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a b s t r a c t 

To realize Quantitative MRI (QMRI) with clinically acceptable scan time, acceleration factors achieved 

by conventional parallel imaging techniques are often inadequate. Further acceleration is possible using 

model-based reconstruction. We propose a theoretical metric called TEUSQA: Time Efficiency for Under- 

Sampled QMRI Acquisitions to inform sequence design and sample pattern optimisation. TEUSQA is de- 

signed for a particular class of reconstruction techniques that directly estimate tissue parameters, possi- 

bly using prior information to regularize the estimation. TEUSQA can be used to evaluate undersampling 

patterns for multi-contrast QMRI sequences targeting any tissue parameter. To verify the time efficiency 

predicted by TEUSQA, we performed Monte Carlo simulations and an accelerated parameter mapping 

with two sequences (Inversion prepared fast spin echo for T 1 and T 2 mapping and 3D GRASE for T 2 and 

B0 inhomogeneity mapping). Using TEUSQA, we assessed several ways to generate undersampling pat- 

terns in silico , providing insight into the relation between sample distribution and time efficiency for 

different acceleration factors. The time efficiency predicted by TEUSQA was within 15% of that observed 

in the Monte Carlo simulations and the prospective acquisition experiment. The assessment of under- 

sampling patterns showed that a class of good patterns could be obtained by low-discrepancy sampling. 

We believe that TEUSQA offers a valuable instrument for developers of novel QMRI sequences pushing 

the boundaries of acceleration to achieve clinically feasible protocols. Finally, we applied a time-efficient 

undersampling pattern selected using TEUSQA for a 32-fold accelerated scan to map T 1 & T 2 mapping of 

a healthy volunteer. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Traditional MR images are weighted and do not actually mea- 

ure tissue properties ( Ma et al., 2013; Tofts, 2005 ). This may com-

licate the diagnosis of subtle changes in these tissue properties 

 Warntjes et al., 2008 ). By measuring tissue properties, Quanti- 

ative MR imaging (QMRI) promises to reduce the sensitivity to 

he exact acquisition protocol and improve the reproducibility and 

omparability of the results ( Weiskopf et al., 2013 ). 

In conventional MR imaging, weighted images are obtained by 

ulse sequences that enhance contrasts between tissues but do not 

uantitatively measure any specific tissue property. On the con- 

rary, in QMRI, the pulse sequence acquires images of multiple 

pin states, followed by a model fitting step to infer the tissue 

roperties quantitatively. Naive implementations of this approach, 
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here multiple fully sampled images are acquired, require consid- 

rably more scan time than conventional MR imaging. Long scan 

ime makes the acquisition more sensitive to patient motion and 

ther system imperfections, rendering it impractical for clinical use 

 Altbach et al., 2013; Hilbert et al., 2018 ). 

Scan time can be reduced by undersampling the k-space and 

xploiting prior information and/or complementary information. In 

arallel imaging, the complementary information is provided by 

he different sensitivity profiles of channels in a multi-channel coil 

 Hamilton et al., 2017 ). However, the achievable acceleration is lim- 

ted Vasanawala et al. (2010) . Conventional MR images have been 

ccelerated further using prior information about sparsity by com- 

ressed sensing reconstructions ( Lustig et al., 2007; Murphy et al., 

012 ) and prior information learned from deep neural networks 

 Knoll et al., 2020 ). As QMRI has multiple contrast data, recon- 

truction techniques that exploit the relationship across contrast 

mages as part of estimation can accommodate even higher ac- 

eleration. Recently developed MR fingerprinting approaches rely 
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n information about signal evolution, obtained by Bloch simu- 

ations and encoded by a dictionary ( Ma et al., 2013 ). Similarly, 

amir et al. (2017) add the temporal signal relaxation in the paral- 

el imaging forward model to improve the trade-off between the 

mage resolution and scan time. These results have shown that 

econstruction techniques leveraging redundancy across contrasts 

ave the potential to accelerate QMRI acquisitions sufficiently to 

ake them clinically feasible. 

