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Abstract

We present an improved integer L-shaped method for the vehicle routing problem with stochastic

demands. It exhibits speedups up to a factor of 325 compared to the current state-of-the-art, which

allows us to solve previously unsolved benchmark instances to optimality. The algorithm builds

on the state-of-the-art in a few ways. First, we rectify a few technical issues found in the current

literature. Secondly, we improve valid inequalities known as partial route inequalities. Finally, we

introduce three new types of valid inequalities. Additionally, we analyze two curious modeling choices

which are common in the literature. First, we prove that imposing the use of a fixed number of routes

can result in an arbitrarily large increase in the optimal objective value, and we prove the same result

for additionally imposing that the demand of the customers on a route may not exceed the capacity

in expectation. Secondly, our algorithm enables us to perform numerical experiments to illustrate the

decrease in computation time, and increase of the optimal solution value which result from imposing

these constraints for benchmark instances.

1 Introduction

The vehicle routing problem with stochastic demands (VRPSD) is the problem of designing routes for

vehicles of limited capacity to satisfy random demand at customers, while the realization of demand

is only learned upon arrival. A recourse action is taken to restock a vehicle when a realized demand

exceeds the available load, or earlier to prevent this. The objective is to minimize the total expected

costs. This problem has important applications such as the resupply of petrol stations, waste collection

and humanitarian aid in disaster areas. In this paper, we present an exact algorithm for the VRPSD,

which improves on state-of-the-art algorithms found in the current scientific literature. Furthermore, we

continue the investigation started by Florio et al. (2020), to assess the effect of two peculiar modeling

choices which are common in the scientific literature on exact algorithms for the VRPSD: i) fixing the

number of routes, and ii) limiting the expected demand per route. We provide theoretical and numerical

insights on this matter.

We are aware of eleven papers on exact algorithms for the VRPSD, which are listed in the first column

of Table 1. This table includes additional information, which we discuss at the end of this introduction.

The earliest paper is by Gendreau et al. (1995), while there seems to be an increased interest recently

as evidenced by five out of eleven papers appearing since 2018. Different versions of the VRPSD have

been considered over these years.

Before 2018, exact algorithms have only been applied in the case of what we call classical recourse,

i.e., a corrective return trip to the depot is made when the capacity constraint of a vehicle is violated.
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The notable exception is by Gendreau et al. (1995), where some customers do not place an order at all

with a certain probability, which can be skipped. Depending on the probability distribution of demand,

the expected costs of classical recourse can be evaluated efficiently using numerical methods, which is a

computational benefit in the pursuit of exact algorithms.

Since 2018, the papers on exact algorithms for the VRPSD consider preventive recourse, in which it

is allowed to make an early return trip to prevent a more expensive corrective return trip later. Note

that optimal preventive recourse yields lower expected costs than classical recourse. Preventive recourse

has only been applied for discrete demand distributions. In this case, the preventive recourse actions can

be optimized using for example the dynamic programming algorithm of Yang et al. (2000), as applied

by e.g. Louveaux and Salazar-González (2018). Instead of using optimal preventive recourse actions,

Salavati-Khoshghalb et al. (2019b) and Salavati-Khoshghalb et al. (2019c) use a different policy to decide

on taking preventive recourse. In this paper, we present an algorithm for both the VRPSD with classical

and preventive recourse, capable of handling all of the demand distributions encountered in earlier work.

The exact algorithms currently found in the literature can be divided into two categories: i) integer

L-shaped methods, appearing in eight out of eleven papers, and ii) branch-price-and-cut algorithms,

appearing in the remaining three papers. Both types of algorithms employ branch-and-bound. The

integer L-shaped methods make use of an edge-flow formulation, or arc-flow in the case of Louveaux

and Salazar-González (2018), while the branch-price-and-cut algorithms make use of a set-partitioning

formulation, or set-cover in the case of Christiansen and Lysgaard (2007). Essentially, the integer L-

shaped methods deal with the expected costs of recourse in the separation of optimality cuts, while the

branch-price-and-cut algorithms deal with this is in the pricing of new variables.

The branch-price-and-cut algorithms benefit from the strong LP-bound of the set-partitioning for-

mulation. However, the pricing algorithms have pseudo-polynomial worst-case computation time, and

particularly the dominance criterion seems to be negatively affected by the size of the vehicle capacity.

This is perhaps the reason that for instance Florio et al. (2020) are able to report solving to optimal-

ity only those benchmark instances with a vehicle capacity that typically does not exceed 160 (with

one notable exception of P-n22-k8 with vehicle capacity 3000), while the vehicle capacity of unsolved

benchmark instances range into the thousands.

An integer L-shaped method is an exact algorithm for a stochastic integer programming problem

with complete recourse, introduced by Laporte and Louveaux (1993). By modelling the VRPSD as

a two-stage stochastic programming problem, this algorithm can be applied. Lower bounds on the

expected costs of recourse and valid inequalities specific to the VRPSD have been introduced to enhance

the computational performance of the integer L-shaped method for the VRPSD. While current branch-

price-and-cut algorithms for the VRPSD can reasonably be applied only to instances with discrete

demand distributions with a small support and vehicle capacity, in which case they are usually the

superior algorithm, the integer L-shaped methods are more widely applicable. In this paper, we present

an improved integer L-shaped method for the VRPSD.

Our integer L-shaped method makes use of lower bounds on the expected costs of recourse of Laporte

et al. (2002) and Louveaux and Salazar-González (2018), the latter of which we generalize for arbitrary

demand distributions. We have also improved the lower bounds by Salavati-Khoshghalb et al. (2019a).

However, even the improved bounds turn out to be of no computational benefit for common benchmark

instances.

We also incorporate valid inequalities known as partial route inequalities. These were introduced by

Hjorring and Holt (1999) for the VRPSD with classical recourse in case only a single vehicle is available,

extended to the multi-vehicle case by Laporte et al. (2002), and generalized further by Jabali et al.

(2014). We address a mistake in the partial route inequalities by Laporte et al. (2002) and those by

Jabali et al. (2014). Moreover, we present new partial route inequalities which are stronger. Furthermore,
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Salavati-Khoshghalb et al. (2019a) and Louveaux and Salazar-González (2018) provide versions of the

partial route inequalities for the VRPSD with preventive recourse, which we also improve.

Additionally, we present three new types of valid inequalities, which we refer to as route-split in-

equalities, partial route-split inequalities, and multi-route-split inequalities. Whereas integer L-shaped

methods traditionally have treated the expected costs of recourse as a single value, we split this value

up into parts which can be attributed to separate routes. We capitalize on this, resulting in three new

types of valid inequalities. Note, that the route-split inequalities can in particular also be used as opti-

mality cuts, which lie at the heart of any integer L-shaped method, potentially replacing the standard

optimality cuts of Laporte et al. (2002).

We provide results of numerical experiments in which we apply our integer L-shaped method to

benchmark instances from the literature. These results suggest that our algorithm outperforms the

other integer L-shaped methods, and we are able to solve 152 previously unsolved benchmark instances

to optimality within a runtime of one hour per instance. Current branch-price-and-cut algorithms are

not suited to be applied on a wide variety of instances, such that our integer L-shaped method is

by default superior on many benchmark instances from the literature. Furthermore, we also compare

the performance of our integer L-shaped method to that of a branch-price-and-cut algorithm on those

instances for which the latter is specifically well-suited. The results suggest that our algorithm even

outperforms the branch-price-and cut algorithms on some, but not all, of these benchmark instances as

well.

The VRPSD is a computationally difficult problem. It is NP-hard since the traveling salesman

problem can be reduced to it in polynomial time. The recourse function as part of the objective value

adds to the computational challenge. Nonetheless, instances of respectable size have been solved to

optimality, e.g. Florio et al. (2020) report: “Instances of moderate size (up to 76 nodes) could be solved

in reasonable time (up to five hours), and larger instances (up to 148 nodes) could be solved in long

runs of the algorithm.” We further improve on these computational results with our integer L-shaped

method. However, Florio et al. (2020) also provide evidence that these formidable results might be due

to computational advantages resulting from two curious modeling choices in the VRPSD literature which

we discuss next.

In the paper by Laporte et al. (2002), the expected capacity constraints are incorporated in the

VRPSD. These constraints ensure that the expected total demand on a route may not exceed the vehicle

capacity. All subsequent papers on exact algorithms for the VRPSD also include these constraints,

until Florio et al. (2020) questioned their use. It is clear that the inclusion of the expected capacity

constraints speeds up exact algorithms. But from a modeling perspective the solution quality may suffer

unnecessarily from these constraints. Florio et al. (2020) report that their exact algorithm typically

cannot solve instances in reasonable time if the expected capacity constraints are not imposed, while

heuristic solutions to the VRPSD in which the vehicle capacity is increased provide numerical evidence

on the loss of solution quality. In this paper, we prove that imposing the expected capacity constraints

can result in an arbitrarily large increase of the objective value. Moreover, we present the results of

numerical experiments, in which we use our exact algorithm to find the optimal solution of the VRPSD

without these constraints. This helps indicate the size of the instances which can be solved by a state-

of-the-art exact algorithm in the absence of the expected capacity constraints. Moreover, it gives insight

into the magnitude by which solution quality suffers for benchmark instances.

A similar case is made for imposing that a fixed number of routes have to be used. We show that this

constraint can also result in an arbitrarily large increase of the objective value. Interestingly, all papers

in which an integer L-shaped method is used also impose a constraint on the number of used routes,

while this is not done for branch-price-and-cut algorithms.

To facilitate our discussion, we refer to the VRPSD without expected capacity constraints as the fixed
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Table 1: Overview of scientific literature on exact algorithms for the VRPSD.

Paper Recourse Distribution Method ECC FRC

Gendreau et al. (1995) Classical+ Discrete L No Yes
Hjorring and Holt (1999) Classical Discrete L No Yes
Laporte et al. (2002) Classical Normal, Poisson L Yes Yes
Christiansen and Lysgaard (2007) Classical Poisson BPC Yes No
Jabali et al. (2014) Classical Normal L Yes Yes
Gauvin et al. (2014) Classical Poisson BPC Yes No
Louveaux and Salazar-González (2018) Preventive Discrete triangular L Yes Yes
Salavati-Khoshghalb et al. (2019a) Preventive Discrete triangular L Yes Yes
Salavati-Khoshghalb et al. (2019b) Preventive- Discrete triangular L Yes Yes
Salavati-Khoshghalb et al. (2019c) Preventive- Discrete triangular L Yes Yes
Florio et al. (2020) Preventive Poisson BPC Yes+No No

routes VRPSD (FR-VRPSD), and the FR-VRPSD without a fixed number of routes as the Basic-VRPSD.

Our integer L-shaped method for the VRPSD uses valid inequalities and lower bounds which exploit

the constraint on the fixed number of routes, but does not rely on the expected capacity constraints.

Therefore, our integer L-shaped method for the VRPSD can immediately be applied to the FR-VRPSD,

but not to the Basic-VRPSD. Throughout this paper, we also indicate how the integer L-shaped method

is modified for the Basic-VRPSD. Note that Florio et al. (2021) also do not include these constraints,

but impose a route duration constraint instead. We consider that constraint beyond the scope of this

paper.

As an overview on the literature on exact algorithms for the VRPSD, we provide Table 1. In the col-

umn ‘Paper’, we list the papers. In the colum ‘Recourse’, the type of recourse of each paper is indicated,

where ‘Classical’ refers to classical recourse, ‘Classical+’ to classical recourse where additionally the cus-

tomers which have no demand can be skipped, ‘Preventive’ refers to optimized preventive recourse, and

‘Preventive-’ to preventive recourse where actions are determined according to a potentially suboptimal

policy. In the column ‘Distribution’, the demand distribution under consideration in each paper is pro-

vided. In the column ‘Method’, we indicate the algorithm, where ‘L’ refers to integer L-shaped method,

and ‘BPC’ refers to branch-price-and-cut. The columns ‘ECC’ and ‘FRC’ indicate whether expected

capacity constraints and a fixed number of routes constraint is imposed, respectively.

This paper is structured as follows. First, in Section 2 we describe the Basic-VRPSD, FR-VRPSD

and the VRPSD. Here we also discuss the expected recourse constraints and fixed number of routes

constraint. The basics of the integer L-shaped method are explained in Section 3. The basic integer

L-shaped method is improved with lower bounds on the expected costs of recourse in Section 4, partial

route inequalities in Section 5, and route-split inequalities, partial route-split inequalities, and multi-

route-split inequalities in Section 6. Finally, we provide the results of our numerical experiments in

Section 7, and conclude in Section 8.

2 Problem description

In this section, we describe the VRPSD. For the sake of exposition, we introduce several versions in which

we gradually include more constraints. We start with a basic version of the VRPSD in Section 2.1, which

we refer to as the Basic-VRPSD. We then introduce the constraint that fixes the number of routes in

Section 2.2, resulting in the version which we refer to as the FR-VRPSD. We prove that imposing

this constraint can result in an arbitrarily large increase of the optimal solution value. In Section 2.3,
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we additionally introduce the expected capacity constraints. Because this results in the most common

version of the VRPSD in the literature on exact algorithms, we refer to it as the VRPSD for the

remainder of this paper. We prove that imposing the expected capacity constraints, can also result in

an arbitrarily large increase of the optimal solution value. Each of these problems include a so-called

recourse model. In Section 2.4, we discuss some computational aspects of the two different recourse

models from the literature which are considered in this paper, classical and preventive. This provides

six problems of interest in this paper: the Basic-VRPSD FR-VRPSD and VRPSD with classical and

preventive recourse.

2.1 Basic vehicle routing problem with stochastic demands

Let G = (V,E) be a complete undirected graph, with V = {0} ∪ V ′ the set of vertices such that 0 repre-

sents the depot and V ′ the customers. For each customer v ∈ V ′, let Dv ≥ 0 be the nonnegative random

demand, such that all demands are independently distributed according to some known distribution,

and the mean demand of customer v is µv. The demands are satisfied by visiting the customers using a

homogeneous fleet of vehicles with capacity C > 0. A feasible solution consists of a collection of routes,

which are simple cycles in G that start and end at the depot 0, such that each customer is included

exactly once. With each edge e ∈ E, a nonnegative travel costs ce ≥ 0 is associated. We refer to the

total travel costs corresponding with a collection of routes as the first stage travel costs.

Once the routes have been constructed, the vehicles execute these routes. Only when reaching a

customer, the corresponding demand realization is observed. Therefore, it may occur that a route fails.

That is, the current amount of goods in the vehicle is not enough to fully satisfy the demand of the

current customer. When a route fails, a recourse action needs to be taken. We consider two recourse

models: classical and preventive recourse. In both models, the vehicle leaves the depot with a full load

C. Then, if the route fails, the vehicle empties its load at the customer, after which it travels back to

the depot, is loaded to its capacity C and travels back to the customer to resume its route. We call

such a return trip a corrective return trip. Additionally, in the case of preventive recourse, the vehicle

may execute a preventive return trip. In this case, after serving a customer the vehicle travels back to

the depot, is loaded to its capacity, and travels to the next customer on the route. The objective is to

minimize the first stage travel costs plus the expected costs of recourse. We refer to this problem as the

Basic-VRPSD.

Next, we present a two-stage stochastic programming formulation of the Basic-VRPSD. In this for-

mulation, xe is the decision variable corresponding to the number of times edge e ∈ E is traversed.

Furthermore, we denote by Q(x) the expected costs of recourse given the routing solution x ≡ (xe)e∈E .

Finally, δ(v) is the set of edges with one endpoint equal to v ∈ V and E(S) the set of edges with both

endpoints in S ⊆ V . A two-stage stochastic programming formulation of the Basic-VRPSD is

minimize
∑
e∈E

cexe +Q(x), (1)

subject to
∑

e∈δ(v)

xe = 2 ∀v ∈ V ′, (2)

∑
e∈E(S)

xe ≤ |S| − 1 ∀S ⊆ V ′, S ̸= ∅, (3)

xe ∈ {0, 1} ∀e ∈ E \ δ(0), (4)

xe ∈ {0, 1, 2} ∀e ∈ δ(0). (5)

The objective function (1) consists of the first stage travel costs and the expected costs of recourse.
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Constraints (2) are the flow conservation constraints. Constraints (3) are the subtour elimination con-

straints and Constraints (4) and (5) are the integrality conditions.

Note that Q(x) is only defined for feasible integer solutions. Nonetheless, throughout this paper

we also consider non-integer solutions x such that 0 ≤ xe ≤ 1 for all e ∈ E \ δ(0), 0 ≤ xe ≤ 2 for all

e ∈ δ(0), (2) and (3). For convenience, we refer to such solutions as solutions to the continuous relaxation

of the Basic-VRPSD.

2.2 Fixed routes vehicle routing problem with stochastic demands

In the literature, the number of routes is often fixed to some integer m:∑
e∈δ(0)

xe = 2m. (6)

We refer to (1)-(6) as the fixed routes vehicle routing problem with stochastic demands (FR-VRPSD).

The fixed number of routes constraint was already imposed by Stewart Jr and Golden (1983) and Dror

et al. (1989). Fixing the number of routes is also common in the deterministic counterpart of the

VRPSD, the CVRP. This constraint reflects the notion that a single route is executed by a unique

vehicle. Although it is debatable whether such a requirement is reasonable for both the VRPSD and

CVRP due to the absence of time or distance constraints, we put this issue aside here. However, while

in the CVRP the number of routes corresponds to the number of departures from and returns to the

depot, in the VRPSD only some of these are considered by (6). Indeed, the total number of returns

consists of the deterministic returns, as well as stochastic returns due to recourse, and Constraint (6)

imposes a limit on the number of deterministic returns only. Unless there is a good reason to distinguish

between deterministic an stochastic return trips, the fixed number of routes constraint can be considered

as rather arbitrary.

Another observation is that limiting the number of routes weakly increases the optimal objective

value. In fact, the optimal solution value might get arbitrarily bad. This is already known for the

CVRP, and carries over straightforwardly to the VRPSD. For convenience, we say that an instance of

the FR-VRPSD is also an instance of the Basic-VRPSD, achieved by simply omitting m.

Theorem 1. The worst-case difference between the optimal solution value of the FR-VRPSD and the

Basic-VRPSD for the same instance, is arbitrarily large.

Proof. Consider an instance of the FR-VRPSD with k customers at distance 1 from the depot and

zero from each other. Demand is so small, that the expected recourse costs is negligible for all routes,

irrespective of the recourse model. Furthermore, m = k. The optimal solution to the basic-VRPSD is

to visit all customers on a single route at costs 2, while imposing that exactly k routes must be used,

results in the optimal solution value of 2k. Hence, by increasing k the difference in optimal solution

values grows arbitrarily large.

2.3 Vehicle routing problem with stochastic demands

Instead of the subtour elimination constraints (3), it is common in the scientific literature to use the

expected capacity constraints:

∑
e∈E(S)

xe ≤ |S| −

⌈
1

C

∑
i∈S

µi

⌉
∀S ⊆ V ′. (7)
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The expected capacity constraints are more limiting than the subtour elimination constraints, and make

sure that the total expected demand on a route does not exceed the vehicle capacity C. We refer to

(1), (2), (4)-(7) as the vehicle routing problem with stochastic demands (VRPSD). Similar to before, we

refer to any solution x such that 0 ≤ xe ≤ 1 for all e ∈ E \ δ(0), 0 ≤ xe ≤ 2 for all e ∈ δ(0), (2), (6)

and (7) as a solution to the continuous relaxation of the VRPSD.

The expected capacity constraints (7) were introduced by Laporte et al. (2002). The practical value

was argued by stating that “otherwise some routes will systematically fail while on others vehicles will be

highly underutilized” (Laporte et al., 2002, p.416). Depending on the application this may, or may not

be an issue. Moreover, the net effect is merely to potentially impose a deterministic return trip instead

of stochastic return trips. In fact, imposing the expected capacity constraints can result in structurally

more return trips in total, i.e., deterministic and expected number of stochastic return trips combined.

Furthermore, expected capacity constraints are more limiting than the subtour elimination con-

straints, and therefore weakly increase the optimal objective value. Similar to before, we say for conve-

nience that an instance of the VRPSD is also an instance of the FR-VRPSD, and by extension of the

Basic-VRPSD. We show, that the increase in the optimal solution value can grow arbitrarily large from

imposing the expected capacity constraints. We compare in particular the optimal solution value of the

VRPSD and the FR-VRPSD.

Theorem 2. The worst-case difference between the optimal solution value of the VRPSD and the FR-

VRPSD for the same instance, is arbitrarily large.

Proof. Consider an instance with 2k customers, for k an arbitrary integer larger than 1. Let us name the

first k customers A1, . . . , Ak. Demand is normally distributed with means µAi
= 1 − 1

2k and standard

deviations σAi
= 0.1µAi

. The last k customers are B1, . . . , Bk, with normally distributed demand with

means µBi
= 1

2k and standard deviations σBi
= 0.1µBi

. All customers Ai are located at the depot,

whereas all Bi customers lie at a distance 1 from the depot. That is, c(0,Ai) = c(Ai,Aj) = c(Bi,Bj) = 0 and

c(0,Bi) = c(Ai,Bj) = 1, for all i, j ∈ {1, . . . , k}. Furthermore, let C = 1 and m = k. An optimal solution

is {(0, B1, . . . , Bk, 0), (0, A1, A2, 0), (0, A3, 0), . . . , (0, Ak, 0)} with expected costs 2. When imposing the

expected capacity constraints, an optimal solution is k routes (0, Bi, Ai, 0) for i ∈ {1, . . . , k} with expected

costs 2k. It follows that by increasing k, the difference in optimal solution values grows arbitrarily

large.

2.4 Recourse models

The Basic-VRPSD, FR-VRPSD and the VRPSD make use of a function Q(x), providing the expected

costs of recourse given a feasible routing solution x. This function is different depending on the recourse

model and domain of the demand distribution.

