 

>20% 305   486   7   0   0   

>20% >20% 292 11.2 605 20.1 153 2.5 39 0.0 10 0.0 

<20% 37   152   4   0   0   

Overall change   25.7   26.9   6.6   0.0   0.0 

 Upward change  22.9  20.5  4.1  0.0  0.0 

Controls <20% <20% 851 4.4 2,419 4.7 NA   NA   NA   

>20% 39   118         

>20% >20% NA   NA   19 38.7 8 11.1 7 0.0 

<20%     12   1   0   

 Overall change   4.4   4.7   38.7   11.1   0.0 

 Upward change  4.4  4.7  0.0  0.0  0.0 

aTwo cases with both a pathogenic variant in CHEK2 and ATM were excluded.  

In total, 1,331 cases and 890 controls were included without a gene-test result (no BRCA1/2 PV); 2,369 cases and 2,537 controls in the non-PV carrier group; 167 cases and 

31 controls in the CHEK2 PV carrier group; 39 cases and 9 controls in the ATM PV carrier group; 10 cases and 7 controls in the PALB2 PV carrier group. 

Abbreviations: BOADICEA, the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; NCCN, the National Comprehensive Cancer Network 

guideline; PRS, Polygenic Risk Score; PV, Pathogenic Variant. 
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Table S8: Breast cancer lifetime risk category change based on the NICE guideline  

Group BOADICEA Lifetime risk No gene-test result Non-PV carriers CHEK2 PV carriersa ATM PV carriersa PALB2 PV carriers 

Without PRS313 Including PRS313 N % change N % change N % change N % change N % change 

Cases 
<17% 

<17% 478 38.5 699 37.1 1 0.0 NA   NA   

>17% 299   413   0       

17-30% 

17-30% 332 34.3 799 31.5 34 48.5 0 100.0 NA   

<17% 68   203   1   0     

>30% 105   164   31   5     

>30% 
>30% 42 14.3 65 28.6 93 7.0 32 5.9 10 0.0 

<30% 67   26   7   2   0   

Overall change   36.0   34.0   23.4   17.9   0.0 

Upward change  29.0  24.4  18.6  12.8  0.0 

Controls 
<17% 

<17% 783 12.0 2,289 9.8 NA   NA   NA   

>17% 107   248         

17-30% 

17-30% NA   NA   20 35.5 5 44.4 NA   

<17%     5   0     

>30%     6   4     

>30% 
>30% NA   NA   NA   NA   7 0.0 

<30%         0   

Overall change   12.0   9.8   35.5   44.4   0.0 

 Upward change  12.0  9.8  19.4  44.4  0.0 

aTwo cases with both a pathogenic variant in CHEK2 and ATM were excluded.  

In total, 1,331 cases and 890 controls were included without a gene-test result; 2,369 cases and 2,537 controls in the non-PV carrier group; 167 cases and 31 controls in the 

CHEK2 PV carrier group; 39 cases and 9 controls in the ATM PV carrier group; 10 cases and 7 controls in the PALB2 PV carrier group. Abbreviations: BOADICEA, the Breast 

and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; NICE, the National Institute for Health and Care Excellence guideline; PRS, Polygenic Risk Score; 

PV, Pathogenic Variant. 
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Table S9: Breast cancer lifetime risk by age of breast cancer diagnosis for cases based on the Dutch IKNL guideline 

Group 
 

<40 years 40-50 years ≥50 years 

BOADICEA LTR Without PRS313 Including PRS313 Without PRS313 Including PRS313 Without PRS313 Including PRS313 

No gene-test 

result 

<20% 403 (87%) 305 (66%) 377 (74%) 257 (50%) 222 (62%) 172 (48%) 

20-30% 58 (13%) 127 (27%) 111 (22%) 186(36%) 111 (31%) 122 (34%) 

>30% 1 (0%) 30 (6%) 24 (5%) 69 (13%) 24 (7%) 63 (17%) 

Non-PV 

carriers 

<20% 475 (81%) 367 (62%) 706 (65%) 557 (52%) 431 (61%) 354 (50%) 

20-30% 96 (16%) 183 (31%) 328 (30%) 395 (37%) 242 (34%) 267 (38%) 

>30% 17 (3%) 38 (6%) 44 (4%) 126 (12%) 30 (4%) 82 (12%) 

CHEK2 PV 

carriersa 

<20% 4 (8%) 3 (6%) 4 (5%) 1 (1%) 2 (4%) 3 (7%) 

20-30% 17 (35%) 12 (24%) 22 (30%) 11 (15%) 18 (40%) 13 (29%) 

>30% 28 (57%) 34 (69%) 47 (46%) 61 (84%) 25 (56%) 29 (64%) 

ATM PV 

carriersa 

<20% NA NA NA NA NA NA 

20-30% 2 (20%) 1 (10%) 2 (12%) 1 (6%) 1 (8%) 0 (0%) 

>30% 8 (80%) 9 (90%) 15 (88%) 16 (94%) 11 (92%) 12 (100%) 

PALB2 PV 

carriers 

<20% NA NA NA NA NA NA 

20-30% NA NA NA NA NA NA 

>30% 4 (100%) 4 (100%) 5 (100%) 5 (100%) 1 (100%) 1 (100%) 

 
aTwo cases with both a pathogenic variant in CHEK2 and ATM were excluded.  

In total, 1,331 cases were included without a gene-test result; 2,369 cases in the non-PV carrier group; 167 cases in the CHEK2 PV carrier group; 39 cases in the ATM PV 

carrier group; 10 cases in the PALB2 PV carrier group.  

Abbreviations: BOADICEA, the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; IKNL, Netherlands Comprehensive Cancer Organisation 

guideline; LTR, Life Time Risk; PRS, Polygenic Risk Score; PV, Pathogenic Variant. 
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