Model-based reconstruction uses models of the relations among 

he contrast images during reconstruction to allow parameter esti- 

ation from undersampled data ( Block et al., 2009; Sumpf et al., 

011; Majumdar and Ward, 2011; Zhao et al., 2014; Sumpf et al., 

014; Ben-Eliezer et al., 2016; Tamir et al., 2017; Hilbert et al., 

018; Zimmermann et al., 2018; Hu and Peters, 2019; Zhao et al., 

016; Zhang et al., 2015; Zhao et al., 2015; Mandava et al., 2018; 

henxi Hu and Reeves, 2015; Knopp et al., 2009; Tran-Gia et al., 

015 ). A overview of such techniques is provided by Zhao et al. 

hao et al. (2014) . An implicit assumption in model-based recon- 

truction methods is that the information from each contrast com- 

lements those from other contrasts to allow joint reconstruction 

r estimation. The spatial information provided by each contrast 

epends on the distribution of k-space samples, i.e., the under- 

ampling pattern, which could be different for each contrast ( Knoll 

t al., 2011; Cristobal-Huerta et al., 2018; Tsao et al., 2003; Haldar 

nd Kim, 2019; Haldar et al., 2009; Bahadir et al., 2019 ). However, 

dentifying good undersampling patterns has received only limited 

ttention ( Levine and Hargreaves, 2018 ). 

An exhaustive empirical search for the most efficient under- 

ampling pattern is impossible due to the excessively large num- 

er of possible patterns. Therefore, there is a need for a theoreti- 

al technique for designing good undersampling patterns. For spe- 

ific MRI modalities various frameworks have been developed for 

ptimisation of sequence settings such as echo time (TE), inver- 

ion time (TI), echo spacing (ESP) and repetition time (TR) ( Leitão 

t al., 2021; Deoni et al., 2003; Crawley and Henkelman, 1988; 

ssländer et al., 2019; Zhao et al., 2019; Poot et al., 2010; Jones 

t al., 1996; Brihuega-Moreno et al., 2003 ). A number of them 

se the Cramér Rao lower bound (CRLB) as metric, for instance: 

or T 2 imaging by Jones et al. (1996) , for diffusion measurements 

y Brihuega-Moreno et al. (2003) , for diffusion kurtosis imaging 

y Poot et al. (2010) , for MRF by Zhao et al. (2019) . Such met-

ics have been used to evaluate undersampling patterns as well 

 Haldar et al., 2009; Haldar and Kim, 2019 ). Levine and Harg- 

eaves (2018) proposed a metric for evaluation of undersampling 

atterns for a class of techniques that uses a linear subspace of 

he model to reconstruct dynamic image series. For model-based 

econstruction that directly estimates tissue parameter maps from 

ndersampled k-space, Zhao et al. (2014) derived an expression for 

he CRLB that is applicable with and without sparsity constraints. 

owever, to the best of our knowledge, there are no studies dedi- 

ated to evaluating undersampling patterns for this class of model- 

ased reconstruction techniques. 

Our aim is to develop a framework for theoretical evaluation of 

ndersampling patterns that can take any tissue parameters or ac- 

uisition protocol into account. There are two challenges for using 

 CRLB based framework. First, as calculation of the CRLB requires 

he inversion of a large information matrix, it is computationally 

xpensive. Second, there are degeneracies: in voxels with (almost) 

ero proton density the other parameters are not identifiable and 

his may impact other voxels since fitting is performed in k-space 

omain. One of the ways to get around the degeneracies is by the 

nclusion of prior information. However, this makes the estimator 

iased to the prior information while the CRLB assumes an unbi- 

sed estimator. 