However, both classical and preventive recourse share the property that the expected costs of recourse

can be decomposed over the routes and their orientation. Note that given one of the two orientations

o ∈ {1, 2} of some route r, the order of visited customers is fixed. Denoting Qo
r as the expected costs of

recourse for some route r with orientation o, we have

Q(x) =
∑
r∈R

min{Q1
r, Q

2
r}, (8)

with R the set of routes corresponding with solution x. For the remainder of this paper, we denote

sv ≡ 2c(0,v) as the costs of corrective recourse at vertex v ∈ V ′ and s(u,v) ≡ c(0,u) + c(0,v) − c(u,v) as the

costs of preventive recourse between vertices u, v ∈ V ′, u < v.
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In the case of classical recourse and a continuous demand distribution, given that r = (0 = v(0), v(1),

. . . , v(p), v(p+ 1) = 0) with orientation o, Dror et al. (1989) provide the following expression for Qo
r:

Qo
r =

p∑
i=1

sv(i)

∞∑
k=1

P

i−1∑
j=1

Dv(j) ≤ kC,

i∑
j=1

Dv(j) > kC

 .

Note that in this case, a return trip is still not immediately made when the load is exactly zero after

having visited a customer, but is postponed until the route fails at the next customer. This event has

probability zero when the demand distribution is continuous, while for a discrete demand distribution

this event might have nonzero probability. In that case, it is reasonable and tractable to perform a return

also whenever the vehicle is fully empty as described by Hjorring and Holt (1999).

In the case of preventive recourse, it needs to be decided when to execute preventive return trips.

When in the case of preventive recourse throughout this paper, we assume demand to be discrete, allowing

the use of standard dynamic programming algorithms from the literature to optimize these decisions for

each route separately, and to compute the expected costs of recourse. Similar to Yang et al. (2000),

denoting r = (0 = v(0), v(1), . . . , v(p), v(p+ 1) = 0) for route r with fixed orientation o, we define f∗
j (q)

as the optimal expected costs of recourse incurred on route r after serving customer v(j), given that the

load is q ∈ {0, . . . , C}. The initial condition is f∗
p+1(q) = 0 for all q, and the other f∗

j (q) are defined

recursively as:

f∗
j (q) = min


s(v(j),v(j+1))+

∑
ξ∈Ξv(j+1)

P(Dv(j+1) = ξ)
[
Γ(ξ − C)sv(j+1) + f∗

j+1(CΓ(ξ − C) + C − ξ)
]
,∑

ξ∈Ξv(j+1)

P(Dv(j+1) = ξ)
[
Γ(ξ − q)sv(j+1) + f∗

j+1(CΓ(ξ − q) + q − ξ)
]
 ,

(9)

with Ξj the set of all demand realizations of Dj with nonzero probability, and Γ(x) = max
{⌈

1
Cx
⌉
, 0
}

denotes the number of corrective return trips needed when demand exceeds the available load by x. Note

that this dynamic program is adapted from Yang et al. (2000) similar to Louveaux and Salazar-González

(2018), by subtracting the deterministic first stage travel costs, and accounting for the case when demand

exceeds C with positive probability. Using this recursive formula, it follows that Qo
r = f∗

0 (C), as we

assume the vehicle leaves the depot with a full load C.

3 Integer L-shaped method

In this section, we describe an integer L-shaped method for the VRPSD. In subsequent sections we

provide lower bounds and valid inequalities which enhance the performance of the algorithm. Throughout

this paper, we also indicate how the integer L-shaped method is modified for the Basic-VRPSD. For

example, the integer L-shaped methods for the VRPSD as found in the literature, typically make use

of an optimality cut which is not valid for the Basic-VRPSD. Therefore, we introduce a new optimality

cut for the latter case in this section. In this paper, we do not additionally discuss an integer L-shaped

method for the FR-VRPSD. For the purpose of this paper, it is sufficient to apply the integer L-shaped

method for the VRPSD to the FR-VRPSD, but replacing the expected capacity constraints with subtour

elimination constraints. This is what we have done in our implementation.

The objective function (1) includes the function Q(x) which might not be linear in x, and is only

defined for integer values of x. Therefore, a variable θ is introduced in the integer L-shaped method, which

will take the value of the expected costs of recourse of the optimal solution. The objective function (1)
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is replaced by

min
∑
e∈E

cexe + θ (10)

and the constraint

θ ≥ Q(x) (11)

is added, so that (10), (11), (2), (4)-(7) is a formulation of the VRPSD, and (10), (11), (2)-(5) is a

formulation of the Basic-VRPSD.

In the integer L-shaped method, Constraint (11) is initially relaxed, and the constraint θ ≥ L is

added, where L is a lower bound on Q(x) for all x. Note that for the VRPSD and Basic-VRPSD, it

suffices to select L = 0, but stronger bounds are preferred.

The resulting mixed integer linear programming problem is solved using a branch-and-cut algorithm.

Observe that the formulation includes an exponential number of capacity constraints (7) in case of

the VRPSD, or subtour elimination constraints (3) in case of the Basic-VRPSD. These constraints are

initially relaxed as well and added in a cutting planes fashion. As is common, we separate expected

capacity constraints heuristically using the CVRPSEP package (Lysgaard, 2003), and separate violated

subtour elimination constraints exactly in polynomial time by solving a maximum flow problem.

Whenever an integer solution x̂ is found, Q(x̂) is computed. If x̂ is the solution with the lowest

objective value found so far, it is stored. Next, it is checked whether the relaxed Constraint (11) is

violated, i.e., whether θ < Q(x̂). In case of a violation, the integer solution x̂ is removed from the

feasible space by using an optimality cut. Subsequently, the current node of the branching tree is

processed again, i.e., the corresponding LP relaxation which now includes the optimality cut is solved.

When applying the integer L-shaped method to the VRPSD, the following optimality cut by Laporte

et al. (2002) is used: ∑
e∈E\δ(0):x̂e=1

xe ≤
∑

e∈E\δ(0)

x̂e − 1. (12)

This optimality cut forbids any integer solution that uses all the non-depot edges of x̂. It is important to

note that this cut is correct for the formulation of the VRPSD, but it is incorrect for the Basic-VRPSD

which does not include Constraint (6) on the number of routes. To demonstrate that the optimality

cut (12) is incorrect for the Basic-VRPSD, observe that cutting off the solution corresponding with

the two routes {(0, 1, 2, 0), (0, 3, 4, 0)} using (12) also cuts off the solution corresponding with the single

route {(0, 1, 2, 3, 4, 0)}. Simply adding the depot edges δ(0) to both summations of (12) does not resolve

the issue, as then the optimality cut also cuts off the solution corresponding with the three routes

{(0, 1, 0), (0, 2, 0), (0, 3, 4, 0)}.
Instead, we introduce a new optimality cut. Given a route r, a function with as domain the feasible

solutions x of the continuous relaxation of the Basic-VRPSD, is called a route activation function of r

if it satisfies the following properties: i) it has the value 1 if and only if x is integer feasible and

corresponds with a solution which includes the route r, and ii) if x is integer feasible and corresponds

with a solution which does not include the route r, then it has a nonpositive value. Given a route
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r = (0 = v(0), v(1), . . . , v(p), v(p+ 1) = 0), consider the function

Wr(x) =



x(0,v(1)) − 1 if p = 1,

x(0,v(1)) + 3x(v(1),v(2)) + x(0,v(2)) − 4 if p = 2,

x(0,v(1)) + 2x(v(1),v(2)) +

p−2∑
k=2

x(v(k),v(k+1)) + 2x(v(p−1),v(p)) + x(0,v(p)) − (p+ 2) otherwise.

(13)

In Appendix A, we prove that the function Wr(x) is a route activation function of r. Moreover, Wr(x)

is linear. Using Wr(x), we define the following linear optimality cut for the Basic-VRPSD, which cuts

of the integer solution x corresponding to the route set R:∑
r∈R

Wr(x) ≤ |R| − 1. (14)

It is important to note that the integer L-shaped method in its current form may enumerate an enormous

amount of integer solutions. Denoting by z∗ the optimal solution value, all feasible solutions with first-

stage costs less than z∗ − L will be enumerated. Roughly speaking, this means that the algorithm will

perform poorly if the difference between the lower bound L and the expected costs of recourse of the

optimal solution is large, compared to the differences in first stage travel costs of many good solutions.

It will perform well if the optimal expected costs of recourse is slightly higher than its lower bound, and

there are only few good solutions. But in the latter case, the value of the stochastic solution is probably

low and the benefit of using an integer L-shaped method is limited to begin with. Therefore, besides

choosing the lower bound L as strong as possible, it is important to improve the algorithm, which can

be done by including valid inequalities.

4 Lower bounds on the expected costs of recourse

In this section, we discuss lower bounds on the expected costs of recourse, i.e., values of L such that

L ≤ Q(x) for all x. We use these lower bounds in our implementation of the integer L-shaped method

described in Section 3.

For the Basic-VRPSD, we simply use the trivial lower bound 0. Observe that if the probability

of the nonnegative demand being greater than the vehicle capacity is zero for all customers, then the

minimal expected costs of recourse is 0, obtained for a solution with one route per customer. Therefore,

lower bounds for many benchmark instances from the literature will not deviate much from 0. Because

we use such instances in our numerical experiments, we do not pursue stronger lower bounds for the

Basic-VRPSD in this paper.

For the remainder of this section we consider the VRPSD. First, we merely mention two lower bounds

defined by Laporte et al. (2002) for the case of VRPSD with classical recourse. One of the lower bounds

applies when demand is normally distributed, the other when demand is Poisson distributed. We refer

to Laporte et al. (2002) for details, and use these lower bounds in our numerical experiments on the

VRPSD with normal or Poisson distributed demand.

Second, Louveaux and Salazar-González (2018) provide a lower bound that applies to both the

VRPSD with classical and preventive recourse. They present it for the case that the probability of

demand exceeding the vehicle capacity is 0, and mention that the lower bound could be adjusted when

this is not the case. We present the lower bound in a form such that it also applies if this probability is

nonzero.

10



If the support of demand is bounded, then max{Ξv} is the finite-valued largest realization of demand

of customer v ∈ V ′. In this case, denote by A the ordered set containing
⌈

1
C max{Ξv}

⌉
copies of the

costs of recourse sv, for all v ∈ V ′, in increasing order. Additionally include one copy of each se, e ∈ E,

in the case of preventive recourse. If the support of demand is unbounded for at least one customer, let

w ∈ V ′ be the customer with the smallest value sw among all customers with unbounded support. Now

A consists of
⌈

1
C max{Ξv}

⌉
copies of the costs of recourse sv, for all v ∈ V ′ such that sv < sw, and one

copy of se, for all e ∈ E such that se < sw, all sorted in increasing order. This is followed by infinitely

many copies of sw. Denote by αj the recourse costs at position j in the ordered set A. Then,

|A|∑
j=1

αjP

(∑
v∈V ′

Dv > C(j +m− 1)

)
(15)

is a lower bound on the expected costs of recourse for the following reason. Since we assume indepen-

dently distributed demand, the number of preventive and corrective return trips would be smallest if all

customers would be assigned to a single route. Incurring a lower bound αj on the costs of recourse for

every j-th return trip in excess of m − 1 with the probability that j +m − 1 return trips are required,

gives a lower bound on the expected costs of recourse. Observe that if the largest demand realization

does not exceed the vehicle capacity, i.e., the demand has bounded support and max{Ξv} ≤ C, for all

customers v ∈ V ′, this lower bound coincides with that of Louveaux and Salazar-González (2018).

Finally, there is a more recent lower bound on the expected costs of recourse that requires attention,

introduced by Salavati-Khoshghalb et al. (2019a) for the VRPSD with preventive recourse. The presen-

tation of this lower bound as found in their paper seems to contain a mistake, which is easily rectified.

Moreover, we improve on their bound. Unfortunately, we conclude that even the improved version is

weaker than the trivial lower bound 0 for all tested instances. Therefore, we do not use this bound

in our implementation of the integer L-shaped method. The details of this discussion can be found in

Appendix B. Note that the lower bound of Salavati-Khoshghalb et al. (2019a) relies on so-called partial

routes, which we describe in Section 5.

We summarize the lower bounds on the expected costs of recourse which we use in our implementation

of the integer L-shaped method. i) For the Basic-VRPSD, we use the trivial lower bound 0. ii) For the

VRPSD with classical recourse and normally or Poisson distributed demand, we use the largest of the

lower bounds by Laporte et al. (2002) and (15). iii) For the VRPSD with classical recourse and demand

that is not normally or Poisson distributed, and for the VRPSD with preventive recourse, we use (15).

5 Partial route inequalities

Partial routes are a generalization of routes, and are used to construct valid inequalities for the VRPSD,

referred to as partial route inequalities. They were first introduced in Hjorring and Holt (1999) for the

single-vehicle VRPSD. Laporte et al. (2002) used them in the multi-vehicle VRPSD. Furthermore, Jabali

et al. (2014) extended the definition of partial routes by introducing new types, resulting in so-called

generalized partial routes.

In Section 5.1, for ease of writing we first introduce an alternative definition of the generalized partial

routes of Jabali et al. (2014). Next, we present lower bounds on the expected costs of recourse for partial

routes in Section 5.2. We present the lower bound of Laporte et al. (2002) for classical recourse, which

we use in this paper, and introduce new lower bounds for preventive recourse which improve on those

by Salavati-Khoshghalb et al. (2019a) and Louveaux and Salazar-González (2018). In Section 5.3, we

present the partial route inequalities introduced by Laporte et al. (2002) for the VRPSD, and note how

they can be used for the Basic-VRPSD. The partial route inequalities can be considered a framework
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for valid inequalities, which make use of lower bounds for partial routes as discussed in Section 5.2, and

partial route activation functions which we describe in Section 5.3. We discuss a mistake in both the

partial route activation functions introduced by Laporte et al. (2002) and introduced by Jabali et al.

(2014), and suggest a new and improved partial route activation function. In Section 5.4, we describe

our algorithm for separating partial route inequalities.

5.1 Partial route

A partial route reflects a partial ordering of customers on a route. A set of customers is grouped into

disjoint subsets, and these subsets are ordered. The ordering of the customers within one subset is not

fixed, while all customers in a preceding subset should be visited before all customers in subsequent

subsets. To be precise, an ordered set h = (U0, . . . , Ub) of subsets of V , with b ≥ 2, is a partial route if

and only if: i) the first and last subset consists only of the depot, i.e., U0 = Ub = {0}, and the depot is

not included in any other subset, ii) all subsets are disjoint except the first and last, i.e., Ui ∩ Uj = ∅,
for all 0 ≤ i ̸= j < b, and iii) every subset containing strictly more than one customer is immediately

preceded and succeeded by a singleton, i.e., |Ui| > 1 =⇒ |Ui−1| = |Ui+1| = 1 for all i ∈ {1, . . . , b− 1}.
A subset with strictly more than one customer, which is part of a partial route, is referred to as an

unstructured component.

We use the term partial route, even though our definition is equivalent to the definition of a generalized

partial route by Jabali et al. (2014). It is a generalization of a partial route as defined by Hjorring and

Holt (1999), which contains at most one unstructured component. We stick to the term partial route for

ease of writing, and note that the generalized partial route could be generalized even further, by omitting

condition iii), i.e., allowing unstructured components to succeed each other directly. We do not pursue

the further generalized version in this paper.

Any route that visits all customers of the partial route, in the order prescribed by that partial

route, is said to adhere to the partial route. Note that a single route adheres to a partial route, and

not others, if and only if the partial route imposes a complete ordering, i.e. if |Uk| = 1 for all k ∈
{1, . . . , b−1}. Otherwise, multiple routes adhere to a single partial route. For example, the partial route

({0}, {1, 2}, {3}, {4, 5}, {0}) has four routes adhering to it, namely (0, 1, 2, 3, 4, 5, 0), (0, 1, 2, 3, 5, 4, 0),

(0, 2, 1, 3, 4, 5, 0) and (0, 2, 1, 3, 5, 4, 0).

5.2 Lower bounds for partial routes

The expected costs of recourse decomposes per route r, which we denoted by min{Q1
r, Q

2
r} in (8). Let

Rh be the set of all routes adhering to partial route h. The value Ph is a lower bound for partial route h,

if Ph ≤ min{Q1
r, Q

2
r} for all r ∈ Rh. These lower bounds will be of later use to define valid inequalities.

Clearly, the best possible bound is minr∈Rh
{min{Q1

r, Q
2
r}}. However, it is not clear how to compute

this bound efficiently, since there are
∑b−1

k=1 |Uk|! routes in Rh. Therefore, we rely on weaker bounds.

In Section 5.2.1, we repeat the lower bound P class
h for a partial route h found in Laporte et al. (2002)

for the case of classical recourse. In Sections 5.2.2 and 5.2.3, we introduce the new lower bounds P prevI
h

and P prevII
h for a partial route h in the case of preventive recourse, which are improved versions of the

bounds by Salavati-Khoshghalb et al. (2019a) and Louveaux and Salazar-González (2018), respectively.

These lower bounds are computed by modifying the dynamic program used to compute the expected

costs of recourse, as found in Section 2.4, by replacing exact computations for a single route with various

lower bounds for all routes adhering to partial route h. In Section 5.2.4, we demonstrate how the results

of Sections 5.2.2 and 5.2.3 are merged into a single dynamic program, resulting in a third and strongest

lower bound P prevIII
h for a partial route h in the case of preventive recourse.
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5.2.1 Lower bound for partial routes with classical recourse

The main idea of the lower bound for a partial route in the case of classical recourse by Laporte et al.

(2002) is as follows. Given a partial route h, any set U ∈ h, and in particular an unstructured component,

can be seen as a large customer with demand
∑

v∈U Dv, to which we associate the best-case corrective

recourse costs minv∈U{sv}. The expected costs of recourse of the route consisting of these large customers

in the order of the partial route, provides the following lower bound on the expected costs of recourse

for any route adhering to the partial route in one orientation:

P class
h1 =

b−1∑
k=1

min
v∈Uk

{sv}
∞∑

m=1

P

 ∑
u∈

⋃k−1
l=1 Ul

Du ≤ mC,
∑

u∈
⋃k

l=1 Ul

Du > mC

 . (16)

Observe that this is a lower bound because the costs minv∈Uk
{sv} of each individual recourse action

is smaller than or equal to the actual costs. Reversing the order of the customers in (16) provides a

lower bound P class
h2 for the routes in the other orientation. Combining these values provides the lower

bound P class
h = min{P class

h1 , P class
h2 } for partial route h. Note that if a partial route has only a single route

adhering to it, then the lower bound on the partial route is exactly the expected costs of recourse of that

route.

5.2.2 First lower bound for partial routes with preventive recourse

Next, we consider the case of preventive recourse. In Section 2, we presented a dynamic programming

algorithm to compute the expected costs of recourse corresponding to a route. We adjust this algorithm

to compute a lower bound for a partial route. In particular, we first show how Salavati-Khoshghalb et al.

(2019a) do this, and then show how this can be improved. For conciseness, we introduce some additional

notation and use it rewrite the original dynamic program, as well as present the adjusted version. We

capture part of the recursive relation (9) in the following function

Fv(f, q) =
∑
ξ∈Ξv

P(Dv = ξ) [Γ(ξ − q)sv + f(CΓ(ξ − q) + q − ξ)] ,

for v ∈ V , f : {0, . . . , C} → R≥0, q ∈ {0, . . . , C}. Here, we can interpret Fv(f, q) as the expected costs of

corrective recourse when arriving at customer v with q load remaining in the vehicle and f some function

representing future expected recourse costs after serving customer v. Using this shorthand notation, the

recursive definition of f∗
j (q) in (9) corresponding with a route (0 = v(0), v(1), . . . , v(p), v(p+1) = 0) can

be written down more concisely for each j ∈ {0, . . . , p} as

f∗
j (q) = min{s(v(j),v(j+1)) + Fv(j+1)(f

∗
j+1, C), Fv(j+1)(f

∗
j+1, q)}.

Given a partial route h = (U0, . . . , Ub), we use our shorthand notation to represent the lower bound for

the partial route h of Salavati-Khoshghalb et al. (2019a). Define fS
j (q) as a lower bound on the expected

costs of recourse after serving a customer at the j-th position on a route adhering to h. It is crucial

to observe that while in f∗
j the index j ∈ V represents a customer, the ordering of the customers is in

general not fixed on a partial route, and therefore the index j of fS
j refers to a position on a route rather

than an explicit customer. Let U(j) be the set of customers that can appear on position j of a route

adhering to partial route h. The recursive relation of Salavati-Khoshghalb et al. (2019a) to compute

fS
j (q) can be written as

fS
j (q) = min

u∈U(j)
min

v∈U(j+1):v ̸=u
min{s(u,v) + Fv(f

S
j+1, C), Fv(f

S
j+1, q)}.
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The lower bound on the expected costs of recourse of any route adhering to the partial route h in one

orientation is given by fS
0 (C). By also considering the reversed orientation and taking the smallest value

of the two orientations, we obtain the lower bound for the partial route of Salavati-Khoshghalb et al.

(2019a).

We improve on the lower bound by Salavati-Khoshghalb et al. (2019a) as follows. Define f I
uj(q) as a

lower bound on the expected costs of recourse after serving customer u ∈ V on the j-th position on a

route adhering to h. The difference with fS
j , is that we now specify which customer is served at position

j. The recursive relation to compute f I
uj(q) is

f I
uj(q) = min

v∈U(j+1):v ̸=u
min{s(u,v) + Fv(f

I
v,j+1, C), Fv(f

I
v,j+1, q)}.

The lower bound P prevI
h for the partial route h is now obtained from f I

00(C), taking care of both orien-

tations. Observe that any straightforward implementation of the dynamic programs results in the same

number of computations for our new bound and the bound by Salavati-Khoshghalb et al. (2019a), while

our new lower bound is stronger. Indeed, it immediately follows that our new lower bound is greater

or equal to that of Salavati-Khoshghalb et al. (2019a). To demonstrate that it can be strictly greater,

consider the following small example. Let h = ({0}, {1, 2}, {0}) be a partial route, the travel costs are

c(0,1) = c(1,2) = 1, c(0,2) = 2, the demands are D1 = 1 and D2 = 2 with probability one, and the vehicle

capacity is C = 2. There are two routes adhering to partial route h, and the smallest expected costs

of recourse among these routes is 2. The lower bound of Salavati-Khoshghalb et al. (2019a) is 0, and

our new bound P prevI
h is 2. In this case the new bound P prevI

h is the best possible bound, while the

nonnegative bound of Salavati-Khoshghalb et al. (2019a) is the worst possible. Note that this example

is easily extended to larger partial routes, and to satisfy the expected capacity constraint.

5.2.3 Second lower bound for partial routes with preventive recourse

Next, we focus our attention to Louveaux and Salazar-González (2018), who present five different propo-

sitions for computing lower bounds for a partial route. The first four propositions all work for arbi-

trary independent demand distributions, whereas the last one is specialised for independent identically

distributed random variables. Note that this last proposition coincides with the bound of Salavati-

Khoshghalb et al. (2019a) when all demands are identically distributed. This was addressed in Sec-

tion 5.2.2, so we do not discuss this proposition further. The results presented in the remaining four

propositions of Louveaux and Salazar-González (2018) can be expressed as a dynamic program which

uses a recursive function fL
k (q), for k ∈ {0, . . . , b} and q ∈ {0, . . . , C}, to provide a lower bound for a

partial route, which we show next. Then, we show how the corresponding lower bounds for a partial

route is improved.

We use the shorthand notation s(U) = minv∈U{su} for the cheapest corrective recourse action among

the customers in set U ⊆ V ′, and we similarly use s(U, T ) = minu∈U,v∈T,u ̸=v{s(u,v)} for the cheapest

preventive return trip between a customer in U ⊆ V ′ and T ⊆ V ′. Here, we define s({u}, {u}) = +∞.

Let s̄(U) = min{s(U), s(U,U)}.
Consider the partial route h = (U0, . . . , Ub). We introduce the functions fL1

k (q), fL2
k (q), fL3

k (q) and

fL4
k (q) which represent lower bounds on the expected future costs of recourse on a route that adheres

to h, for k ∈ {0, . . . , b}. In particular this future costs is that which follows after having served all

customers in Uk, so not including the expected costs of recourse for serving customers in U1 through Uk.

Note that the index k of these functions now indicates a position of a set of customers on the partial

route, which contrasts the dynamic program in Section 5.2.2 where the index represents a position of a

customer on a route. Each of these functions corresponds to one of the four propositions of Louveaux
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and Salazar-González (2018) mentioned before.

fL1
k (q) =


s̄(U1)P

(∑
v∈U1

Dv > C

)
if k = 0, q = C, |U1| > 1,

0 otherwise.

fL2
k (q) =


min

s(Uk, Uk+1), s̄(Uk+1)P

 ∑
v∈Uk+1

Dv > q

 if |Uk+1| > 1,

0 otherwise.

fL3
k (q) =



min

s(Uk, Uk+1), s(Uk+1)

1−
∏

v∈Uk+1

P(Dv ≤ q)


if |Uk+1| > 1, s(Uk+1, Uk+1) ≥ s(Uk+1)

1−

∏
v∈Uk+1

P(Dv ≤ q)

max
v∈Uk+1

{P(Dv ≤ q)}

,

0 otherwise.

fL4
k (q) =



min {s(Uk, Uk+1), s̄(Uk+1)}

if |Uk+1| > 1, Uk+2 = {u′},

min


s(Uk+1, Uk+2),

q′∑
ξ=0

P(Du′ = ξ)fL
k+2(q

′ − ξ) + su′P(Du′ > q′)

 ≥ s̄(Uk+1), ∀q′ ≤ q

0 otherwise.

We note that the third requirement of fL4
k (q) slightly differs from that of Louveaux and Salazar-González

(2018), where it is only needed that it holds for q itself, not for all q′ ≤ q. However, in their proof of

this proposition, they use the fact that the optimal expected recourse function f∗
j (q) is decreasing in q,

which is only true when the triangle inequality is assumed on the travel costs (Yang et al., 2000). As

both Louveaux and Salazar-González (2018) and our research do not explicitly assume this, we opted

to modify the requirement to hold for all q′ ≤ q, which alleviates the need of assuming the triangle

inequality.

In addition to the four functions introduced above, we introduce the function fL5
k (q) which recursively

provides a lower bound on the future expected costs of recourse, for the specific case that |Uk| = 1 and

|Uk+1| = 1, which is not covered by fL1
k (q), fL2

k (q), fL3
k (q) and fL4

k (q). The recursion is similar to that

provided in Section 5.2.2.

fL5
k (q) =

{
min{s(u,v) + Fv(f

L
k+1, C), Fv(f

L
k+1, q)} if Uk = {u}, Uk+1 = {v},

0 otherwise.

Using these functions, we now define fL
k (q), which provides a lower bound that follows from the four

mentioned propositions of Louveaux and Salazar-González (2018), as

fL
k (q) = max

{
fL1
k (q), fL2

k (q), fL3
k (q), fL4

k (q), fL5
k (q)

}
.

The bound is initialized as fL
b (q) = 0 for all q ∈ {0, . . . , C}. A lower bound for the partial route h is

obtained from fL
0 (C), taking care of both orientations.

Recall that an unstructured component of a partial route h is a set U ∈ h such that |U | > 1. A

careful investigation of the above lower bound, reveals that, roughly stated, only the costs of recourse of
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the customers from the first until those in the first unstructured component are considered. Only with

fL4
k can additional customers be considered. This may result in a severe underestimation of the actual

expected costs of recourse for routes with multiple unstructured components. Next, we present a new

lower bound for partial routes with preventive recourse, which does not suffer from this.

Like before, we first introduce a shorthand notation. It is similar to Fv(f, q) introduced in Sec-

tion 5.2.2, but now for sets of customers U acting as an aggregated customer in the recursion. That

is,

FU (f, q) =



Fu(f, q) if |U | = {u},

max



∑
ξ∈ΞU

P
(∑

v∈U

Dv = ξ

)
[Γ(ξ − q)s̄(U) +H(f, s̄(U), CΓ(ξ − q) + q − ξ)] ,

min


s(U)

(
1−

∏
v∈U

P(Dv ≤ q)

)
,

s(U)

[
1−max

v∈U
P(Dv ≤ q)

]
+ s(U,U)max

v∈U
P(Dv ≤ q)

+ min
q∈{0,...,C}

f(q)


if |U | > 1,

for U ⊆ V ′, f : {0, . . . , C} → R≥0, q ∈ {0, . . . , C}. In the above expression, ΞU is defined as the set of all

possible demand realizations of the random variable
∑

v∈U Dv andH(f, s, q) ≡ min{minq′∈{0,...,C} f(q
′)+

s,minq′∈{0,...,q} f(q
′)}. The function FU (f, q) can be interpreted as follows. We distinguish between i)

singletons U , in which case we use in some sense an exact value of the expected costs of future recourse,

depending on f , and ii) unstructured components U , in which case we take a maximum of two values

which provides a lower bound on the expected costs of future recourse. The first part of the maximum

can be seen as the expected costs of corrective recourse when arriving at a large customer, represented

by the set U , with demand equal to the sum over all customers in U and corrective recourse costs s̄(U),

when q load remains in the vehicle, and f is some function representing future expected recourse costs

after serving the large customer. The second part can be interpreted as the minimum of two cases in

which only one corrective recourse is allowed: i) the expected costs of corrective recourse when at least

one customer in U has a demand exceeding q, resulting in corrective recourse costs s(U), and without

additional preventive recourse, and ii) the expected costs when preventive recourse happens when the

customer in U with the highest chance of not exceeding q, does not exceed q, and corrective recourse

happens otherwise. Finally, min
q∈{0,...,C}

f(q) is added as a lower bound on the expected costs of future

recourse.

With this shorthand notation, define f II
k (q) as a lower bound on the expected costs of recourse

incurred after having served U0, . . . , Uk on a route that adheres to h with q load remaining. For q ∈
{0, . . . , C}, let f II

b (q) = 0 and for k ∈ {0, . . . , b− 1} we recursively define

f II
k (q) = min{s(Uk, Uk+1) + FUk+1

(f II
k+1, C), FUk+1

(f II
k+1, q)}.

The lower bound P prevII
h is obtained from f II

0 (C), taking care of both orientations. In Appendix C, we

prove that this indeed is a lower bound. Furthermore, we prove that the bound obtained from f II
k is

stronger than that obtained from fL
k which follows from the work of Louveaux and Salazar-González

(2018).

5.2.4 Third lower bound for partial routes with preventive recourse

We can merge the computations presented in Sections 5.2.2 and 5.2.3, to obtain a third and stronger

lower bound for partial route h in the case of preventive recourse. We apply both dynamic programs

to recursively obtain f I
uj(q) and f II

k (q). However, for any k, j and u such that Uk = U(j) = {u}, after
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having computed f I
uj and f II

k (q), we update their values as follows

f I
uj(q)← max{f I

uj(q), f
II
k (q)}

f II
k (q)← max{f I

uj(q), f
II
k (q)}.

In particular, since U0 = U(0) = {0}, we obtain f I
00(C) = f II

0 (C), which results in a stronger

bound P prevIII
h than P prevI

h and P prevII
h , after taking care of both orientations. For this reason, we

make use of P prevIII
h in our numerical experiments in case of preventive recourse. However, we prove in

Appendix D that for instances with independent identically distributed demand P prevIII
h = P prevI

h , in

which case we use P prevI
h to avoid computational overhead.

5.3 Partial route inequalities

Next, we present the partial route inequalities of Laporte et al. (2002), which are valid inequalities for

the VRPSD. They make use of partial route activation functions, which we define first. We discuss the

partial route activation function of Laporte et al. (2002) and that of Jabali et al. (2014), and point out a

mistake in both. We then suggest a new activation function, and show that this new activation function

results in stronger partial route inequalities than using the partial route activation function of Jabali

et al. (2014), for those cases that the latter is still valid.

A partial route activation function, extends the definition of a route activation function found in

Section 3 to all routes adhering to a partial route. Given a partial route h, a function with as domain the

feasible solutions x of the continuous relaxation of the Basic-VRPSD, is called a partial route activation

function of h if: i) it has the value 1 if and only if x is integer feasible and corresponds with a solution

which includes a route that adheres to h, and ii) if x is integer feasible and corresponds with a solution

which does not include any route which adheres to h, then it has a nonpositive value. Note that the

domain also includes all feasible solutions x to the continuous relaxation of the VRPSD. Therefore, this

partial route activation function can be used both in case of the Basic-VRPSD, and the VRPSD.

A partial route inequality is defined for every set H of partial routes, such that no customer occurs

on more than one partial route. In case of the VRPSD, H cannot contain more than m partial routes.

We say that a solution adheres to H, if the solution contains a route that adheres to h for all h ∈ H.

Let Wh be a linear partial route activation function for each partial route h ∈ H. Let L be a lower

bound on the expected costs of recourse, as discussed in Section 4. Moreover, let P (H) be a lower bound

on the expected costs of recourse for all solutions that adhere to H. We require P (H) > L, otherwise

nothing will be gained by imposing a partial route inequality. Similar to Laporte et al. (2002), we use

P (H) =
∑

h∈H Ph + L(H), where Ph is a lower bound for partial route h as discussed in Section 5.2

and L(H) is defined as follows. In case of the VRPSD, L(H) is a lower bound on the expected costs of

recourse as described in Section 4, for an instance which includes all customers V ′ that are not included

on any of the partial routes h ∈ H, and with m− |H| vehicles. In case of the Basic-VRPSD, we choose

L(H) = 0. The partial route inequality for an appropriate set of partial routes H is

θ ≥ L+ (P (H)− L)

(∑
h∈H

Wh(x)− (|H| − 1)

)
. (17)

Observe that if a feasible integer solution x adheres to H, the partial route inequality evaluates to

θ ≥ P (H). Otherwise, the partial route inequality is not stronger than θ ≥ L. The strength of the

partial route inequality depends on the choice of L, P (H) and Wh. We turn our attention to the partial

route activation functions Wh.

In the paper by Laporte et al. (2002), only partial routes are considered which have at most one
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unstructured component, and the partial route activation function is defined accordingly. However, this

partial route activation function is incorrect, which is observed by Jabali et al. (2014), who write: “we

show that contrary to what was presented in Proposition 2 of Laporte et al. ..., our definition ... is always

valid.” In Appendix E, we provide an explicit example to substantiate this claim. Next, we present the

partial route activation function W J
h used by Jabali et al. (2014) Denote by δ(S, T ), for S, T ⊆ V ′ such

that S ∩ T = ∅, the set of edges between the sets S and T . Consider the partial route h = (U0, . . . , Ub).

The partial route activation function can be written as

W J
h (x) =


b−1∑
k=1

3

( ∑
e∈E(Uk)

xe − (|Uk| − 1)

)
+

( ∑
e∈δ(U0,U1)

xe − 1

)
, if b = 2.

b−1∑
k=1

3

( ∑
e∈E(Uk)

xe − (|Uk| − 1)

)
+

b−1∑
k=0

βJ
k

( ∑
e∈δ(Uk,Uk+1)

xe − 1

)
+ 1 , if b ≥ 3,

where βJ
k is 1 for k = 0 and k = b− 1, and it is 3 otherwise.

However, also W J
h is not a partial route activation function for all partial routes h. Consider the

partial route h = ({0}, {1, 2, 3}, {4}, {0}). The partial route activation function is WL
h (x) = 3x(1,2) +

3x(1,3)+3x(2,3)+x(0,1)+x(0,2)+x(0,3)+3x(1,4)+3x(2,4)+3x(3,4)+x(0,4)−10. A solution x corresponding

with the route (0, 1, 2, 4, 3, 0) which does not adhere to h, results in WL
h (x) = 1. Note that in a private

communication with Ola Jabali, she confirmed that the algorithm used in the paper by Jabali et al.

(2014) would erroneously separate the partial route inequality corresponding to the above incorrect

partial route activation function. We remark that the problem with W J
h only arises when b = 3, which

corresponds to the partial route (U0, U1, U2, U3), where either U1 or U2, but not both, is an unstructured

component. We believe the proof found in the paper by Jabali et al. (2014) is correct for all partial

routes h = (U0, . . . , Ub) such that b ̸= 3, in which cases W J
h is a valid partial route activation function.

Next we present a new partial route activation function, for all partial routes, which results in stronger

partial route inequalities than those using the partial activation function of Jabali et al. (2014), for the

cases that the latter is correct. Our partial route activation function Wh is

Wh(x) =

b−1∑
k=1

αk

 ∑
e∈E(Uk)

xe − (|Uk| − 1)

+

b−1∑
k=0

βk

 ∑
e∈δ(Uk,Uk+1)

xe − 1

+ γ (18)

where the coefficients are defined as follows

(α1, . . . , αb−1) =



(3) if b = 2,

(4, 4) if b = 3,

(3, 2, 3) if b = 4,

(3, 2, 1, . . . , 1, 2, 3) if b ≥ 5,

(β0, . . . , βb−1) =


(1, 0) if b = 2,

(1, 3, 1) if b = 3,

(1, 2, 1, . . . , 1, 2, 1) if b ≥ 4,

γ =

{
0 if b = 2,

1 if b ≥ 3.

In Appendix F, we prove that Wh is a partial route activation function. Observe that this partial

route activation function Wh is identical to W J
h by Jabali et al. (2014) for b = 2, and recall that

for b = 3, W J
h is not correct. For b ≥ 4, using Wh instead of W J

h yields a stronger partial route

18



inequality. By stronger we mean that any solution to the continuous relaxation of the Basic-VRPSD

which satisfies the partial route inequalities using Wh, also satisfies the partial route inequalities using

W J
h (x). We prove this, by showing in Appendix G that Wh(x) ≥W J

h (x) for all such solutions x, and all

partial routes h. Because P (H) − L ≥ 0 it follows that L + (P (H)− L)
(∑

h∈H Wh(x)− (|H| − 1)
)
≥

L+(P (H)− L)
(∑

h∈H W J
h (x)− (|H| − 1)

)
for all solutions x to the continuous relaxation of the Basic-

VRPSD. To demonstrate that Wh(x) and W J
h (x) are not equal, consider the following example. Let

h = ({0}, {1}, {2}, {3, 4}, {0}), and consider a solution x̂ to the continuous relaxation of the Basic-

VRPSD, such that x̂(0,1) = x̂(2,3) = x̂(3,4) = 1, x̂(1,3) = x̂(0,4) = 3
4 and x̂(1,4) = x̂(0,2) = 1

4 . It follows

that Wh(x̂) = 3
4 and W J

h (x̂) = 0, such that Wh(x̂) > W J
h (x̂). Since the solutions to the continuous

relaxation of the VRPSD are a subset of those of the Basic-VRPSD, this result immediately extends

to the VRPSD. We conclude that using the improved partial route inequalities, results in stronger

relaxations, as illustrated by the results of our numerical experiments in Section 7.

5.4 Separation of partial routes

In our implementation of the integer L-shaped method, we initially do not include any partial route

inequalities. Whenever a fractional solution is found, we look for violated partial route inequalities using

a separation algorithm. If such a violated inequality is found, we add it to the formulation. Next, we

describe our separation algorithm.

We use the following heuristic. Let G(x) be a subgraph of G corresponding with the solution x,

including only those edges that have been selected with a positive value, and which do not connect to the

depot. We use a depth-first procedure attributed to Hopcroft and Tarjan (1973) to identify all connected

components of G(x), which act as our candidates for partial routes. An appropriate implementation of

this algorithm also immediately provides all articulation points. An articulation point is a vertex whose

removal would split up a connected component in multiple connected components. They act as singletons

in between unstructured components on the partial routes. For each connected component with a total

flow to the depot of exactly two, we introduce a partial route. All other connected components are

disregarded. If a connected component includes a vertex v ∈ V ′ with integer flow to the depot in G, i.e.,

x(0,v) is integer, then {i} is the first or last set in the corresponding partial route. In the appropriate

order, a singleton corresponding to each articulation point of the connected component is added to the

partial route, as well as the sets of vertices in between two articulation points which are added as an

unstructured component. The result is a collection of partial routes, for which the partial route inequality

is checked. The separation procedure runs in O(|E|).

6 Route-split inequalities

For both classical and preventive recourse, the recourse function Q(x) can be split over the routes. This

insight allows us to introduce new valid inequalities. We split the value of θ, distribute these values over

multiple routes, and introduce lower bounds on these split values. We introduce route-split inequalities

in Section 6.1, which are valid inequalities which could also be used as optimality cuts in the integer

L-shaped method instead of those introduced in Section 3. Furthermore, we introduce partial route-split

inequalities in Section 6.3, and multi-route-split inequalities in Section 6.3.

6.1 Route-split inequalities

Instead of only using a single variable θ in the integer L-shaped method, representing the expected costs

of recourse, we introduce nonnegative variables θv, for v ∈ V ′, which act as the expected costs of recourse
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per route. In the formulation we link these variables θv to routes. We introduce |V ′| of them, one for

each customer, simply to have a sufficient amount of variables. The amount |V ′| is sufficient, because a

solution consists of at most |V ′| routes. We add the constraint∑
v∈V ′

θv = θ, (19)

to the formulation. The following are valid inequalities

θv(r) ≥ min{Q1
r, Q

2
r}Wr(x) (20)

for all feasible routes r, which we refer to as route-split inequalities. Here, v(r) ∈ V is the customer

with the lowest index that is visited by r. For example, if r = (0, 4, 5, 2, 7, 0) then v(r) = 2. The

function Wr(x) is a route activation function of r as defined in Section 3. Note that, technically, we

had defined the domain of Wr(x) as the set of feasible solutions to the continuous relaxation of the

Basic-VRPSD. Because the feasible space of the continuous relaxation of the VRPSD is included in that

of the Basic-VRPSD, the route-split inequalities (20) are also valid inequalities for the VRPSD.

We separate the route-split inequalities by direct verification, whenever the integer L-shaped method

finds an integer solution. Note that when adding route-split inequalities until none are violated anymore,

it is not necessary to add the optimality cuts (12), or (14). Indeed, for an integer solution x̂ which does

not violate the route-split inequalities (20) for any route, it follows from (19), the definition of the

expected costs of recourse reflected in (8), and because Wr is a route activation function for r, that

θ = Q(x̂). Nonetheless, it can be beneficial computationally to also add the optimality cuts, which

are added simultaneously with violated routes-split inequalities. This can be seen in the results of our

numerical experiments of Section 7.

6.2 Partial route-split inequalities

Just like the total expected costs of recourse can be split over routes, we can split a lower bound on the

expected costs of recourse over partial routes. We impose a lower bound Ph for partial route h using the

partial route activation function Wh. Observe that

θv(h) ≥ PhWh(x) (21)

is a valid inequality for both the VRPSD and the Basic-VRPSD. Similar to before, we denote by v(h) ∈
V the customer with the lowest index in the partial route h. We refer to (21) as partial route-split

inequalities, and separate them with the same separation procedure as used for partial route inequalites,

as described in Section 5.4.

Consider a partial route inequality (17) for an appropriate set of partial routes H. For the Basic-

VRPSD, we have chosen the lower bounds L = 0 and L(H) = 0. Any solution to the continuous

relaxation of the Basic-VRPSD which satisfies the partial route-split inequalities (21) for all h ∈ H,

also satisfies the partial route inequality for H. Because the reverse is not true, it is computationally

advantageous to include partial route-split inequalities instead of partial route inequalities. For the

VRPSD, the same behavior can be expected for small values of L and L(H). However, if L and L(H)

are sufficiently large then the addition of partial route inequalities could result in stronger bounds of the

continuous relaxation, which we have observed for specific instances of the VRPSD. Hence, it could be

beneficial to add both types of inequalities, as can be seen from the results of our numerical experiments

of Section 7.
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6.3 Multi-route-split inequalities

The valid inequalities specific to the Basic-VRPSD and VRPSD, discussed in this paper so far, use

activation functions that are active for a single route at a time. Roughly stated, when a solution to the

continuous relaxation is such that individual routes are not easily distinguished, the performance of these

valid inequalities is limited. Consider for example an instance which includes customers 1, 2, 3 and 4,

with a solution such that x(0,1) = x(0,2) = x(0,3) = x(0,4) = 1 and x(1,2) = x(2,3) = x(3,4) = x(1,4) = 0.5.

For this case, it is easily verified, although laboriously, that for all routes r including only customers

from {1, 2, 3, 4} the route activation function is nonpositive, i.e., Wr(x) ≤ 0, and that for all partial

routes h including only customers from {1, 2, 3, 4} the partial route activation function is nonpositive,

i.e. Wh(x) ≤ 0. Next, we introduce a new type of activation function, which is active for groups

of customers for which multiple routes are required which are not easily distinguished. We use this

activation function to introduce new valid inequalities for the Basic-VRPSD and VRPSD.