In this work, we propose a theoretical metric called TEUSQA: 

ime Efficiency for UnderSampled QMRI Acquisitions. TEUSQA can 
2 
e used to evaluate undersampling patterns for multi-contrast 

MRI sequences targeting any tissue parameter. It is based on 

he CRLB and takes into account sequence-related settings as well 

s the undersampling pattern. TEUSQA overcomes computational 

omplexity by using a central patch of k-space for evaluation. To 

ake the estimation free from degeneracies and keep the met- 

ic’s generalisability, we propose a ‘weak’ prior that only comes 

nto play when the information on a voxel is not available from 

he measurements. TEUSQA accounts for this prior information by 

omputing the posterior distribution using Bayes theorem similarly 

o Bayesian CRLB ( Van Trees et al., 2013 ). We evaluate TEUSQA 

ith two sequences: Inversion prepared fast spin echo (3D IP-FSE) 

nd Gradient recalled echo sequence (3D GRASE) to verify its gen- 

ralisability. We show with Monte Carlo simulations and prospec- 

ive acquisitions that it can accurately predict the variance ob- 

erved in actual scans with full-sized k-space. Using TEUSQA, we 

valuate several undersampling pattern generation techniques and 

dentify a key property called discrepancy, which can aid in the 

eneration of time efficient undersampling patterns. We show with 

 prospectively undersampled in-vivo scan, that such patterns can 

e used to obtain T 1 and T 2 maps. 

. Theory 

.1. Derivation of time efficiency 

.1.1. Signal model for an undersampled QMRI acquisition 

Let θx ∈ R 

P be a column vector of P tissue parameters ( T 1 , T 2 ,

tc.) at position x of the (cartesian) voxel grid of the image �x ⊂
 

3 . Let θ ∈ R 

L be the concatenation of θx ∀ x , with length L = P | �x | .
et f q (θx ) be a function that predicts the signal of a contrast state 

n an acquisition scheme that acquires Q different contrast states 

ndexed by q ∈ [1 , Q] . Let C x ,c ∈ C indexed as c ∈ [1 , C] be the coil

ensitivity map where C is the number of coils used in the acqui- 

ition. Let F k, x = e −i x T k/ | �x | be the Fourier transform operator be- 

ween the image domain �x and the k-space domain �k where k

epresents the multi-dimensional k-space index. 

We define the domain of sampled k-space as �k,S 
q ⊆ �k , which 

ay be different for each contrast q . Then the expected value for a 

-space measurement μq, k,c (θ) , is given by 

q, k,c (θ) = 

∑ 

x ∈ �x 

F k, x C x ,c f q (θx ) . (1) 

The noise in the acquired k-space can be assumed to be of 

omplex Gaussian distribution having independent real and imag- 

nary parts ( Henkelman, 1985; Brown et al., 2014 ). The modeled 

ignal shown in Eq. (1) can be represented in complex notation as 

q, k,c = � 

{
μq, k,c 

}
+ i � 

{
μq, k,c 

}
and the measured complex-valued 

ignal Z q, k,c can also be represented in the same way. For no- 

ational convenience, we define μ̀q, k,c = 

(
�{ μq, k,c } 
�{ μq, k,c } 

)
and Z̀ q, k,c = 

�{ Z q, k,c } 
�{ Z q, k,c } 

)
. Let v ec ∗(A ∗) make a vector out of A , iterating over all

ndices ∗, then Z = v ec q, k,c 

(
Z̀ q, k,c 

)
∈ R 

2 N , where N = C 
∑ 

q | �k,S 
q | and

= v ec q, k,c 

(
μ̀q, k,c 

)
indexed as Z n , μn with n ∈ { 1 , . . . 2 N} . Assum-

ng independent noise in the measurements, the joint probability 

ensity function (PDF) of all measurements across coils and con- 

rasts is given by: 

p(Z| θ, σ ) = 

Q ∏ 

q =1 

∏ 

k∈ �k,S 
q 

@ c@ ∏ 

c=1 

p 
(
Z̀ q, k,c | θ, σ

)
= 

2 N ∏ 

n =1 

p(Z n | θ, σ ) , (2) 

here σ is the standard deviation of noise. Then p(Z n | θ, σ ) is a

aussian distribution given by: 

p(Z n | θ, σ ) = 

1 √ 

(
e −

1 
2 σ ( Z n −μn (θ) ) 