Given a subset of customers S ⊆ V ′ and an integer k, a function with as domain the feasible solu-

tions x of the continuous relaxation of the Basic-VRPSD, which includes the solutions of the continuous

relaxation of the VRPSD, is called a k-routes activation function of S if for every feasible integer solu-

tion x in which the customers in S exclusively appear on m′ ≤ k different routes, i.e., no other customers

appear on these routes, the function has the value k −m′ + 1, and it has a nonpositive value otherwise.

Observe that a k-routes activation function of S has the value 1 if precisely k routes are used to exclu-

sively visit all customers in S, 2 if k − 1 routes are used, etc. But the function is nonpositive if strictly

more than k routes are used, or at least one other customer which is not in S appears on one of the

routes.

Next, we provide a k-routes activation function. Let m(S) be a lower bound on the number of routes

which are needed to feasibly serve all customers in S ⊆ V ′. In case of the Basic-VRPSD, we use m(S) = 1

for all S ⊆ V ′, and for the VRPSD we use
⌈

1
C

∑
i∈S µi

⌉
. For S ⊆ V ′ and integer m(S) ≤ k ≤ m, consider

the k-routes activation function

W(S,k)(x) = (k −m(S) + 1)
∑

e∈δ({0},S)

xe + (2(k −m(S)) + 3)
∑

e∈E(S)

xe − (2(k −m(S)) + 3)|S|+ k + 1.

(22)

We prove in Appendix H that W(S,k) is a k-routes activation function. Note that for m(S) = k = 1, the

function W(S,k)(x) reduces to the partial route activation function Wh(x) for h = ({0}, S, {0}).
Before we are ready to define our new valid inequalities, we first also define additional lower bounds

on the expected costs of recourse corresponding with S and k. Given an instance of the Basic-VRPSD,

or VRPSD depending on the case, for S ⊆ V ′ and integer j, we denote by L(S, j) a lower bound on

the expected costs of recourse of an induced instance corresponding with only customers S and in which

precisely j routes must be used. Observe that in case of the Basic-VRPSD this induced instance is not

an instance of the Basic-VRPSD but of the FR-VRPSD, because now a constraint on the number of

routes is additionally imposed. If the induced instance is infeasible, then L(S, j) =∞. Finally, note that

we require that L(S, j) is nonnegative.

We use these lower bounds L(S, j) to define new valid inequalities. The lower bounds described in

Section 4 can be used to obtain values of L(S, j), by applying them to the induced instance. In particular,

we use (15) of Louveaux and Salazar-González (2018) for the VRPSD. Preliminary experiments with our

implementation of the lower bounds of Laporte et al. (2002), showed that they are not strong enough

and computationally too demanding to be of benefit in many instances.

21



For S ⊆ V ′ and integer k, define

L̄(S, k) = min
j∈{m(S),...,k}

{
1

k − j + 1
L(S, j).

}
The multi-route-split inequality for S ⊆ V ′ and integer k, is∑

i∈S

θi ≥ L̄(S, k)W(S,k)(x). (23)

The multi-route split inequalities are valid inequalities for the following reason. Whenever a feasible

integer solution corresponds to the use of m′ routes to visit all customers in S, for m′ ≤ k, the k-route

activation function has the value W(S,k)(x) = k − m′ + 1. Observe that L̄(S, k) ≤ 1
k−m′+1L(S,m

′),

which implies L̄(S, k)W(S,k)(x) ≤ L(S,m′), and therefore L̄(S, k)W(S,k)(x) is a lower bound on the

expected costs of recourse to visit all customers in S. Otherwise, W(S,k)(x) is nonpositive, and because

we require L̄(S, k) to be nonnegative, the value L̄(S, k)W(S,k)(x) is nonpositive and is trivially a lower

bound on the expected costs of recourse to visit all customers in S.

We also separate the multi-route-split inequalities with the same separation procedure as used for

partial route inequalites, as described in Section 5.4. Every identified connected component, with vertices

S, acts as a candidate for a violated multi-route-split inequality if the flow to the depot is strictly larger

than 2, i.e.,
∑

e∈δ({0},S) xe > 2. In this case, we choose k =
⌈
1
2

∑
e∈δ({0},S) xe

⌉
and verify whether the

multi-route split inequality for S and k is violated.

7 Numerical results

In this section, we provide the results of our numerical experiments. In Section 7.1, we illustrate the

performance of our integer L-shaped method on instances of the VRPSD with classical recourse. We

compare the performance of our integer L-shaped method with that of Jabali et al. (2014), which we

consider the current best integer L-shaped method for the VRPSD with classical recourse. In Section 7.2,

we discuss results for the VRPSD with preventive recourse. In this case, we compare with the algorithm

of Louveaux and Salazar-González (2018), which we consider the current best integer L-shaped method

for the VRPSD with preventive recourse. We also compare with the algorithm of Florio et al. (2020),

which we consider the best branch-price-and-cut algorithm for the VRPSD with preventive recourse.

Finally, in Section 7.3 we compare the solution values and computation times obtained when solving

instances of the VRPSD, FR-VRPSD and the Basic-VRPSD. This provides empirical insight on the

effect of using a fixed number of vehicles and using the expected capacity constraints.

There are various configurations of our integer L-shaped method: i) with or without partial route

inequalities, ii) with or without partial route-split inequalities, iii) with or without multi-route-split

inequalities, and iv) with the standard optimality cuts, the route-split inequalities, or both. Note that

by standard optimality cuts, we refer to (12) in case of the VRPSD and FR-VRPSD and (14) in case of

the Basic-VRPSD. This yields 24 configurations in total. We have tested all configurations in preliminary

experiments on 270 benchmark instances from Jabali et al. (2014), and have selected three configurations

for their effectiveness, which we refer to as RS, PRS and P+MRS. They all use the standard optimality cuts.

Additionally RS includes the route-split and partial route inequalities, PRS includes the route-split and

partial route-split inequalities, and P+MRS includes the route split, partial route-split and multi-route-split

inequalities. For benchmarking purposes, we also include the configuration which we refer to as BM. This

configuration only includes the standard optimality cuts and partial route inequalities, and resembles

the integer L-shaped methods from the literature enhanced by stronger lower bounds on the expected
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costs of recourse and stronger lower bounds for partial routes. It allows us to illustrate the contribution

of the novel inequalities of Section 6 to the performance of the integer L-shaped method.

In our experiments, we encounter the normal, discrete triangular and Poisson distributions for de-

mand. In case of the normal distribution, we apply a numerical method to evaluate the expected costs

of recourse with an accuracy of at least two decimal places. For the discrete triangular distribution, the

computations are exact, up to machine precision. For the Poisson distribution, our computations resem-

ble those of Florio et al. (2020). That is, we disregard demand realizations with a probability of 10−6

or less, and normalize the probabilities of all other realizations. This effectively results in a truncated

Poisson distribution. Note that Florio et al. (2020) uses an accuracy parameter of 10−5 instead of 10−6,

and we comment on this difference in Section 7.2.

Our algorithm is coded in C++ and run on a Windows 10 computer with an Intel Xeon W-2123

3.6GHz processor and 16GB of RAM. The maximum allotted runtime is one hour per instance. All

algorithms are run on a single thread and the branch-and-cut algorithm was built using CPLEX version

20.1 using generic callbacks.

7.1 Classical recourse

In this section, we compare the performance of our integer L-shaped method to the integer L-shaped

method of Jabali et al. (2014) on the VRPSD with classical recourse. We perform this comparison on the

instances used by Jabali et al. (2014). Details on these instances can be found in their paper, but note

that demands follow a normal distribution with a coefficient of variation of 0.30. There are 27 instance

classes, each containing 10 instances, making a total of 270 instances. Each class is identified with the

number of customers n, the number of routes m and the average filling coefficient of f̄ ≡ 1
mC

∑
i∈V ′ µi.

Next, we present the results of applying our integer L-shaped method with the configurations BM,

RS, PRS and P+MRS to these instances. We also report the results obtained by the integer L-shaped

method of Jabali et al. (2014) for these instances. To account for a potential difference in computing

power and a different quality of implementation, and to overcome any effects of the use of the incorrect

partial route activation function, we additionally apply our own implementation of their integer L-shaped

method which we refer to as Jab. This is a modified version of the BM configuration of our integer L-

shaped method, in which we use the activation function W J
h (x) of Jabali et al. (2014) instead of our

function Wh(x) with improved coefficients, except for the case where W J
h (x) is incorrect as explained

in Section 5.3. Note that Jab does include the stronger lower bounds on the expected costs of recourse

which we present in this paper.

In Table 2, we show the number of instances that are solved to optimality per class of instance.

In the first three columns, we report for each class of 10 instances, the number of customers n, the

number of vehicles m, and the filling coefficient f̄ , respectively. In the column with header ‘Jabali et al.

(2014)’, we provide the number of instances that were solved to optimality, as reported by Jabali et al.

(2014), allowing a runtime of five hours per instance. In the remaining five columns, we report the

number of instances solved to optimality within one hour for the configurations Jab, BM, RS, PRS and

P+MRS, respectively. In Table 3, we similarly report in the columns ‘Gap’, the average optimality gaps in

percentages of the instances that have not been solved by any method, where a dash ‘—’ indicates that

all instances were solved to optimality by at least one method, and in the columns ‘Time’ we report the

average computation times in seconds of the instances that were solved by all methods.

Observe that our implementation of the algorithm of Jabali et al. (2014), Jab, is much faster than

theirs, as it can solve more than twice the number of instances, even despite allowing one hour of

computations instead of five. We find it likely that this is due to the increased computing power and

a different quality of implementation. The BM configuration, which differs from Jab only by using an
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Table 2: Number of instances of the VRPSD with classical recourse of Jabali et al. (2014) solved to
optimality per class.

n m f̄ Jabali et al. (2014) Jab BM RS PRS P+MRS

60 2 0.90 10 10 10 10 10 10
60 2 0.925 9 10 10 10 10 10
60 2 0.95 5 10 10 10 10 10
70 2 0.90 10 10 10 10 10 10
70 2 0.925 5 10 10 10 10 10
70 2 0.95 2 8 9 10 10 10
80 2 0.90 9 10 10 10 10 10
80 2 0.925 4 10 10 10 10 10
80 2 0.95 0 8 8 8 8 8
50 3 0.85 8 10 10 10 10 10
50 3 0.875 6 10 10 10 10 10
50 3 0.90 2 9 9 9 9 9
60 3 0.85 5 10 10 10 10 10
60 3 0.875 1 8 8 9 9 9
60 3 0.90 0 7 8 8 8 8
70 3 0.85 7 9 9 9 9 9
70 3 0.875 2 9 9 9 9 9
70 3 0.90 0 5 5 6 6 6
40 4 0.80 4 10 10 10 10 10
40 4 0.825 4 10 10 10 10 10
40 4 0.85 1 8 8 8 8 8
50 4 0.80 4 7 8 8 7 8
50 4 0.825 1 10 10 10 10 10
50 4 0.85 0 6 6 7 7 7
60 4 0.80 1 7 7 8 7 9
60 4 0.825 2 8 8 9 9 9
60 4 0.85 0 6 5 6 7 7

Total 102 235 237 244 243 246

improved activation function, is able to solve two more instances, has a lower average optimality gap

on the instances that were not solved by any method, and lower average computation times on the

instances that were solved by all methods. This suggests that the improved coefficients for the partial

route inequalities provide a computational advantage.

The methods RS, PRS and P+MRS solve to optimality 7, 6 and 9 instances more than BM within the

time limit of one hour. This suggest that incorporating the route-split, partial route-split and multi-

route-split inequalities, results in a faster algorithm. Moreover, the methods RS and P+MRS have lower

average computation times than BM over the instances that are solved by all methods, and RS also has a

lower average optimality gap than BM over all instances that remain unsolved by all methods.

Finally, we note that in each row of Table 2, when for one configuration we report solving more

instances than another, the former solves all instances of the latter, plus additional instances. The only

exception is for instance 60 3 0.90 2, which is solved to optimality only using the configuration BM, in

3591.06 seconds. It follows that we solved 145 previously unsolved instances to optimality, leaving 23

instances unsolved within a computation time on one hour.
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Table 3: Average optimality gap in percentages over all instances that were not solved by any method,
and average computation time in seconds over all instance that were solved by all methods, for instances
of the VRPSD with classical recourse of Jabali et al. (2014).

Jab BM RS PRS P+MRS

n m f̄ Gap Time Gap Time Gap Time Gap Time Gap Time

60 2 0.90 — 15.43 — 14.50 — 18.37 — 12.66 — 10.47
60 2 0.925 — 16.18 — 16.23 — 17.23 — 14.80 — 14.70
60 2 0.95 — 217.96 — 243.34 — 248.56 — 155.85 — 192.49
70 2 0.90 — 26.36 — 21.57 — 12.27 — 9.98 — 10.30
70 2 0.925 — 160.86 — 128.20 — 129.25 — 93.39 — 107.23
70 2 0.95 — 257.14 — 237.63 — 227.30 — 176.52 — 180.16
80 2 0.90 — 50.16 — 35.93 — 45.51 — 30.97 — 30.95
80 2 0.925 — 177.97 — 169.47 — 148.55 — 175.13 — 179.88
80 2 0.95 1.09 445.02 1.03 562.97 0.97 281.74 0.96 368.25 0.98 414.50
50 3 0.85 — 23.55 — 25.79 — 23.02 — 27.76 — 23.91
50 3 0.875 — 43.65 — 40.47 — 38.89 — 45.77 — 38.38
50 3 0.90 2.99 310.13 3.18 251.10 2.95 215.96 3.02 265.72 2.87 257.70
60 3 0.85 — 262.59 — 233.26 — 154.93 — 281.54 — 150.38
60 3 0.875 1.42 103.51 1.59 106.21 1.48 91.30 1.06 72.90 1.51 73.60
60 3 0.90 0.87 254.80 0.91 309.15 0.82 252.02 0.91 391.44 0.97 375.07
70 3 0.85 1.17 36.65 0.84 33.02 0.41 36.28 0.59 48.62 0.95 33.02
70 3 0.875 1.65 593.31 0.84 736.22 1.23 576.91 2.35 774.81 1.68 607.04
70 3 0.90 1.38 1218.76 1.34 1013.07 1.35 1153.80 1.73 1469.94 1.58 1294.69
40 4 0.80 — 207.70 — 178.30 — 140.87 — 173.06 — 121.61
40 4 0.825 — 105.98 — 147.79 — 74.39 — 88.71 — 60.13
40 4 0.85 1.71 127.13 1.45 103.78 1.65 81.04 1.30 177.62 1.57 94.57
50 4 0.80 1.60 33.25 1.76 51.17 1.56 39.74 2.07 37.22 1.53 36.45
50 4 0.825 — 759.47 — 556.78 — 454.90 — 675.03 — 460.49
50 4 0.85 2.10 178.72 1.84 153.03 1.89 111.85 1.93 97.42 1.77 103.51
60 4 0.80 1.49 311.72 1.47 274.54 1.25 305.88 1.29 383.82 1.01 175.22
60 4 0.825 1.62 284.70 1.22 316.42 1.73 304.37 1.99 366.35 1.92 318.94
60 4 0.85 2.64 439.84 2.46 446.59 2.11 424.46 2.52 535.88 2.18 300.64

Average 1.73 223.74 1.60 215.89 1.55 187.36 1.74 226.86 1.62 185.72

7.2 Preventive recourse

Next, we demonstrate the performance of our integer L-shaped method on the VRPSD with preventive

recourse. We first compare our algorithm with the integer L-shaped method of Louveaux and Salazar-

González (2018), and secondly compare with the branch-price-and-cut algorithm of Florio et al. (2020).

For our comparison with the integer L-shaped method of Louveaux and Salazar-González (2018),

we use the instances of the VRPSD with preventive recourse that they used in their paper, excluding

those with asymmetric travel costs. These are 32 instances divided over four series with the names

E031-09h, E051-05e, E076-07s and E101-08e, which have 30, 50, 75 and 100 customers respectively.

Demands follow independent identical discrete triangular distributions, centered around µ = 5. More

precisely, the set of realizations is Ξi =
{
µ−

⌊
K
2

⌋
, . . . , µ+

⌊
K
2

⌋}
and the probability distribution is

given by P(Ξi = ξ) =
⌈K

2 ⌉−|ξ−µ|

⌈K
2 ⌉2

for all i ∈ V ′, ξ ∈ Ξi. Here, K is a parameter defining the width of the

triangular distribution. In the instances of Louveaux and Salazar-González (2018), the values 3 and 9

are used for K, the number of vehicles m is varied between 2 and 3 and the filling coefficient is set to

0.85 or 0.90 for m = 2 and 0.80 or 0.85 for m = 3, and the vehicle capacity C varies accordingly per

instance.
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In Table 4, we provide the results of our computational experiments. The first five columns provide

for each instance the name of the series, the vehicle capacity C, the number of vehicles m, the width of

the triangular distribution K and the filling coefficient f̄ . We include the results reported by Louveaux

and Salazar-González (2018), and the results found by the configurations BM, RS and PRS. Note that

we do not include P+MRS, because for these instances the lower bound L̄ used in the multi-route-split

inequalities are all 0. As a result, PRS and P+MRS are indistinguishable, and not separately reported on.

Table 4 includes two columns with the header ‘Obj’. The first occurrence in column six, corresponds

with the objective value found per instance as reported by Louveaux and Salazar-González (2018). The

second occurrence in column ten, corresponds with the solution value obtained by our integer L-shaped

method. Note that the configurations BM, RS and PRS all provide the same solution values, which are

not separately reported. Furthermore, for each instance we report in the columns ‘Gap’, the optimality

gaps in percentages after termination of the algorithm, in the columns ‘Time’ the computation times

in seconds, and in the columns ‘Nodes’, the number of nodes in the branching tree that have been

processed upon termination. Note that Louveaux and Salazar-González (2018) allowed five hours of

computation time, while we allow one hour. In Table 4, ‘5h’ and ‘1h’ indicates that the time limit has

been exceeded. Also, Louveaux and Salazar-González (2018) report computation times in minutes, which

we have converted into seconds by multiplying with 60.
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Table 4: Computational results on instances of the VRPSD with preventive recourse of Louveaux and Salazar-González (2018).

Louveaux and Salazar-González (2018) BM RS PRS

Series C m K f Obj Gap Time Nodes Obj Gap Time Nodes Gap Time Nodes Gap Time Nodes

E031-09h 84 2 3 0.90 332.75 0 0 325 332.75 0 0.10 8 0 0.10 6 0 0.10 6
E031-09h 79 2 3 0.95 335.30 0 1.2 2035 335.30 0 0.20 15 0 0.13 15 0 0.10 15
E031-09h 84 2 9 0.90 337.67 0 2.4 3632 337.67 0 1.11 323 0 0.66 203 0 0.71 195
E031-09h 79 2 9 0.95 344.53 0 78 36654 344.53 0 5.25 1723 0 3.19 1184 0 2.95 1100
E031-09h 59 3 3 0.85 358.95 0 16.8 17950 358.95 0 0.32 61 0 0.23 49 0 0.23 49
E031-09h 56 3 3 0.90 364.07 0 244.2 94518 364.07 0 1.24 385 0 0.99 308 0 0.93 313
E031-09h 59 3 9 0.85 367.16 0 1090.2 248044 367.16 0 5.40 1833 0 3.71 1386 0 3.35 1242
E031-09h 56 3 9 0.90 373.13 2.33 5h 604022 372.78 0 269.53 34414 0 73.90 15328 0 57.11 13374
E051-05e 139 2 3 0.90 441.00 0 3.6 3260 441.00 0 0.47 26 0 0.45 27 0 0.44 27
E051-05e 132 2 3 0.95 441.31 0 6 3889 441.31 0 3.26 318 0 1.51 134 0 1.51 134
E051-05e 139 2 9 0.90 443.01 0 18 10709 443.01 0 4.42 554 0 3.72 503 0 3.72 493
E051-05e 132 2 9 0.95 448.08 0.13 5h 314798 448.08 0 415.60 27957 0 196.03 15983 0 196.24 16969
E051-05e 99 3 3 0.85 459.00 0 9.6 6557 459.00 0 0.54 27 0 0.52 24 0 0.45 24
E051-05e 93 3 3 0.90 459.05 0 4.2 3449 459.05 0 1.08 95 0 1.12 90 0 1.07 89
E051-05e 99 3 9 0.85 460.55 0 37.2 22525 460.55 0 2.15 234 0 1.85 221 0 1.92 216
E051-05e 93 3 9 0.90 465.63 0 4346.4 303297 465.63 0 60.68 5994 0 51.72 5111 0 35.76 3469
E076-07s 209 2 3 0.90 549.00 0 1.8 757 549.00 0 0.93 9 0 0.93 9 0 0.86 9
E076-07s 198 2 3 0.95 550.16 0 20.4 7869 550.16 0 5.17 158 0 4.70 146 0 3.77 113
E076-07s 209 2 9 0.90 550.82 0 16.2 8522 550.82 0 9.76 258 0 7.83 210 0 6.52 159
E076-07s 198 2 9 0.95 554.80 0 15165.6 425613 554.80 0 601.67 16225 0 428.31 14369 0 335.49 11016
E076-07s 148 3 3 0.85 567.13 0 165 43343 567.13 0 25.18 896 0 12.26 527 0 17.13 746
E076-07s 139 3 3 0.90 569.27 0 2168.4 213546 569.27 0 19.21 678 0 41.65 1245 0 61.28 1669
E076-07s 148 3 9 0.85 569.95 0 6445.2 440721 569.95 0 122.87 4326 0 119.74 4098 0 124.82 4376
E076-07s 139 3 9 0.90 574.31 1.03 5h 579000 573.25 0 1495.33 24066 0 1190.24 22241 0 1450.73 24180
E101-08e 278 2 3 0.90 640.00 0 11.4 2819 640.00 0 2.85 31 0 3.17 31 0 3.08 31
E101-08e 264 2 3 0.95 641.73 0 1759.2 83765 641.73 0 54.18 1317 0 51.44 911 0 23.14 476
E101-08e 278 2 9 0.90 641.30 0 783 34436 641.30 0 68.82 910 0 91.66 752 0 304.82 3086
E101-08e 264 2 9 0.95 646.12 0.85 5h 172619 646.12 0.49 1h 20168 0.37 1h 26600 0.38 1h 26632
E101-08e 197 3 3 0.85 655.35 0 58.8 9025 655.35 0 19.11 415 0 7.50 128 0 7.48 141
E101-08e 186 3 3 0.90 658.30 0 544.2 40442 658.30 0 56.29 1242 0 106.79 2192 0 96.79 2184
E101-08e 197 3 9 0.85 658.98 0 6325.2 292928 658.98 0 889.91 14805 0 223.07 4148 0 168.78 3089
E101-08e 186 3 9 0.90 667.55 1.55 5h 267310 666.56 1.04 1h 21917 1.12 1h 21935 0.98 1h 23938
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We can see in Table 4 that all our methods achieve a noteworthy decrease in computation time

compared with Louveaux and Salazar-González (2018). Excluding the first instance, in which Louveaux

and Salazar-González (2018) reports zero minutes of computation time, the speedups range from a

factor 1.6 for RS in row 19, to 325 for PRS in row 7. Furthermore, while Louveaux and Salazar-González

(2018) solved 27 out of 32 instances to optimality within five hours of computation time per instance,

all configurations of our integer L-shaped method solve 30 out of 32 instances to optimality within one

hour of computation time per instance, and have a smaller optimality gap for the remaining 2 unsolved

instances. Furthermore, note that the average computation time over the 30 instances that were solved

by our integer L-shaped method, are 138.09, 87.04 and 97.04 for the configurations BM, RS and PRS,

respectively. We emphasize that the configuration RS has the lowest average computation time, which

is 47% and 10% lower than that of BM and PRS respectively. This again indicates that including the

route-split and partial route-split inequalities provides a computational advantage.

Note that unlike our comparison with the integer L-shaped method of Jabali et al. (2014), this

comparison might be obscured since we have not made our own implementation of the algorithm of

Louveaux and Salazar-González (2018). This is because their algorithm is actually designed for a directed

graph, while our implementation is designed for an undirected graph and could not easily emulate their

algorithm. Note that an algorithm suitable for a directed graph may be at a disadvantage due to the

involved overhead. Nonetheless, observe that all configurations of our integer L-shaped method, process

less branching nodes before identifying an optimal solution, which might be due to the use of stronger

valid inequalities, resulting in a faster integer L-shaped method.

Next, we compare the performance of our integer L-shaped method to the branch-price-and-cut

algorithm of Florio et al. (2020). First note that in their paper, Florio et al. (2020) also apply their

algorithm on the instances of the VRPSD with preventive recourse of Louveaux and Salazar-González

(2018). Only for instance E031-09h, with m = 3, K = 9, and f̄ = 0.90, do they report a better

computation time than Louveaux and Salazar-González (2018), namely 55 minutes. In fact, they could

not find the optimal solution within five hours of computation time for any of the instances of the

E051-05e series, and do not report computation times for the other instances with more customers, but

state that the branch-price-and-cut algorithm is not effective for those. Each of the configuration, BM,

RS and PRS of our integer L-shaped method greatly outperforms their branch-price-and-cut algorithm

on these instances.

Secondly, we investigate the remaining set of instances used by Florio et al. (2020). They applied their

branch-price-and-cut algorithm on modified versions of the well-known CVRP benchmark instances, A,

E, P and X with up to 200 customers. These instances are modified by imposing stochastic demand

for each customer which is Poisson distributed with a rate equal to the deterministic demand of the

original CVRP instance. We emphasize that we consider here the instances of the VRPSD, so with a

fixed number of routes, as Florio et al. (2020) also reports on a version without.

In their paper, Florio et al. (2020) report solving 31 of these instances to optimality within a time

limit of five hours. We have applied the configurations BM, RS, PRS and M+PRS of our integer L-shaped

method to all instances. With one hour of computation time per instance, we could solve to optimality 9

instances that were also solved by Florio et al. (2020). Furthermore, the branch-price-and-cut algorithm

was not applied by Florio et al. (2020) to 5 instances. In a private communication, Alexandre Florio said

that these instances are troublesome due to the high demand and vehicle capacity. We could solve all

these instances to optimality within one hour of computation time. In Table 5, we present computational

results on all 14 instances that are solved by our integer L-shaped method. The interpretation of the

values per column is the same as before, with the addition of a column that includes the vehicle capacity

C per instance for illustrative purposes. With ‘NA’, we indicate that the instance was not attempted by

Florio et al. (2020).
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Table 5: Computational results on those instances of the VRPSD with preventive recourse of Florio et al.
(2020) which were solved to optimality by our integer L-shaped method.

Florio et al. (2020) BM RS PRS P+MRS NOP

Instance C Obj Time Obj Time Time Time Time Time

E-n13-k4 6000 NA NA 254.22 15.66 9.70 12.06 12.04 3.11
E-n22-k4 6000 NA NA 377.38 10.49 0.50 0.50 0.49 0.46
E-n23-k3 4500 NA NA 569.27 0.46 0.45 0.44 0.46 0.45
E-n30-k3 4500 NA NA 541.17 1868.28 992.15 1114.35 1114.72 11.37
E-n33-k4 8000 NA NA 844.23 1284.37 931.54 1192.53 675.46 34.76

A-n37-k5 100 710.07 2820 710.12 1h 1847.85 1460.20 1298.54 2642.25
E-n31-k7 140 407.97 0 408.00 719.58 315.80 272.74 272.88 272.26
P-n16-k8 35 514.64 0 514.65 2.60 1.82 1.76 1.56 1.28
P-n19-k2 160 229.24 120 229.26 1.45 1.30 1.25 1.28 0.97
P-n20-k2 160 234.34 2040 234.36 10.19 11.44 9.17 9.07 8.57
P-n21-k2 160 220.53 0 220.55 0.24 0.25 0.24 0.29 0.32
P-n22-k2 160 232.72 8760 232.74 7.06 7.47 8.71 8.71 14.44
P-n22-k8 3000 618.10 0 618.24 303.18 259.38 357.38 355.94 12.25
P-n40-k5 140 475.71 0 475.74 91.17 58.86 57.93 51.64 43.92

First, observe that the integer L-shaped method achieves lower computation times than those reported

for the branch-price-and-cut algorithm by Florio et al. (2020), for at least 4 instances presented in Table 5.

Next, observe that the solution values as reported by Florio et al. (2020) and those found with out integer

L-shaped method, do not match for all instances. We believe that these differences are likely caused by

numerical accuracy due to the following facts. In a private communication, Alexandre Florio shared with

us the results of running the branch-price-and-cut algorithm of Florio et al. (2020), with an accuracy

parameter of 10−6 instead of 10−5. All of the instances for which the objective values previously did not

match, now all objective values match up to at least two decimal places. We further remark that the

optimal solutions that were shared with us by Alexandre Florio, are the same as the optimal solutions

which we found.

Recall that we argued that the branch-price-and-cut algorithm is sensitive to the vehicle capacity.

The instance P-n22-k8 with vehicle capacity 3000, is the only instance that is solved to optimally by

the branch-price-and-cut algorithm of Florio et al. (2020), which has a vehicle capacity larger than 160.

This does not just apply to the instances reported on in Table 5, but all instances of the A, E, P and

X series. The results presented in Table 5 do not give evidence that our integer L-shaped method is

sensitive to the vehicle capacity.

Given the results on the A, E, P and X instances of Florio et al. (2020), and on the instances of

Louveaux and Salazar-González (2018), we conclude that neither our integer L-shaped method, nor the

branch-price-and-cut algorithm of Florio et al. (2020), dominates the other in computational performance

on the VRPSD with preventive recourse. We conjecture that the branch-price-and-cut algorithm benefits

from strong LP bounds, while it is more sensitive to parameter values of the instance, such as the vehicle

capacity.

7.3 Fixed number of routes and expected capacity constraints

In this section, we demonstrate the effect of imposing a fixed number of routes and expected capacity

constraints on the optimal solution value of an instance, and on the computation time of our integer

L-shaped method. We do this by comparing the results of related instances of the VRPSD, the FR-
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VRPSD and the Basic-VRPSD. Recall that the FR-VRPSD is the VRPSD without expected capacity

constraints, and in the Basic-VRPSD additionally the fixed number of routes constraint is relaxed.

We have selected some instances from the literature for this purpose, three from Jabali et al. (2014),

two from Louveaux and Salazar-González (2018) and two from Florio et al. (2020). For each of these

nine instances, we have created two additional versions, in which we include only the first n customers

of the instance, for a small and medium value n, resulting in a total of 21 instances. We create these

small instances, because the Basic-VRPSD can typically not be solved for large instances, and we want

to illustrate where the boundary lies. For each of these instances, we modify the vehicle capacity C, such

that the filling coefficient f̄ is adhered to.

We presents the results obtained by applying the M+PRS configuration of the integer L-shaped method

to each of these instances, because M+PRS is on average the most effective for these instances. Like before,

for the instances of Louveaux and Salazar-González (2018) we apply the PRS configuration because it is

indistinguishable from M+PRS in this case.

In Tables 6, 7 and 8 we provide our computational results for the instances of Jabali et al. (2014),

Louveaux and Salazar-González (2018) and Florio et al. (2020), respectively. In the first columns of

each table, we present the name of the original instance, number of vehicles m, filling coefficient f̄

vehicle capacity C and number of customers n. In Table 7, we additionally include the parameter K

of the triangular distribution. In the column with the header ‘Type’, we indicate per row whether it

corresponds to an instance of the VRPSD, the FR-VRPSD or the Basic-VRPSD. Finally, in the column

with the header ‘Obj’ we provide the best found solution value, in the column with the header ‘Gap’ we

provide the optimality gap, and in the column with the header ‘Time’ we provide the computation time

in seconds. Note that ‘1h’ indicates that the time limit of one hour is reached.

Table 7: Computational results on the VRPSD, FR-VRPSD and Basic-VRPSD, for instances of Louveaux

and Salazar-González (2018), using the MRS configuration of the integer L-shaped method.

Instance m K f C n Type Obj Gap Time

E031-09h 2 3 0.90 28 10 VRPSD 178.49 0.00 0.01

E031-09h 2 3 0.90 28 10 FR-VRPSD 178.49 0.00 0.02

E031-09h 2 3 0.90 28 10 Basic-VRPSD 178.41 0.00 0.10

E031-09h 2 3 0.90 56 20 VRPSD 266.04 0.00 0.04

E031-09h 2 3 0.90 56 20 FR-VRPSD 266.04 0.00 0.27

E031-09h 2 3 0.90 56 20 Basic-VRPSD 266.03 0.00 4.82

E031-09h 2 3 0.90 84 30 VRPSD 332.75 0.00 0.10

E031-09h 2 3 0.90 84 30 FR-VRPSD 332.75 0.00 3.82

E031-09h 2 3 0.90 84 30 Basic-VRPSD 332.48 0.00 227.26

E031-09h 3 3 0.85 20 10 VRPSD 208.09 0.00 0.02

E031-09h 3 3 0.85 20 10 FR-VRPSD 208.09 0.00 0.11

E031-09h 3 3 0.85 20 10 Basic-VRPSD 204.82 0.00 18.60

E031-09h 3 3 0.85 39 20 VRPSD 292.26 0.00 0.07

E031-09h 3 3 0.85 39 20 FR-VRPSD 292.26 0.00 79.78

E031-09h 3 3 0.85 39 20 Basic-VRPSD 291.66 7.01 1h

E031-09h 3 3 0.85 59 30 VRPSD 358.95 0.00 0.23

E031-09h 3 3 0.85 59 30 FR-VRPSD 365.79 4.96 1h

E031-09h 3 3 0.85 59 30 Basic-VRPSD 359.99 8.89 1h
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Table 6: Computational results on the VRPSD, FR-VRPSD and Basic-VRPSD, for instances of Jabali
et al. (2014), using the P+MRS configuration of the integer L-shaped method.

Instance m f C n Type Obj Gap Time

40 4 0.80 7 4 0.80 14 10 VRPSD 536.91 0.00 0.16
40 4 0.80 7 4 0.80 14 10 FR-VRPSD 526.34 0.00 15.79
40 4 0.80 7 4 0.80 14 10 Basic-VRPSD 511.25 0.00 2961.07

40 4 0.80 7 4 0.80 38 25 VRPSD 595.02 0.00 1081.48
40 4 0.80 7 4 0.80 38 25 FR-VRPSD 591.99 8.62 1h
40 4 0.80 7 4 0.80 38 25 Basic-VRPSD 599.50 17.38 1h

40 4 0.80 7 4 0.80 64 39 VRPSD 657.49 0.00 0.82
40 4 0.80 7 4 0.80 64 39 FR-VRPSD 682.85 11.45 1h
40 4 0.80 7 4 0.80 64 39 Basic-VRPSD 698.50 18.53 1h

50 3 0.85 5 3 0.85 26 10 VRPSD 521.17 0.00 0.10
50 3 0.85 5 3 0.85 26 10 FR-VRPSD 478.50 0.00 0.59
50 3 0.85 5 3 0.85 26 10 Basic-VRPSD 477.16 0.00 4.66

50 3 0.85 5 3 0.85 69 30 VRPSD 623.57 0.00 0.41
50 3 0.85 5 3 0.85 69 30 FR-VRPSD 623.57 0.00 2.47
50 3 0.85 5 3 0.85 69 30 Basic-VRPSD 623.57 0.00 249.34

50 3 0.85 5 3 0.85 108 49 VRPSD 732.13 0.00 0.89
50 3 0.85 5 3 0.85 108 49 FR-VRPSD 732.13 0.00 30.21
50 3 0.85 5 3 0.85 108 49 Basic-VRPSD 732.13 0.00 350.57

60 2 0.90 6 2 0.90 29 10 VRPSD 416.89 0.00 0.02
60 2 0.90 6 2 0.90 29 10 FR-VRPSD 416.89 0.00 0.33
60 2 0.90 6 2 0.90 29 10 Basic-VRPSD 416.89 0.00 0.55

60 2 0.90 6 2 0.90 111 35 VRPSD 533.39 0.00 11.17
60 2 0.90 6 2 0.90 111 35 FR-VRPSD 533.39 0.00 84.12
60 2 0.90 6 2 0.90 111 35 Basic-VRPSD 532.89 0.00 532.86

60 2 0.90 6 2 0.90 189 59 VRPSD 646.98 0.00 1.83
60 2 0.90 6 2 0.90 189 59 FR-VRPSD 646.98 0.00 23.79
60 2 0.90 6 2 0.90 189 59 Basic-VRPSD 646.98 0.00 60.51

Observe that for all instances the computation time is increasing in the order VRPSD, FR-VRPSD

and Basic-VRPSD. The less constraints are included, the more computation time is required. The

increase in computation times can be very large. For example, instance 40 4 0.80 7 of the VRPSD with

n = 39 is solved in 0.82 seconds, while the FR-VRPSD and the Basic-VRPSD could not even be solved

within the time limit of one hour. Out of the 21 instances, 5 instances of the FR-VRPSD could not be

solved within one hour, and 8 instances of the Basic-VRPSD. In contrast, all instances of the VRPSD

could be solved, 16 of which within one second, and the largest computation time is 55.45 seconds.

Imposing a fixed number of routes and expected capacity constraints, have a substantial impact on the

computation times of our integer L-shaped method.

The impact of these constraints on the solution value is less pronounced. Out of the 16 instances

of the FR-VRPSD which could be solved, the optimal solution values are equal to those of the VRPSD

for 13 instances, and they are lower only for 3 instances. Also note that those latter 3 instances all

consist of only 10 customers. The inclusion of expected capacity constraints does not seem to impact the

optimal solution value very often. Observe additionally, that out of the 13 instances of the Basic-VRPSD
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Table 8: Computational results on the VRPSD, FR-VRPSD and Basic-VRPSD, for instances of Florio
et al. (2020), using the P+MRS configuration of the integer L-shaped method.

Instance m f C n Type Obj Gap Time

P-n21-k2 2 0.93 89 10 VRPSD 176.70 0.00 0.11
P-n21-k2 2 0.93 89 10 FR-VRPSD 176.70 0.00 3.30
P-n21-k2 2 0.93 89 10 Basic-VRPSD 173.43 0.00 97.37

P-n21-k2 2 0.93 119 15 VRPSD 203.79 0.00 0.16
P-n21-k2 2 0.93 119 15 FR-VRPSD 203.79 0.00 21.78
P-n21-k2 2 0.93 119 15 Basic-VRPSD 198.84 0.00 791.68

P-n21-k2 2 0.93 160 20 VRPSD 220.55 0.00 0.29
P-n21-k2 2 0.93 160 20 FR-VRPSD 220.55 0.00 79.20
P-n21-k2 2 0.93 160 20 Basic-VRPSD 219.51 5.16 1h

P-n40-k5 5 0.88 35 10 VRPSD 334.46 0.00 0.06
P-n40-k5 5 0.88 35 10 FR-VRPSD 328.93 0.00 339.02
P-n40-k5 5 0.88 35 10 Basic-VRPSD 307.43 25.61 1h

P-n40-k5 5 0.88 96 25 VRPSD 399.78 0.00 5.14
P-n40-k5 5 0.88 96 25 FR-VRPSD 422.01 15.94 1h
P-n40-k5 5 0.88 96 25 Basic-VRPSD 391.12 24.83 1h

P-n40-k5 5 0.88 140 39 VRPSD 475.73 0.00 51.64
P-n40-k5 5 0.88 140 39 FR-VRPSD 525.20 20.32 1h
P-n40-k5 5 0.88 140 39 Basic-VRPSD 486.11 24.30 1h

which could be solved, the optimal solution values are equal to those of the FR-VRPSD for 4 instances,

and they are lower for 8 instances. Note that the difference in solution value can be very small. For

instance E031-09h with n = 20, the optimal solution values of the VRPSD and FR-VRPSD is 266.04,

while that of the Basic-VRPSD is 266.03. We emphasize that in this case really a different solution is

observed. For the VRPSD and FR-VRPSD the solution that we found consists of two routes, while for

the Basic-VRPSD the solution consist of one route, which is the concatenation of the aforementioned

two routes, with a small but positive probability of not doing preventive recourse at the point where the

routes are concatenated.

We conclude from our experiments, that although the inclusion of the expected capacity constraints

might seem awkward from a modeling perspective, it helps reduce computation times tremendously, while

the optimal objective values do not seem to suffer much for these instances. Even though we think that

caution should be used, we find it reasonable for computational purposes to impose these constraints.

The same conclusion applies to imposing a fixed number of routes, although to a lesser extent.

8 Conclusion

In this paper, we present a state-of-the-art integer L-shaped method for the VRPSD. It incorporates

all elements of other integer L-shaped methods from the literature, that we are aware of. Moreover, we

rectify and improve on existing lower bounds and valid inequalities that are part of these methods, and

introduce new valid inequalities. Our numerical experiments indicate that the resulting integer L-shaped

method outperforms all others, and is competitive with the best branch-price-and-cut algorithm from

the literature. We additionally argue based on our theoretical and numerical analysis, that it seems

reasonable to impose a fixed number of routes and expected capacity constraints, although care should
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be taken that the optimal solution value does not deteriorate too much. As a next step, we think it is

relevant to investigate imposing route duration constraints instead, as these constraints seem to provide

a more accurate representation of limitations in practice. This investigation is already started by Florio

et al. (2021) who present a branch-price-and-cut algorithm for the corresponding optimization problem.

In future research, the integer L-shaped method might be modified to deal with those constraints as

well, with the aim of creating a competitive algorithm that is successful for a wide range of instances for

this problem.
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A Route activation function

Consider the route r = (0 = v(0), v(1), . . . , v(p), v(p+ 1) = 0). We repeat the function found in (13).

Wr(x) =



x(0,v(1)) − 1 if p = 1,

x(0,v(1)) + 3x(v(1),v(2)) + x(0,v(2)) − 4 if p = 2,

x(0,v(1)) + 2x(v(1),v(2)) +

p−2∑
k=2

x(v(k),v(k+1)) + 2x(v(p−1),v(p)) + x(0,v(p)) − (p+ 2) otherwise.

Theorem 3. The function Wr(x) is a route activation function of r.

Proof. Suppose x corresponds with a route r, meaning if p = 1 then x(0,v(1)) = 2 and if p ≥ 2 then

x(v(i),v(i+1)) = 1 for all i ∈ {0, . . . , p}. It is easily verified that Wr(x) = 1. Next, suppose x does not

correspond to the route r. If p = 1, then x(0,v(1)) ≤ 1 such that Wr(x) ≤ 0. If p = 2, we distinguish

two cases. If x(v(1),v(2)) = 0 then Wr(x) ≤ 0. If x(v(1),v(2)) = 1, by the degree constraints (2), it follows

that x(0,v(1)) ≤ 1 and x(0,v(1)) ≤ 1. Since x does not correspond to the route r, either x(0,v(1)) = 0

or x(0,v(2)) = 0 (or both). Therefore, Wr(x) ≤ 0. Finally, if p ≥ 3 we consider two similar cases. If

x(v(1),v(2)) = 0 or x(v(p−1),v(p)) = 0 then Wr(x) ≤ 0. If x(v(1),v(2)) = x(v(p−1),v(p)) = 1, by the degree

constraints, x(0,v(1)) ≤ 1 and x(0,v(p)) ≤ 1. Since x does not correspond to the route r, at least one of

the variables x(0,v(1)), x(0,v(2)) and x(v(i),v(i+1)) for i ∈ {2, . . . , p− 2} is zero. Therefore, Wr(x) ≤ 0.

B Lower bound by Salavati-Khoshghalb et al. (2019a)

Next, we comment on the lower bound on the expected costs of recourse for the VRPSD with preventive

recourse by Salavati-Khoshghalb et al. (2019a). The presentation of this lower bound as found in their

paper seems to contain a mistake, which we correct below. Moreover, we improve on their bound.

Unfortunately, we conclude that even the improved version is often weaker than the trivial lower bound 0.

We present the lower bound described in Salavati-Khoshghalb et al. (2019a) in our notation. Fur-

thermore, instead of the lower bound for partial route h of Salavati-Khoshghalb et al. (2019a) which is

part of the description, we immediately use our stronger lower bound P prevIII
h found in Section 5.2.4.

Let s be the sum of the m − 1 smallest preventive recourse costs se for e ∈ E. Let h(v) be the partial

route {{0}, V ′ \ {v}, {v}, {0}}, for all v ∈ V ′. The lower bound on the expected costs of recourse of

Salavati-Khoshghalb et al. (2019a) can be written as

min
v∈S
{P prevIII

h(v) } − s. (24)

The idea behind this lower bound is as follows. A solution to the VRPSD, which consists of m routes,

can be seen as a single route which visits all the customers, with m − 1 mandatory preventive return

trips. The value minv∈S{P prevIII
h(v) } is a lower bound for the expected costs of recourse for a single route

which visits all the customers. If we think of a solution to the VRPSD as a single route with m − 1

mandatory preventive return trips, the costs of these mandatory preventive return trips should not be

counted as recourse costs but as first stage travel costs. Therefore, minv∈S{P prevIII
h(v) } is an overestimation

and should be corrected.

The correction proposed in Salavati-Khoshghalb et al. (2019a) is to subtract the value s, i.e., the

m−1 smallest preventive recourse costs se with e ∈ E. However, s is a lower bound on the costs of m−1

preventive return trips, which is clearly not sufficient, as also demonstrated in the following example.

Let n = 4, m = 2 and C = 3. The costs are the Euclidean distances, where customers 1 and 2 lie at a

distance one and two above the depot, respectively, and customers 3 and 4 lie at distance one and two to
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the right from the depot, respectively. The demands of customers 1, 2, 3 and 4 are 1 with probability 1
4 ,

3
4 ,

1
4 , and

3
4 , respectively, and 2 otherwise. The minimal recourse of visiting all customers with 2 vehicles

is approximately 0.38, attained by the routes (0, 1, 4, 0) and (0, 3, 2, 0). The supposed lower bound of

Salavati-Khoshghalb et al. (2019a), even particularly the lower valued original version which does not

use our improved P prevIII
h or even P prevI

h , is approximately 0.59. This demonstrates that the suggested

lower bound is invalid.

Instead, an upper bound on the costs of m − 1 preventive return trips should be used, and it is

sufficient to subtract s′ defined as the m− 1 largest preventive recourse costs se with e ∈ E. In fact, we

can improve on this bound even further.

Note that each customer v ∈ V ′ has only two edges incident to it in a solution to the VRPSD.

Therefore, a stronger upper bound s∗ ≤ s′ is obtained by selecting the m− 1 largest preventive recourse

costs se with e ∈ E, with the additional condition that no customer v ∈ V ′ occurs on more than two

selected edges. This bound is the solution value of the following integer linear program, where ze is the

decision variable indicating whether edge e ∈ E, or rather the recourse costs se, is selected:

s∗ = max
∑
e∈E

seze,

s.t.
∑

e∈δ(v)∩E

ze ≤ 2 ∀v ∈ V ′,

∑
e∈E

ze = k ,

ze ∈ {0, 1} ∀e ∈ E.

The bound can be computed by solving the above integer linear program. When this is computationally

too demanding, the solution value of the LP relaxation can be computed instead. Observe that this LP

bound is also a valid bound, and it is also stronger than s′.

Summing up, a correct lower bound is minv∈S{P prevIII
h(v) }− s∗. However, this lower bound is negative

for all benchmark instances which we consider in our numerical experiments. Therefore, we do not use

this bound any further in this paper.

C Improved partial route lower bound

Next, we prove that the partial route lower bound P prevII
h as found in Section 5.2.3 is valid and stronger

than the results of Louveaux and Salazar-González (2018). For convenience, we repeat the definitions of

FU (f, q) and f II
k (q) from Section 5.2.3 here:

FU (f, q) =



Fu(f, q) if |U | = {u},

max



∑
ξ∈ΞU

P
(∑

v∈U

Dv = ξ

)
[Γ(ξ − q)s̄(U) +H(f, s̄(U), CΓ(ξ − q) + q − ξ)] ,

min


s(U)

(
1−

∏
v∈U

P(Dv ≤ q)

)
,

s(U)

[
1−max

v∈U
P(Dv ≤ q)

]
+ s(U,U)max

v∈U
P(Dv ≤ q)

+ min
q∈{0,...,C}

f(q)


if |U | > 1,

and

f II
k (q) = min{s(Uk, Uk+1) + FUk+1

(f II
k+1, C), FUk+1

(f II
k+1, q)}.

Recall that P prevII
h is obtained from f II

0 (C), taking care of both orientations.
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To prove the validity of this lower bound, we first derive some properties of the separate components

in FU (f, q). First, we focus on the term

∑
ξ∈ΞU

P

(∑
v∈U

Dv = ξ

)
[Γ(ξ − q)s̄(U) +H(f, s̄(U), CΓ(ξ − q) + q − ξ)] (25)

of FU (f, q). For conciseness, we introduce the shorthand notation I(U, f, s, q), with U ⊆ V , f :

{0, . . . , C} → R≥0, s ≥ 0 and q ∈ {0, . . . , C}, defined as

I(U, f, s, q) =
∑
ξ∈ΞU

P

(∑
v∈U

Dv = ξ

)
[Γ(ξ − q)s+ f(CΓ(ξ − q) + q − ξ)],

such that we can express (25) as I(U,H(f, s̄(U), ·), s̄(U), q). Observe that I(U, f, s, q) can also be ex-

pressed as

I(U, f, s, q) =

q∑
ξ=0

P

(∑
v∈U

Dv = ξ

)
f(q − ξ)+

∞∑
k=1

kC+q∑
ξ=(k−1)C+q+1

P

(∑
v∈U

Dv = ξ

)
[ks+ f(kC + q − ξ)],

which is achieved by collecting the terms of ξ for which Γ(ξ − q) = k. We use these two expressions

interchangeably. Next, we derive important properties of (25), which we use in the proof of the validity

of the lower bound, by analysing I(U, f, s, q) and H(f, s, q).

First, we prove that I(U, f, s, q) is decreasing in q and its range is bounded by s, if f is decreasing

and its range is bounded by s. This seems sensible, when we interpret I(U, f, s, q) as the expected costs

of future recourse before serving the customers in U , f a function representing future recourse costs after

U , with s the costs of corrective recourse and q the current load. Indeed, when we serve U with a higher

starting load, we either leave U with a higher load, resulting in lower costs since f is decreasing, or we

leave U with a lower load, as a result of executing one less corrective recourse action, resulting in lower

costs because the range of the future recourse costs is bounded by the costs of a single corrective recourse

action.

Lemma 1. For a decreasing function f : {0, . . . , C} → R≥0 and a value s ≥ 0, if f(0)− f(C) ≤ s then

I(U, f, s, q) is decreasing in q and I(U, f, s, 0)− I(U, f, s, C) ≤ s.

Proof. In this proof, we make use of the shorthand notation P(ξ) = P
(∑

v∈U Dv = ξ
)
. For any q ∈

{0, . . . , C − 1}, we write

I(U, f, s, q + 1)− I(U, f, s, q) =

q+1∑
ξ=0

P(ξ)f(q + 1− ξ)−
q∑

ξ=0

P(ξ)f(q − ξ)+

∞∑
k=1

kC+q+1∑
ξ=(k−1)C+q+2

P(ξ)[ks+ f(kC + q + 1− ξ)]+

−
∞∑
k=1

kC+q∑
ξ=(k−1)C+q+1

P(ξ)[ks+ f(kC + q − ξ)]

=

q∑
ξ=0

P(ξ)[f(q + 1− ξ)− f(q − ξ)]+

P(q + 1)[f(0)− s− f(C − 1)]+
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∞∑
k=1

kC+q∑
ξ=(k−1)C+q+2

P(ξ)[f(kC + q + 1− ξ)− f(kC + q − ξ)]+

∞∑
k=1

P(kC + q + 1)[f(0)− s− f(C − 1)].

Because f is decreasing, it follows that f(q+1−ξ)−f(q−ξ) ≤ 0 and f(kC+q+1−ξ)−f(kC+q−ξ) ≤ 0.

Because additionally f(0) − f(C) ≤ s, it follows that f(0) − f(C − 1) − s ≤ f(0) − f(C) − s ≤ 0. We

conclude that I(U, f, s, q + 1)− I(U, f, s, q) ≤ 0, which means I(U, f, s, q) is decreasing in q.

Next, we prove that I(U, f, s, 0)− I(U, f, s, C) ≤ s as follows.

I(U, f, s, C) + s =

C∑
ξ=0

P(ξ)f(C − ξ) +

∞∑
k=1

(k+1)C∑
ξ=kC+1

P(ξ)[ks+ f((k + 1)C − ξ)] + s

= P(0)[s+ f(C)] +

∞∑
k=0

(k+1)C∑
ξ=kC+1

P(ξ)[(k + 1)s+ f((k + 1)C − ξ)]

= P(0)[s+ f(C)] +

∞∑
k=1

kC∑
ξ=(k−1)C+1

P(ξ)[ks+ f(kC − ξ)]

= P(0)[s+ f(C)− f(0)] + P(0)f(0) +
∞∑
k=1

kC∑
ξ=(k−1)C+1

P(ξ)[ks+ f(kC − ξ)]

= P(0)[s+ f(C)− f(0)] + I(U, f, s, 0)

≥ I(U, f, s, 0)

The inequality follows because f(0)− f(C) ≤ s by assumption.

Next, we show that when consecutively visiting two groups of customers for which the costs of

corrective recourse is the same, we can view these two groups as one large group of customers.

Lemma 2. If f : {0, . . . , C} → R≥0, s ≥ 0, U, T ⊆ V such that U ∩ T = ∅, then I(T, I(U, f, s, ·), s, q) =
I(U ∪ T, f, s, q) for all q ∈ {0, . . . , C}.

Proof. Observe that

I(T, I(U, f, s, ·), s, q) =
∑
ξ∈ΞT

P

(∑
v∈T

Dv = ξ

)
[sΓ(ξ − q) + I(U, f, s, CΓ(ξ − q) + q − ξ)]

=
∑
ξ∈ΞT

P

(∑
v∈T

Dv = ξ

)
[sΓ(ξ − q)+

∑
ξ′∈ΞU

P

(∑
v∈U

Dv = ξ′

)
[sΓ(ξ′ − (CΓ(ξ − q) + q − ξ))+

f(CΓ(ξ′ − (CΓ(ξ − q) + q − ξ)) + CΓ(ξ − q) + q − ξ − ξ′)]

]
.

Note that

Γ(ξ′ − (CΓ(ξ − q) + q − ξ)) = Γ(ξ′ + ξ − q − CΓ(ξ − q))

= max

{⌈
ξ′ + ξ − q − CΓ(ξ − q)

C

⌉
, 0

}
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= max

{⌈
ξ′ + ξ − q

C
− Γ(ξ − q)

⌉
, 0

}
= max

{⌈
ξ′ + ξ − q

C

⌉
− Γ(ξ − q), 0

}
= Γ(ξ′ + ξ − q)− Γ(ξ − q),

as ξ′ ≥ 0 and Γ is increasing. Continuing our derivation allows us to prove the lemma.

I(T, f ′, s, q) =
∑
ξ∈ΞT

P

(∑
v∈T

Dv = ξ

)sΓ(ξ − q) +
∑

ξ′∈ΞU

P

(∑
v∈U

Dv = ξ′

)
[s(Γ(ξ′ + ξ − q)+

− Γ(ξ − q)) + f(CΓ(ξ′ + ξ − q) + q − (ξ + ξ′)]

]

=
∑
ξ∈ΞT

∑
ξ′∈ΞU

P

(∑
v∈T

Dv = ξ

)
P

(∑
v∈U

Dv = ξ′

)
[sΓ(ξ′ + ξ − q)+

f(CΓ(ξ′ + ξ − q) + q − (ξ + ξ′)]

=

∞∑
ξ=0

∞∑
ξ′=0

P

(∑
v∈T

Dv = ξ

)
P

(∑
v∈U

Dv = ξ′

)
[sΓ(ξ′ + ξ − q)+

f(CΓ(ξ′ + ξ − q) + q − (ξ + ξ′)]

=

∞∑
ξ′′=0

ξ′′∑
ξ=0

P

(∑
v∈T

Dv = ξ

)
P

(∑
v∈U

Dv = ξ′′ − ξ

)
[sΓ(ξ′′ − q)+

f(CΓ(ξ′′ − q) + q − ξ′′]

=

∞∑
ξ′′=0

P

( ∑
v∈U∪T

Dv = ξ′′

)
[sΓ(ξ′′ − q) + f(CΓ(ξ′′ − q) + q − ξ′′]

= I(U ∪ T, f, s, q)

To apply Lemmas 1 and 2 to (25), we next demonstrate that their requirements are satisfied by

the function H(f, s, q) = min{minq′∈{0,...,C} f(q
′) + s,minq′∈{0,...,q} f(q

′)} as defined in Section 5.2.3 for

f : {0 . . . , C} → R≥0, s ≥ 0 and q ∈ {0, . . . , C}. Furthermore, we also demonstrate that it underestimates

the future recourse costs f .

Lemma 3. The function H(f, s, q) satisfies the following properties:

1. H(f, s, q) is decreasing in q.

2. H(f, s, 0)−H(f, s, C) ≤ s.

3. H(f, s, q) ≤ f(q).

Proof. For q ∈ {0, . . . , C − 1}, we derive

H(f, s, q + 1) = min

{
min

q′∈{0,...,C}
f(q′) + s, min

q′∈{0,...,q+1}
f(q′)

}
= min

{
min

q′∈{0,...,C}
f(q′) + s, min

q′∈{0,...,q}
f(q′), f(q + 1)

}
≤ min

{
min

q′∈{0,...,C}
f(q′) + s, min

q′∈{0,...,q}
f(q′)

}
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= H(f, s, q),

which proves property 1. Next, we derive

H(f, s, 0)−H(f, s, C) = min

{
min

q′∈{0,...,C}
f(q′) + s, min

q′∈{0}
f(q′)

}
+

−min

{
min

q′∈{0,...,C}
f(q′) + s, min

q′∈{0,...,C}
f(q′)

}
= min

{
min

q′∈{0,...,C}
f(q′) + s, f(0)

}
−min

{
min

q′∈{0,...,C}
f(q′)

}
= min{s, f(0)− min

q′∈{0,...,C}
f(q′)}

≤ s,

which proves property 2. Finally, we note that

H(f, s, q) = min

{
min

q′∈{0,...,C}
f(q′) + s, min

q′∈{0,...,q}
f(q′)

}
≤ f(q),

which proves property 3.

Now, we turn to the next component of FU (f, q), which is

min


s(U)

(
1−

∏
v∈U

P(Dv ≤ q)

)
,

s(U)

[
1−max

v∈U
P(Dv ≤ q)

]
+ s(U,U)max

v∈U
P(Dv ≤ q)

+ min
q∈{0,...,C}

f(q). (26)

We analyse the recurrence relation f II
k from which we obtain our lower bound P prevII

h , and derive two

intermediate results for the case in which the future costs of recourse are of the form (26).

Lemma 4. For U ⊆ V ′ and s′, s, a ≥ 0, if f(q) = min
{
s′, s

[
1−

∏
v∈U P(Dv ≤ q)

]}
+ a then, for

u ∈ V ′ \ U , q ∈ {0, . . . , C}

I({u}, f, s, q) ≥ min

 s′P(Du ≤ q) + sP(Du > q), s

1− ∏
v∈U∪{u}

P(Dv ≤ q)

+ a

Proof. We derive

I({u}, f, s, q) =
∞∑
ξ=0

P(Du = ξ)[sΓ(ξ − q) + f(CΓ(ξ − q) + q − ξ)]

≥
q∑

ξ=0

P(Du = ξ)f(q − ξ) +

∞∑
ξ=q+1

P(Du = ξ)[s+ a]

=

q∑
ξ=0

P(Du = ξ)

[
min

{
s′, s

[
1−

∏
v∈U

P(Dv ≤ q − ξ)

]}
+ a

]
+ P(Du > q)[s+ a]

≥
q∑

ξ=0

P(Du = ξ)

[
min

{
s′, s

[
1−

∏
v∈U

P(Dv ≤ q)

]}
+ a

]
+ P(Du > q)[s+ a]

= P(Du ≤ q)

[
min

{
s′, s

[
1−

∏
v∈U

P(Dv ≤ q)

]}
+ a

]
+ P(Du > q)[s+ a]
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= P(Du ≤ q)

[
min

{
s′, s

[
1−

∏
v∈U

P(Dv ≤ q)

]}]
+ sP(Du > q) + a

= min


s′P(Du ≤ q) + sP(Du > q),

sP(Du ≤ q)

[
1−

∏
v∈U

P(Dv ≤ q)

]
+ sP(Du > q)

+ a

= min

s′P(Du ≤ q) + sP(Du > q), s

1− ∏
v∈U∪{u}

P(Dv ≤ q)

+ a,

which proves this lemma.

Lemma 5. For U ⊆ V ′ and s′, s, a ≥ 0, if f(q) = min
{
s′, s

[
1−

∏
v∈U P(Dv ≤ q)

]}
+ a then, for

u ∈ V ′ \ U , q ∈ {0, . . . , C}

min{s′ + I({u}, f, s, C), I({u}, f, s, q)} ≥ min

s′, s

1− ∏
v∈U∪{u}

P(Dv ≤ q)

+ a

Proof. To prove the this lemma, by Lemma 4 it follows

min{s′ + I({u}, f, s, C), I({u}, f, s, q)} ≥ min{s′ + a, I({u}, f, s, q)}

≥ min


s′, s′P(Du ≤ q) + sP(Du > q),

s

[
1−

∏
v∈U∪{u}

P(Dv ≤ q)

] + a.

Inspecting the second term of the minimum, we note that it is a convex combination of s and s′. If

s ≥ s′, then s′ ≤ sP(Du > q) + s′P(Du ≤ q), so the second term is not the minimum. Otherwise, if

s < s′, then s
[
1−

∏
v∈U∪{u} P(Dv ≤ q)

]
≤ s ≤ sP(Du > q) + s′P(Du ≤ q), so the second term is again

not the minimum. This means we can eliminate this term and obtain

min{s′ + I({u}, f, s, C), I({u}, f, s, q)} ≥ min

s′, s

1− ∏
v∈U∪{u}

P(Dv ≤ q)

+ a,

which completes the proof.

Next, we use Lemmas 1-5 to prove that P prevII
h is a valid lower bound on the expected costs of

recourse.

Theorem 4. P prevII
h provides a lower bound on the total optimal expected costs or recourse for any route

adhering to partial route h.

Proof. We show that the function f II
k (q) provides a lower bound on the future optimal expected costs of

recourse incurred after having served all customers in U0 through Uk, on any route adhering to partial

route h = (U0, . . . , Ub), for all q ∈ {0, . . . , C}, k ∈ {0, . . . , b − 1} and fixed orientation. As this includes

the case f II
0 (C), it follows that P prevII

h provides a valid lower bound.

For k ∈ {0, . . . , b} and i ≤ |Uk|, denote by u(k, i) ∈ V , the location in Uk which is visited as

i-th location of Uk on r, so we may write r = (0 = u(1, 0), u(1, 1), . . . , u(1, |U1|), u(2, 1), . . . , u(b −
1, |Ub−1|), u(b, 1) = 0). We define f∗

k,i(q) like in (9) as the optimal expected costs of recourse on the

remainder of route r, in the fixed orientation, after having served customer u(k, i). That f II
k should

form an appropriate lower bound is equivalently stated as f∗
k,|Uk|(q) ≥ f II

k (q), for all k ∈ {0, . . . , b} and
q ∈ {0, . . . , C}, which we will prove.
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We show that f∗
k,|Uk|(q) ≥ f II

k (q) by means of a nested backward induction, which we distinguish

as outer and inner inductions. The outer backward induction is on k. The outer base case, k = b,

is trivially satisfied, as f∗
b,1(q) = 0 = f II

b (q) by definition. The outer induction hypothesis is that

f∗
k+1,|Uk+1|(q) ≥ f II

k+1(q) for some k ∈ {0, . . . , b − 1}, and the outer inductive step is to prove that also

f∗
k,|Uk|(q) ≥ f II

k (q). We consider two cases:

Case I: |Uk+1| = 1. In this case, we can write Uk+1 = {u} with u(k + 1, 1) = u, and FUk+1
(f, q) is

simply given by Fu(f, q), which results in a relatively simple expression of f II
k (q). We derive

f∗
k,|Uk|(q) = min{su(k,|Uk|),u + Fu(f

∗
k+1,1, C), Fu(f

∗
k+1,1, q)}

≥ min{s(Uk, Uk+1) + Fu(f
II
k+1, C), Fu(f

II
k+1, q)}

= f II
k (q),

where the inequality follows from the outer induction hypothesis, and because f∗
k+1,1 appears in Fu only

with positive coefficients.

Case II: |Uk+1| > 1. In this case, the expression of f II
k (q) is more convoluted. A reason for this, is that

FUk+1
(f II

k+1, q) is now the largest of the expressions (25) and (26), particular to Uk+1 and f II
k+1. We shall

consider these expressions separately, and show that they are both lower bounds on the optimal expected

costs Fu(k+1,1)(f
∗
k+1,1, q), from which it follows that also in this case f∗

k,|Uk|(q) = min{su(k,|Uk|),u(k+1,1)+

Fu(k+1,1)(f
∗
k+1,1, C), Fu(k+1,1)(f

∗
k+1,1, q)} ≥ min{s(Uk, Uk+1)+FUk+1

(f II
k+1, C), FUk+1

(f II
k+1, q)} = f II

k (q).

For notational convenience, denote (u(k + 1, 1), . . . , u(k + 1, |Uk + 1|)) = (1, . . . , u) and Uk = {z}.
First, we show that the value of expression (25) is less than or equal to the optimal expected costs

Fu(k+1,1)(f
∗
k+1,1, q) for all q ∈ {0, . . . , C}. To prove this, we recursively construct a function f ′

i with the

property that it is less than or equal to the optimal expected costs function f∗
i , for all i ∈ {1, . . . , u},

which we use to arrive at our result. For q ∈ {0, . . . , C}, define f ′
u(q) = H(f II

k+1, s̄(Uk+1), q), and

f ′
l (q) = I({l + 1}, f ′

l+1, s̄(Uk+1), q) for all l ∈ {1, . . . , u− 1}. By backward induction on l, we show that

f∗
l (q) ≥ f ′

l (q) for all q ∈ {0, . . . , C}, that f ′
l is decreasing in q, and that f ′

l (0)− f ′
l (C) ≤ s̄(Uk+1).

The inner base case, l = u, follows from the outer induction hypothesis f∗
u(q) ≥ f II

k+1(q), and Lemma 3

which states that f II
k+1(q) ≥ H(f II

k+1, s̄(Uk+1), q) = f ′
u(q), f

′
u is decreasing, and f ′

u(0)− f ′
u(C) ≤ s̄(Uk+1).

The inner induction hypothesis is that f∗
l+1(q) ≥ f ′

l+1(q) for all q ∈ {0, . . . , C}, f ′
l+1 is decreasing in q

and that f ′
l+1(0)− f ′

l+1(q) ≤ s̄(Uk+1) for some l ∈ {1, . . . , u−1} and we proceed with the inductive step.

Because we defined f ′
l (q) as f

′
l (q) = I({l+1}, f ′

l+1, s̄(Uk+1), q), by Lemma 1 and the inner induction

hypothesis f ′
l (q) is decreasing in q and f ′

l (0)− f ′
l (C) ≤ s̄(Uk+1). Furthermore, we derive

f∗
l (q) = min{s(l,l+1) + Fl+1(f

∗
l+1, C), Fl+1(f

∗
l+1, q)}

= min{s(l,l+1) + I({l + 1}, f∗
l+1, sl+1, C), I({l + 1}, f∗

l+1, sl+1, q)}

≥ min{s̄(Uk+1) + I({l + 1}, f ′
l+1, s̄(Uk+1), C), I({l + 1}, f ′

l+1, s̄(Uk+1), q)}

= min{s̄(Uk+1) + f ′
l (C), f ′

l (q)}

= f ′
l (q),

where the inequality follows from the definition of I, using s̄(Uk+1) ≤ sl+1 and s̄(Uk+1) ≤ s(l,l+1) and

the inner induction hypothesis stating that f∗
l+1(q) ≥ f ′

l+1(q) for all q ∈ {0, . . . , C}. This concludes the

inner proof by induction.

Observe for l ∈ {0, . . . , u − 1} that by repeatedly applying Lemma 2 we find f ′
l (q) = I({l +
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1, . . . , u}, f ′
u, s̄(Uk+1), q). This implies

F1(f
∗
1 , q) ≥ F1(f

′
1, q) = I(Uk+1, f

′
u, s̄(Uk+1), q), (27)

or equivalently that Fu(k+1,1)(f
∗
k+1,1, q) ≥ I

(
Uk+1, H

(
f II
k+1, s̄(Uk+1), ·

)
, s̄(Uk+1), q

)
= FUk+1

(f II
k+1, q),

which proves that the first expression is indeed a lower bound.

Next, we consider the second expression (26). We proceed similarly as with the first expression, by

constructing a function f ′′
l for all l ∈ {1, . . . , u} with the property that it is less than or equal to the

optimal expected costs function f∗
l , for all l ∈ {1, . . . , u}. We define f ′′

l

f ′′
l (q) = min

s(Uk+1, Uk+1), s(Uk+1)

1− ∏
v∈{l+1,...,u}

P(Dv ≤ q)

+ min
q′∈{0,...,C}

f II
k+1(q

′)

Next, we show by backward induction on l that f∗
l (q) ≥ f ′′

l (q) for all l ∈ {1, . . . , u}. In the inner base

case l = u, we have by the outer induction hypothesis f∗
u(q) ≥ f II

k+1(q) ≥ minq′∈{0,...,C} f
II
k+1(q

′) = f ′′
u (q).

Next, we assume the inner induction hypothesis f∗
l+1(q) ≥ f ′′

l+1(q) for some l ∈ {1, . . . , u− 1}. Then, by
using the induction hypothesis and Lemma 5, we proceed with the inductive step and derive

f∗
l (q) = min{s(l,l+1) + Fl+1(f

∗
l+1, C), Fl+1(f

∗
l+1, q)}

= min{s(l,l+1) + I({l + 1}, f∗
l+1, sl+1, C), I({l + 1}, f∗

l+1, sl+1, q)}

≥ min{s(Uk+1, Uk+1) + I({l + 1}, f ′′
l+1, s(Uk+1), C), I({l + 1}, f ′′

l+1, s(Uk+1), q)}

≥ min

s(Uk+1, Uk+1), s(Uk+1)

1− ∏
v∈{l+1,...,u}

P(Dv ≤ q)

+ min
q′∈{0,...,C}

f II
k+1(q

′)

= f ′′
l (q).

This concludes the inner proof by induction, which implies

F1(f
∗
1 , q) ≥ F1(f

′′
1 , q) = I({1}, f ′′

1 , s(Uk+1), q). (28)

Combining (27) and (28) yields

F1(f
∗
1 , q) ≥ max{I(Uk+1, f

′
u, s̄(Uk+1), q), I({1}, f ′′

1 , s(Uk+1), q)}

≥ max



∑
ξ∈Uk+1

P

( ∑
v∈Uk+1

Dv ≤ ξ

)
[sΓ(ξ − q) + f ′

u(CΓ(ξ − q) + q − ξ)],

min


s(Uk+1, Uk+1)P(D1 ≤ q) + s(Uk+1)P(D1 > q)

s(Uk+1)

[
1−

∏
v∈Uk+1

P(Dv ≤ q)

] + min
q′∈{0,...,C}

f II
k+1(q

′)


,

where the last equality follows from Lemma 4. Finally, we note that s(Uk+1, Uk+1)P(D1 ≤ q) +

s(Uk+1)P(D1 > q) = s(Uk+1)+[s(Uk+1, Uk+1)−s(Uk+1)]P(D1 ≤ q). If s(Uk+1) ≥ s(Uk+1, Uk+1), we have

that s(Uk+1)+[s(Uk+1, Uk+1)−s(Uk+1)]P(D1 ≤ q) ≥ s(Uk+1)+[s(Uk+1, Uk+1)−s(Uk+1)]maxv∈Uk+1
P(Dv ≤

q). Otherwise s(Uk+1) < s(Uk+1, Uk+1), in which case it follows that s(Uk+1) + [s(Uk+1, Uk+1) −
s(Uk+1)]P(D1 ≤ q) ≥ s(Uk+1) ≥ s(Uk+1)

[
1−

∏
v∈Uk+1

P(Dv ≤ q)
]
. As a result, we can replace
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P(D1 ≤ q) with max
v∈Uk+1

P(Dv ≤ q) to obtain

F ∗
1 (f

∗
1 , q) ≥ max



∑
ξ∈Uk+1

P

 ∑
v∈Uk+1

Dv ≤ ξ

 [sΓ(ξ − q) + f ′
u(CΓ(ξ − q) + q − ξ)],

min


s(Uk+1, Uk+1) max

v∈Uk+1

P(Dv ≤ q) + s(Uk+1)

[
1 − max

v∈Uk+1

P(Dv ≤ q)

]
,

s(Uk+1)

1 −
∏

v∈Uk+1

P(Dv ≤ q)


 + min

q′∈{0,...,C}
fII
k+1(q

′)


= FUk+1

(f II
k+1, q).

We conclude Case II by deriving

f∗
u(q) = min{s(u,1) + F1(f

∗
1 , C), F1(f

∗
1 , q)}

≥ min{s(Uk, Uk+1) + FUk+1
(f II

k+1, C), FUk+1
(f II

k+1, q)}

= f II
k (q).

Combining the results of Cases I and II completes the outer inductive step, showing that f II
k , and by

extension P prevII
h , forms a valid lower bound on the expected costs of recourse.

Now that we have proven that P prevII
h is a valid lower bound, we continue to show that it also

dominates the bound obtained from Louveaux and Salazar-González (2018). In fact, we prove that

f II
k (q) ≥ fL

k (q) for all k ∈ {0, . . . , b} and q ∈ {0, . . . , C}.

Theorem 5. For all k ∈ {0, . . . , b}, it holds that f II
k (q) ≥ fL

k (q).

Proof. In this proof, we use backward induction on k. The base case is trivial, as f II
b (q) = 0 = fL

b (q).

The induction hypothesis is f II
k′ (q) ≥ fL

k′(q) for all k′ > k, with k ∈ {0, . . . , b − 1}. Next, we proceed

with the inductive step.

Recall that fL
k (q) = max{fL1

k (q), fL2
k (q), fL3

k (q), fL4
k (q), fL5

k (q)}. To prove the inductive step, we

show one by one that f II
k (q) is greater or equal to each of the five auxiliary functions constituting fL

k (q).

Before considering these individual cases, note that f II
k (q) ≥ 0, which means we only have to check the

cases for which fL
k (q), or equivalently any of its components, are strictly positive.

Case I. The function fL1
k (q) is only nonzero when k = 0, q = C and |U1| > 1. We derive

f II
0 (C) = FU1

(f II
1 , C)

≥
∑
ξ∈ΞU

P

(∑
v∈U

Dv = ξ

)
[Γ(ξ − q)s̄(U) +H(f, s̄(U), CΓ(ξ − q) + q − ξ)]

≥ s̄(U1)P

(∑
v∈U1

Dv > C

)
= fLI

k (C).

Case II. The function fL2
k (q) is only nonzero when |Uk+1| > 1. We derive

f II
k (q) = min{s(Uk, Uk+1) + FUk+1

(f II
k+1, C), FUk+1

(f II
k+1, q)}

≥ min{s(Uk, Uk+1), FUk+1
(0, q)}
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≥ min

s(Uk, Uk+1), s̄(Uk+1)P

 ∑
v∈Uk+1

Dv > q


= fLII

k (q).

Case III. The function fL3
k (q) is only nonzero when |Uk+1| > 1 and

s(Uk+1, Uk+1) ≥ s(Uk+1)

(
1−

∏
v∈Uk+1

P(Dv≤q)

maxv∈Uk+1
P(Dv≤q)

)
. We derive

f II
k (q) ≥ min{s(Uk, Uk+1), FUk+1

(0, q)}

≥ min

s(Uk, Uk+1), s(Uk+1)

1−
∏

v∈Uk+1

P(Dv ≤ q)

 ,

s(Uk+1)(1− max
v∈Uk+1

P(Dv ≤ q)) + s(Uk+1, Uk+1) max
v∈Uk+1

P(Dv ≤ q)


≥ min

s(Uk, Uk+1), s(Uk+1)

1−
∏

v∈Uk+1

P(Dv ≤ q)

 ,

s(Uk+1)(1− max
v∈Uk+1

P(Dv ≤ q))+

s(Uk+1)

 max
v∈Uk+1

P(Dv ≤ q)−
∏

v∈Uk+1

P(Dv ≤ q)


≥ min

s(Uk, Uk+1), s(Uk+1)

1−
∏

v∈Uk+1

P(Dv ≤ q)


= fLIII

k (q).

Case IV. The function fL4
k (q) is only nonzero when |Uk+1| > 1, Uk+2 = {u} and

min
{
s(Uk+1, Uk+2),

∑q′

ξ=0 P(Du = ξ)fL
k+2(q

′ − ξ) + suP(Du > q′)
}
≥ s̄(Uk+1) for all q′ ≤ q. We de-

rive

f II
k (q) ≥ min{s(Uk, Uk+1), FUk+1

(f II
k+1, q)}

≥ min


s(Uk, Uk+1),∑

ξ∈Uk+1

P

( ∑
v∈Uk+1

Dv = ξ

)
[Γ(ξ − q)s̄(Uk+1) +H(fII

k+1, s̄(Uk+1), CΓ(ξ − q) + q − ξ)]


≥ min


s(Uk, Uk+1),

q∑
ξ=0

P

( ∑
v∈Uk+1

Dv = ξ

)
H(fII

k+1, s̄(Uk+1), q − ξ) +
∞∑

ξ=q+1

P

( ∑
v∈Uk+1

Dv = ξ

)
s̄(Uk+1)


≥ min


s(Uk, Uk+1),

P

( ∑
v∈Uk+1

Dv ≤ q

)
H(f II

k+1, s̄(Uk+1), q) + P

( ∑
v∈Uk+1

Dv > q

)
s̄(Uk+1)

 ,

where the last inequality follows from property 1 of Lemma 3. We note that, by using the induction

hypothesis in this case, for all q′ ≤ q

f II
k+1(q

′) = min{s(Uk+1, Uk+2) + FUk+2
(f II

k+2, C), FUk+2
(f II

k+2, q)}

≥ min{s(Uk+1, Uk+2), Fu(f
II
k+2, q)}
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≥ min{s(Uk+1, Uk+2),

q′∑
ξ=0

P(Du = ξ)f II
k+2(ξ − q′) + suP (Du > q′)}

≥ min{s(Uk+1, Uk+2),

q′∑
ξ=0

P(Du = ξ)fL
k+2(ξ − q′) + suP (Du > q′)}

≥ s̄(Uk+1).

As a result, we obtain H(f II
k+1, s̄(Uk+1), q) = min{minq′ f

II
k (q′) + s̄(Uk+1), minq′≤q f

II
k+1(q

′)} ≥ s̄(Uk+1).

Combining the above results yields

f II
k (q) ≥ min

s(Uk, Uk+1), P

 ∑
v∈Uk+1

Dv ≤ q

 s̄(Uk+1) + P

 ∑
v∈Uk+1

Dv > q

 s̄(Uk+1)


= min {s(Uk, Uk+1), s̄(Uk+1)}

= fLIV
k (q).

Case V. The function fL5
k (q) is only nonzero when Uk = {u} and Uk+1 = {v}. By the induction

hypothesis f II
k+1(q) ≥ fL

k+1(q), which yields

f II
k (q) = min{s(u,v) + Fv(f

II
k+1, C), Fv(f

II
k+1, q)} ≥ min{s(u,v) + Fv(f

L
k+1, C), Fv(f

L
k+1, q)} = fLV

k (q).

Since f II
k (q) is greater than or equal to each of the five auxiliary functions of fL

k (q). It follows that

f II
k (q) ≥ fL

k (q) for all q ∈ {0, . . . , C}, completing the inductive step, which concludes the proof.

D Partial route lower bound under identically independently

distributed demands

Theorem 6. Under identically independently distributed demands P prevIII
h = P prevI

h .

Proof. In the calculation of P prevIII
h , f I

uj(q) and f II
k (q) are updated whenever Uk = U(j) = {u}. There-

fore, it is sufficient to show that f I
uj(q) ≥ f II

k (q) before the update. We do this by using backwards

induction on k, for all k, j and u such that Uk = U(j) = {u} and for all q ∈ {0, . . . , C}. The base case,

k = b, j =
∑b−1

i=0 |Ui| and u = 0, is trivial, as f I
uj(q) = 0 = f II

k (q) for all q ∈ {0, . . . , C} per definition.
The induction hypothesis is that f I

u′j′(q) ≥ f II
k′ (q) for all k′ > k, j′ > j and u′ such that Uk′ = U(j′) =

{u′}, q ∈ {0, . . . , C} before the update rule, for some k ∈ {0, . . . , b−1} and j such that Uk = U(j) = {u}.
The inductive step is to prove that f I

uj(q) ≥ f II
k (q) for all q ∈ {0, . . . , C} before the update rule. We

consider two cases:

Case I: Uk+1 = U(j+1) = {u}. In this case, we derive f I
uj(q) = min{s(u,v)+Fu(f

I
v,j+1, C), Fv(f

I
v,j+1, q)}

and f II
k (q) = min{s(u,v) + Fv(f

II
k+1, C), Fv(f

II
k+1, q)}. As f I

v,j+1(q) = f II
k+1(q) due to the update rule, we

know that f I
uj(q) = f II

k (q).

Case II: |Uk+1| > 1. In this case, Uk+2 = U(j + |Uk+1| + 1) = {v}, which implies f I
v,j+|Uk+1|+1(q) =

f II
k+2(q) due to the update rule. We construct a modified VRPSD instance, for which f I

uj(q) forms

an upper bound on the expected costs of recourse and f II
k (q) a lower bound. The instance is defined

identically as the original instance, except that the preventive and corrective recourse costs for customers

in Uk, Uk+1 and Uk+2 are modified. The modified recourse costs are s′(u,v′) = s({u}, Uk+1), s
′
(v′,v′′) =

s(Uk+1, Uk+1), s
′
v′ = s(Uk+1) and s′(v′,v) = s(Uk+1, {v}) for all v′, v′′ ∈ Uk+1.
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We denote f ′
i(q) as the expected costs of future recourse on the modified instance after serving

the ith customer on the route, with q load in the vehicle and i ∈ {j, . . . , j + |Uk+1| + 1}. We define

f ′
j+|Uk+1|+1(q) = f II

k+2(q) as the future expected costs of recourse after serving Uk+2. Note that the

customer order in Uk+1 is irrelevant, due to the identical distributions and the fact that the cost of both

corrective and preventive recourse is identical for all customers in Uk+1 in the modified instance.

We note that f ′
j(q) and f ′

l (q) are obtained for all l ∈ {j + 1, . . . , j + |Uk+1|}, by replacing s(u,v′),

s(v′,v′′), sv′ and s(v′,v) in the calculation of f I
uj(q) and all f I

v′l(q) with the smaller values s′(u,v′), s
′
(v′,v′′),

s′v′ and s′(v′,v) respectively, for all v′, v′′ ∈ Uk+1. We conclude f I
uj(q) ≥ f ′

j(q) and f I
v′l(q) ≥ f ′

l (q) for all

v′ ∈ Uk+1, l ∈ {j + 1, . . . , j + |Uk+1|} and q ∈ {0, . . . , C}.
Next, we compute the bound P prevII

h described in Section 5.2.3 for the modified instance, which is

done using the recursive function which we denote here by f ′II
k (q). As it is shown in Appendix C that this

function provides lower bounds on the expected cost of future recourse, it follows that f ′
j(q) ≥ f ′II

k (q).

However, inspection of f ′II
k (q) reveals that it is equivalent to f II

k (q), due to the definition of the costs

of recourse in this modified instance. As a result, we obtain f I
uj(q) ≥ f ′

j(q) ≥ f ′II
k (q) = f II

k (q), proving

this case.

By induction, we have proven that f I
uj(q) ≥ f II

k (q) before the update rule for all k, j and u such that

Uk = U(j) = {u} and for all q ∈ {0, . . . , C}. This means that f I
uj(q) is not affected by the update rule,

implying that P prevI
h = P prevIII

h in the case of identically independently distributed demands.

E Activation function by Laporte et al. (2002)

Next, we discuss the partial route activation function of Laporte et al. (2002), and provide a counterex-

ample which shows that it is incorrect. Denote by δ(S, T ), for S, T ⊆ V ′ such that S ∩ T = ∅, the set of

edges between the sets S and T . Consider the partial route h = (U0, . . . , Ub). If b = 2, the function WL
h

used as partial activation function by Laporte et al. (2002) can be written as

WL
h (x) =

b−1∑
k=1

 ∑
e∈E(Uk)

xe − (|Uk| − 1)

+

 ∑
e∈δ(U0,U1)

xe − 1

 , if b = 2.

However, it turns out that this is not an an activation function for all partial routes h. Consider the

partial route h = ({0}, {1, 2}, {0}). The function is Wh(x) = x(1,2) + x(0,1) + x(0,2) − 2. A solution x

corresponding with the routes (0, 1, 0) and (0, 2, 0), does not adhere to h, while WL
h (x) = 2. For b ≥ 3,

the function WL
h used as partial activation function by Laporte et al. (2002) can be written as

WL
h (x) =

b−1∑
k=1

 ∑
e∈E(Uk)

xe − (|Uk| − 1)

+

b−1∑
k=0

 ∑
e∈δ(Uk,Uk+1)

xe − 1

+ 1, if b ≥ 3.

Again there is an issue. Consider the partial route h = ({0}, {1, 2}, {3}, {0}). The activation function is

WL
h (x) = x(1,2) + x(0,1) + x(0,2) + x(1,3) + x(2,3) + x(0,3) − 3. A solution x corresponding with the route

(0, 1, 3, 2, 0) which does not adhere to h, still results in WL
h (x) = 1. This demonstrates that WL

h (x) is

not a partial route activation function, which means that the corresponding partial route inequality is

in general also not valid.

F Partial route activation function

In this section, we prove that the partial route activation function Wh(x) as found in (18) is a valid

partial route activation function. We use the shorthand notation x(S) =
∑

e∈E(S) xe for every S ⊆ V
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and x(S, T ) =
∑

e∈δ(S,T ) xe for S ⊆ V and T ⊆ V \ S. For ease of writing, let x(v, S) ≡ x({v}, S) for

v ∈ V and S ⊆ V ′ \ {v}, and even x(u, v) ≡ x({u}, {v}) for u, v ∈ V such that u ̸= v. This allows us to

express Wh(x) as follows.

Wh(x) =

b−1∑
k=1

αk (x(Uk)− (|Uk| − 1)) +

b−1∑
k=0

βk (x(Uk, Uk+1)− 1) + γ (29)

where the coefficients are defined as follows

(α1, . . . , αb−1) =



(3) if b = 2,

(4, 4) if b = 3,

(3, 2, 3) if b = 4,

(3, 2, 1, . . . , 1, 2, 3) if b ≥ 5,

(β0, . . . , βb−1) =


(1, 0) if b = 2,

(1, 3, 1) if b = 3,

(1, 2, 1, . . . , 1, 2, 1) if b ≥ 4,

γ =

{
0 if b = 2,

1 if b ≥ 3.

Let us first outline our proof of Wh(x) being a partial route activation function. We decompose

Wh(x) into parts. The coefficient of each variable x(u,v) in Wh(x), with (u, v) ∈ E, depends on b and

the positions of u and v in the partial route. Therefore, we distinguish several types of parts, which are

sufficient to decompose Wh(x). For each of these parts we separately derive an upper bound on their

value. This allows us to identify an upper bound on the value of Wh(x) depending on x, and conditions

on x for which this upper bound is attained. In particular, it allows us to conclude that Wh(x) is a

partial route activation function. Next, we proceed as outlined, by first showing intermediate results

before arriving at the main theorem. We first provide two lemmas which characterize the values of a

feasible integer solution x if it corresponds with a route that adheres to the partial route h or not.

Lemma 6. For a partial route h with b = 2, a feasible integer solution x to the Basic-VRPSD corresponds

with a solution which includes a route that adheres to h, if and only if x(U1) = |U1|−1 and x(0, U1) = 2.

Proof. If x(U1) = |U1| − 1, by the degree constraints (2) and subtour elimination constraints (3), it

follows that the edges selected by x(U1) correspond with a single path P (U1) visiting all customers in

U1. If additionally x(0, U1) = 2 or, by the degree constraints, it follows that two edges are selected from

the depot to each of the end points of the path P (U1). We conclude that x corresponds to a route which

adheres to h. The reverse is immediate.

Lemma 7. For a partial route h with b ≥ 3, a feasible integer solution x to the Basic-VRPSD corresponds

with a solution which includes a route that adheres to h, if and only if x(Uk) = |Uk|−1 and x(Uk, Uk+1) =

1 for all k ∈ {0, . . . , b− 1}.

Proof. This proof is similar to that of Lemma 6. If x(Uk) = |Uk| − 1 for all k ∈ {0, . . . , b − 1}, by the

degree and subtour elimination constraints, it follows that the edges selected by x(Uk) correspond with a

single path P (Uk) visiting all customers in Uk. Note that if |Uk| = 1, we say that the path P (Uk) consists

of a single vertex but no edges. Suppose additionally that x(Uk, Uk + 1) = 1 for all k ∈ {0, . . . , b − 1}.
Because x(0, U1) = x(0, Ub−1) = 1, by the degree constraints, two edges are selected from the depot to

one of the endpoints of the path in U1 and in Uk. Furthermore, for each k ∈ {1, . . . , b − 1} such that
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|Uk| = 1, say Uk = {u}, by the degree constraints, two edges are selected which connect an endpoint of

the path in Uk−1 through u with Uk+1. Note that each endpoint of the path in Uk, for k ∈ {1, . . . , b− 1}
such that |Uk| > 1, is not connected with an edge to both a vertex in Uk−1 and Uk+2 by the degree

constraints. We conclude that x corresponds to a route which adheres to h. The reverse is immediate.

The significance of Lemmas 6 and 7 is that we can express adherence to h in terms of the values of

x(Uk) and x(Uk, Uk+1) for k ∈ {0, . . . , b − 1}. Appropriately decomposing Wh(x) into parts consisting

of these terms x(Uk) and x(Uk, Uk+1), allows us to assess the value of Wh(x) if x does and does not

correspond with a route that adheres to h. Next, we first separately go over the parts which we will

encounter in our decomposition.

Lemma 8. For any S ⊆ V ′, v ∈ V ′ with v /∈ S and x a feasible integer solution to the Basic-VRPSD,

it holds that x(0, S) + 2x(S) + x(v, S) ≤ 2|S|.

Proof. Observe that by the degree constraints it holds that x(S, V ′ \ S) + 2x(S) = 2|S|, such that

x(0, S) + 2x(S) + x(v, S) ≤ 2|S|.

Lemma 9. For any S ⊆ V ′ and x an feasible integer solution to the Basic-VRPSD, it holds that

x(0, S) + 3x(S) ≤ 3|S| − 1, and equality holds if and only if x(0, S) = 2 and x(S) = |S| − 1.

Proof. The subtour elimination constraint of S is x(S) ≤ |S| − 1, and similar to Lemma 8 we have

that x(0, S) + 2x(S) ≤ 2|S|. Hence, x(0, S) + 3x(S) ≤= 3|S| − 1. If x(0, S) = 2 and x(S) = |S| − 1,

then x(0, S) + 3x(S) = 3|S| − 1, i.e., equality holds. Conversely, suppose x(0, S) + 3x(S) = 3|S| − 1.

Because x satisfies the subtour elimination constraint x(S) ≤ |S| − 1, if x(0, S) ≤ 1, the equation

cannot hold. If x(0, S) ≥ 3, because x(0, S) + 2x(S) ≤ 2|S| which implies x(S) ≤ |S| − 1
2x(0, S), it

follows that the equation also cannot hold since x(0, S) + 3x(S) ≤ 3|S| − 3
2 < 3|S| − 1. Therefore, if

x(0, S) + 3x(S) = 3|S| − 1 then x(0, S) = 2, and it follows that x(S) = |S| − 1.

Lemma 10. For any S ⊆ V ′, v ∈ V ′ with v /∈ S and x a feasible integer solution to the Basic-VRPSD,

it holds that x(0, S) + 3x(S) + 2x(v, S) ≤ 3|S|, and equality holds if and only if either x(0, S) = 1,

x(S) = |S| − 1 and x(v, S) = 1, or x(0, S) = 2, x(S) = |S| − 2 and x(v, S) = 2.

Proof. The subtour elimination constraint of S ∪ {v} is x(S) + x(v, S) ≤ |S|, and by Lemma 8 it holds

that x(0, S) + 2x(S) + x(v, S) ≤ 2|S|. Hence, x(0, S) + 3x(S) + 2x(v, S) ≤ 3|S|. If either x(0, S) = 1,

x(S) = |S| − 1 and x(v, S) = 1, or x(0, S) = 2, x(S) = |S| − 2 and x(v, S) = 2, then equality holds.

Conversely, suppose x(0, S) + 3x(S) + 2x(v, S) = 3|S|. By the degree constraints, x(v, S) might only

take the values 0, 1 and 2.

First, if x(v, S) = 0, because x(0, S)+2x(S)+x(v, S) ≤ 2|S| by Lemma 8 and the subtour elimination

constraint for S is x(S) ≤ |S| − 1, it follows that 3|S| = x(0, S) + 3x(S) + 2x(v, S) ≤ 3|S| − 1 which is a

contradiction. So x(v, S) cannot be 0.

Next, suppose x(v, S) = 1. Lemma 8 implies x(S) ≤ |S| − 1
2x(0, S) −

1
2x(v, S). Therefore, 3|S| =

x(0, S) + 3x(S) + 2x(v, S) ≤ 3|S| − 1
2x(0, S) +

1
2x(v, S). Since x(v, S) = 1, x(0, S) ≤ 1. If x(0, S) = 0,

then by the subtour elimination constraint for S, it follows that 3|S| = x(0, S) + 3x(S) + 2x(v, S) =

3x(S) + 2 ≤ 3|S| − 1, which is a contradiction, so x(0, S) cannot be 0 if x(v, S) = 1. If x(0, S) = 1, it

follows that x(S) = |S| − 1.

Finally, suppose x(v, S) = 2. It similarly follows from Lemma 8 that x(0, S) ≤ 2. If x(0, S) = 0 or

x(0, S) = 1, it follows from x(0, S) + 3x(S) + 2x(v, S) = 3|S| that x(S) = |S| − 4
3 and x(S) = |S| − 5

3 ,

which violates integrality. If x(0, S) = 2 then x(S) = |S| − 2.

We conclude that equality holds if and only if either x(0, S) = 1, x(S) = |S| − 1 and x(v, S) = 1, or

x(0, S) = 2, x(S) = |S| − 2 and x(v, S) = 2.
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Lemma 11. For any S ⊆ V ′, v ∈ V ′ with v /∈ S and x a feasible integer solution to the Basic-VRPSD,

it holds that x(0, S) + x(0, v) + 4x(S) + 3x(v, S) ≤ 4|S|+1, and equality holds if and only if x(0, S) = 1,

x(0, v) = 1, x(S) = |S| − 1 and x(v, S) = 1.

Proof. By the subtour elimination constraint for S, Lemma 10, and the degree constraint for v, it follows

that x(0, S) + x(0, v) + 4x(S) + 3x(v, S) = x(S) + (x(0, S) + 3x(S) + 2x(v, S)) + (x(0, v) + x(v, S)) ≤
4|S| + 1, and equality holds if and only if x(S) = |S| − 1, x(0, S) + 3x(S) + 2x(v, S) = 3|S| and
x(0, v) + x(v, S) = 2. By Lemma 10, x(0, S) + 3x(S) + 2x(v, S) = 3|S| and x(S) = |S| − 1 if and only if

x(0, S) = 1, x(S) = |S| − 1 and x(v, S) = 1. Furthermore, x(0, v) + x(v, S) = 2 and x(v, S) = 1 if and

only if x(0, v) = 1 and x(v, S) = 1.

Lemma 12. For any S ⊆ V ′, u, v ∈ V ′, such that u, v /∈ S and u ̸= v, and x a feasible integer solution

to the Basic-VRPSD, it holds that x(u, S) + x(S) + x(v, S) ≤ |S| + 1, and equality holds if and only if

(x(u, S), x(S), x(v, S)) ∈ {(1, |S| − 1, 1), (2, |S| − 2, 1), (1, |S| − 2, 2), (2, |S| − 3, 2)}.

Proof. From the subtour elimination constraints for S ∪{u, v}, it follows that x(u, S)+x(S)+x(v, S) ≤
x (S ∪ {u, v}) ≤ |S|+1. If x(u, S)+x(S)+x(v, S) = |S|+1 and x(u, S) = 0, it follows that x(S) = |S|−1
and x(v, S) = 2. However, this violates the subtour elimination constraint for S ∪ {v} and we conclude

that x(u, S) cannot be 0. Similarly, x(v, S) cannot be 0. By the degree constraints of u and v, it further

follows that x(u, S) and x(v, S) can only take the values 1 or 2. As a result, equality holds if and only

if (x(u, S), x(S), x(v, S)) ∈ {(1, |S| − 1, 1), (2, |S| − 2, 1), (1, |S| − 2, 2), (2, |S| − 3, 2)}.

Lemma 13. For any S ⊆ V ′, u, v ∈ V ′, such that u, v /∈ S and u ̸= v, and x a feasible integer solution

to the Basic-VRPSD, it holds that x(0, u)+x(0, v)+2x(S)+2x(u, S)+2x(v, S) ≤ 2|S|+4, and equality

holds if and only if x(0, u) = 1, x(0, v) = 1, x(S) = |S| − 1, x(u, S) = 1 and x(v, S) = 1.

Proof. From the degree constraints for u and v, Lemma 12, and the subtour elimination constraint for S,

it follows that x(0, u) + x(0, v) + 2x(S) + 2x(u, S) + 2x(v, S) = (x(0, u) + x(u, S)) + (x(0, v) + x(v, S)) +

(x(u, S) + x(S) + x(v, S)) + x(S) ≤ 2|S| + 4, and equality holds if and only if x(0, u) + x(u, S) = 2,

x(0, v) + x(v, S) = 2, x(u, S) + x(S) + x(v, S) = |S| + 1 and x(S) = |S| − 1. Observe from Lemma 12,

that if x(u, S) + x(S) + x(v, S) = |S| + 1 and x(S) = |S| − 1 if and only if x(u, S) = x(v, S) = 1. If

additionally x(0, u) + x(u, S) = 2 and x(0, v) + x(v, S) = 2, then x(0, u) = x(0, v) = 1.

Lemma 14. For any S ⊆ V ′, u, v ∈ V ′, such that u, v /∈ S and u ̸= v, and x a feasible integer solution

to the Basic-VRPSD, it holds that x(0, u) + 2x(u, S) + 2x(S) + x(v, S) ≤ 2|S|+ 2, and equality holds if

and only if x(0, u) = 1, x(S) = |S| − 1, x(u, S) = 1 and x(v, S) = 1.

Proof. From the degree constraint for u, Lemma 12, and the subtour elimination constraint for S, it

follows that x(0, u)+2x(u, S)+2x(S)+x(v, S) ≤ (x(0, u) + x(u, S))+(x(u, S) + x(S) + x(v, S))+x(S) ≤
2|S| + 2, and equality holds if and only if x(0, u) + x(u, S) = 2, x(u, S) + x(S) + x(v, S) = |S| + 1 and

x(S) = |S| − 1. From Lemma 12 it follows that if x(u, S) + x(S) + x(v, S) = |S|+ 1 and x(S) = |S| − 1

then x(u, S) = x(v, S) = 1. If additionally x(0, u) + x(u, S) = 2 then x(0, u) = 1.

Theorem 7. The function Wh(x) is a partial route activation function of h.

Proof. Denote the partial route by h = (U0, . . . , Ub). Below, we distinguish between the different cases

of b. In each case, we indicate why Wh(x) ≤ 1, and provide the necessary and sufficient conditions such

that Wh(x) = 1. Because both x and the coefficients of Wh(x) are integer, it follows that Wh(x) ≤ 0

otherwise, which we do not repeat in each case for the sake of conciseness. Moreover, we shall repeatedly

apply Lemma 7, but not specifically mention the condition x(U) = |U | − 1 for each singleton set U ∈ h,

since it satisfied by default.
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Case b = 2:

Let h = ({0}, U, {0}), then Wh(x) = x(0, U) + 3x(U)− 3|U |+ 2. By Lemma 9 it holds that Wh(x) ≤ 1.

In particular Wh(x) = 1 if and only if x(0, U) = 2 and x(U) = |U | − 1. By Lemma 6, it follows that

Wh(x) = 1 if and only if x corresponds with a solution which includes a route that adheres to h.

Case b = 3:

Let h = ({0}, U1, U2, {0}). A property of a partial route is that |U1| = 1 or |U2| = 1 (or both). If |U2| = 1,

say U2 = {v}, then Wh(x) = 4x(U1)+x(0, U1)+ 3x(v, U1)+x(0, v)− 4|U1|. By Lemma 11, it holds that

Wh(x) ≤ 1. In particular Wh(x) = 1 if and only if x(U1) = |U1|−1 and x(0, U1) = x(v, U1) = x(0, v) = 1.

By Lemma 7, it follows that Wh(x) = 1 if and only if x corresponds with a solution which includes a

route that adheres to h. The case where |U1| = 1 is identical.

Case b = 4:

Let h = ({0}, U1, U2, U3, {0}). We distinguish two cases, |U2| = 1, and |U2| > 1. If |U2| = 1, say U2 = {v},
thenWh(x) = 3x(U1)+3x(U3)+x(0, U1)+2x(v, U1)+2x(v, U3)+x(0, U3)−3|U1|−3|U3|+1. We decompose

Wh(x) in three parts, indicated by parenthesis, as follows: Wh(x) = (x(0, U1) + 3x(U1) + 2x(v, U1)) +

(3x(U3) + 2x(v, U3) + x(0, U3)) − (3|U1|+ 3|U3| − 1). By applying Lemma 10 to the first two parts, we

find that Wh(x) ≤ 1. Observe that by the degree constraint for v it cannot simultaneously hold that

x(v, U1) = 2 and x(v, U2) = 2. Therefore, it further follows from Lemma 10 that Wh(x) = 1 if and only

if x(U1) = |U1| − 1, x(U3) = |U3| − 1, and x(0, U1) = x(v, U1) = x(v, U3) = x(0, U3) = 1. By Lemma 7,

it follows for that when |U2| = 1 then Wh(x) = 1 if and only if x corresponds with a solution which

includes a route that adheres to h.

Next, suppose |U2| > 1. As a property of partial routes, it must hold that |U1| = |U3| = 1, say

U1 = {u} and U3 = {v}. In this case Wh(x) = 2x(U2)+x(0, u)+2x(u, U2)+2x(v, U2)+x(0, v)−2|U2|−3.
By Lemma 13, it holds that Wh(x) ≤ 1. In particular Wh(x) = 1 if and only if x(U2) = |U2| − 1 and

x(0, u) = x(u, U2) = x(v, U2) = x(0, v) = 1. By Lemma 7, it follows that Wh(x) = 1 if and only if x

corresponds with a solution which includes a route that adheres to h.

Case b ≥ 5:

The function Wh(x) can be constructed by the following procedure. Initialize a function as −3|U1| −
2|U2| −

∑b−3
k=3 |Uk| − 2|Ub−2| − 3|Ub−1|+ 4, and proceed as follows

• If |U2| > 1, denote U1 = {u1} and U3 = {u3}, and add the part x(0,u1) + 2x(u1, U2) + 2x(U2) +

x(u3, U2). Note that Lemma 14 applies to this part.

• Otherwise denote U2 = {u2} and add the part x(0, U1)+3x(U1)+2x(U1, u2). Note that Lemma 10

applies to this part.

• If |Ub−2| > 1, denote Ub−1 = {ub−1} and Ub−3 = {ub−3}, and add the part x(0,ub−1)+2x(ub−1, Ub−2)+

2x(Ub−2) + x(ub−3, Ub−2). Note that Lemma 10 applies to this part.

• Otherwise denote Ub−2 = {ub−2}, and add the part x(0, Ub−1) + 3x(Ub−1) + 2x(Ub−1, ub−2). Note

that Lemma 10 applies to this part.

• For all k ∈ {3, . . . , b− 3}, if |Uk| > 1 denote Uk−1 = {uk−1} and Uk+1 = {uk+1}, and add the part

x(uk−1, Uk) + x(Uk) + x(uk+1, Uk). Note that Lemma 12 applies to this part.

• For all k ∈ {2, . . . , b− 3} such that |Uk| = |Uk+1| = 1, denote Uk = {uk} and Uk+1 = {uk+1}, and
add the part x(uk, uk+1).

By applying the indicated lemma for each part, we can conclude that Wh(x) ≤ 1, and Wh(x) = 1 if

and only if x(Uk) = |Uk| − 1 and x(Uk, Uk+1) = 1 for all k ∈ {0, . . . , b− 1}. Thus, Wh(x) is maximal if

and only if x adheres to h. By Lemma 7, it follows that Wh(x) = 1 if and only if x corresponds with a

solution which includes a route that adheres to h.
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G Improved partial route activation function

Theorem 8. For any partial route h = (U0, . . . , Ub), with b ≥ 4, it holds that Wh(x) ≥ W J
h (x) for all

solutions x to the continuous relaxation of the Basic-VRPSD.

Proof. First, let us prove that∑
e∈δ(Uk−1,Uk)

xe +
∑

e∈E(Uk)

xe +
∑

e∈δ(Uk,Uk+1)

xe ≤ |Uk|+ 1,∀k ∈ {2, . . . , b− 2}. (30)

If |Uk| = 1, then Uk = {u} for some u ∈ V ′. This means |Uk|+1 = 2 =
∑

e∈δ(u) xe ≥
∑

e∈δ(Uk−1,Uk)
xe+∑

e∈E(Uk)
xe +

∑
e∈δ(Uk,Uk+1)

xe, where we use (2). Next, if |Uk| > 1, then |Uk−1| = |Uk+1| = 1 and∑
e∈δ(Uk−1,Uk)

xe+
∑

e∈E(Uk)
xe+

∑
e∈δ(Uk,Uk+1)

xe ≤
∑

e∈E(Uk−1∪Uk∪Uk+1)
xe ≤ |Uk−1∪Uk∪Uk+1|−1 =

|Uk|+ 1 by (3), thus proving (30).

Now, let us consider Wh(x)−W J
h (x) for b = 4. We can write this difference as

Wh(x)−W J
h (x) = −

 ∑
e∈E(U2)

xe − (|U2| − 1)

−
 ∑

e∈δ(U1,U2)

xe − 1

−
 ∑

e∈δ(U2,U3)

xe − 1


= |U2|+ 1−

 ∑
e∈δ(U1,U2)

xe +
∑

e∈E(U2)

xe +
∑

e∈δ(U2,U3)

xe


≥ 0,

where the equality follows immediately from (30). For b ≥ 5, we have

Wh(x)−W J
h (x) = −

 ∑
e∈E(U2)

xe − (|U2| − 1)

− 2

b−3∑
k=3

 ∑
e∈E(Uk)

xe − (|Uk| − 1)


−

 ∑
e∈E(Ub−2)

xe − (|Ub−2| − 1)

−
 ∑

e∈δ(U1,U2)

xe − 1


− 2

b−3∑
k=2

 ∑
e∈δ(Uk,Uk+1)

xe − 1

−
 ∑

e∈δ(Ub−2,Ub−1)

xe − 1


=

b−2∑
k=2

|Uk|+ 1−
∑

e∈δ(Uk−1,Uk)

xe +
∑

e∈E(Uk)

xe +
∑

e∈δ(Uk,Uk+1)

xe


≥ 0,

where the inequality follows from (30). Thus, we have that Wh(x) ≥ W J
h (x) for all solutions x to the

continuous relaxation of the Basic-VRPSD.

H k-route activation function

For S ⊂ V ′, let m(S) be a lower bound on the number of routes required to visit all customers in S and

consider an integer k ≥ m(S). We repeat the function found in (22).

W(S,k)(x) = (k −m(S) + 1)
∑

e∈δ({0},S)

xe+

(2(k −m(S)) + 3)
∑

e∈E(S)

xe − (2(k −m(S)) + 3)|S|+ k + 1.
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Theorem 9. The function W(S,k)(x) is a k-route activation function of S.

Proof. Suppose that x corresponds to a solution in which all customers in S exclusively appear on m′

different routes. Then,
∑

e∈δ({0},S) xe = 2m′ and
∑

e∈E(S) xe = |S| −m′ and it follows that W(S,k)(x) =

k −m′ + 1. Observe that it is nonpositive if m′ > k.

Now suppose that x corresponds to a solution in which all customers in S appear on m′ different

routes, but at least one other customer which is not included in S appears on at least one of these

routes. It follows that
∑

e∈δ({0},S) xe ≤ 2m′ and from the subtour elimination constraints (3) that∑
e∈E(S) xe ≤ |S| −m′. Suppose

∑
e∈E(S) xe ≤ |S| −m′ − 1, then W(S,k)(x) ≤ 2m(S)− k −m′ − 2 ≤ 0,

where the last inequality follows from m(S) ≤ k and m(S) ≤ m′. Otherwise
∑

e∈E(S) xe = |S| −m′ − 1.

In this case, because at least one other customer which is not included in S must appear on at least one of

these routes, it must hold that
∑

e∈δ({0},S) xe ≤ 2m′− 1. It follows that W(S,k)(x) ≤ m(S)−m ≤ 0.
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