2 
)
. (3) 
σ 2 π



R. Byanju, S. Klein, A. Cristobal-Huerta et al. Medical Image Analysis 78 (2022) 102390 

2

s

H

S  

b

b  

T

t

w

t

a

i

w

l

θ

2

t

a

i

R

I

w

i

m

p

r

t

V

s

e

T

J

g  

b

θ

�

o

v

V

F

s

b

w

m

m

2

a

(

t

d

e

p

s

b

i  

s

a

i

b

a

r

t

s

r

t

i

b

t

d

T

p

t

b

t  

r

o

t

o

I

2

q

V

r

f

a

a

t

s

C

w

c

i

C

.1.2. Estimator and prior information 

To estimate θ given the measurements Z, various estimators 

uch as least square ( Hilbert et al., 2018; Zimmermann et al., 2018; 

u and Peters, 2019 ) or maximum likelihood ( Block et al., 2009; 

umpf et al., 2011; Zhao et al., 2014 ) have often been used in com-

ination with prior information such as sparsity among the neigh- 

ouring voxels ( Zhao et al., 2014; Zimmermann et al., 2018 ). In the

EUSQA framework, we assume a weak prior on the parameters 

o avoid degeneracies. We consider a spatially independent prior 

ith a normal distribution with mean θ1 ∈ R 

P and covariance ma- 

rix �1 ∈ R 

P×P . Let θ1 and �1 be replicated | �x | times to form θ
nd � respectively. Then, the prior distribution over all the voxels 

s given by: 

p(θ| θ, �) = 

∏ 

x ∈ �x 

N (θx | θ1 , �1 ) = 

e −
1 
2 (θ−θ) T �−1 (θ−θ) √ 

(2 π) L det �
. (4) 

To estimate θ, we use a maximum a-posteriori (MAP) estimate, 

hich in the limit of infinitely weak prior converges to a maximum 

ikelihood estimate: 

ˆ = arg max 
θ

[ 
log 
(

p(Z| θ, σ ) 
)

+ log 

(
p(θ| θ, �) 

)] 
. (5) 

.1.3. Prediction of parameter variance maps 

To predict a theoretical lower bound on the variance of θ for 

he case of model-based reconstruction of an undersampled QMRI 

cquisition, Zhao et al. (2014) derived an expression for the CRLB. It 

s defined by the inverse of the Fisher information matrix I(θ, σ ) ∈ 

 

L ×L , given by: 

(θ, σ ) = E Z 

[ (
∂ ln p(Z| θ, σ ) 

∂θ

)(
∂ ln p(Z| θ, σ ) 

∂θ

)T 
] 

(6) 

= 

2 N ∑ 

n =1 

2 N ∑ 

m =1 

∂μn 

∂θ
∂μm 

∂θT E 

[ 
∂ ln p(Z n | θ,σ ) 

∂μn 

∂ ln p(Z m | θ,σ ) 
∂μm 

] 
(7) 

= 

1 

σ 2 
J (θ) T J (θ) (8) 

here J(θ) = 

∂ μ
∂θ

∈ R 

2 N×L . Although this expression nicely takes 

nto account the effect of undersampling, it is only valid for pure 

aximum likelihood estimators as it neglects the effect of the 

rior information. 

To account for the prior in the variance estimate for θ, we de- 

ive an approximate posterior distribution p(θ| Z, σ ) considering 

he Bayes theorem similarly to the derivation of Bayesian CRLB 

an Trees et al. (2013) . In this derivation, we assume that the 

ignal decay along the contrast given by f q (θx ) can be consid- 

red locally linear around the ground truth parameter values ˜ θ. 

he remaining terms in μq, k,c (θ) are linear, hence, μ(θ) ≈ μ( ̃  θ) + 

(θ) { θ − ˜ θ} . 
In Appendix A we show that the posterior distribution of θ is 

iven by: p(θ| Z, σ ) ∝ N (θ| ̆θ, �̆) with mean and covariance given

y: 

˘ = 

1 
σ 2 �̆

[ 
J( ̃  θ) T 

{ 
Z − μ( ̃  θ) + J( ̃  θ) ̃  θ

} 
+ �−1 θ

] 
(9) 

˘ = 

[ 
�−1 + I( ̃  θ, σ ) 

] −1 

. (10) 

The diagonal d ∈ R 

L of �̆ gives the individual posterior variance 

f each parameter at each voxel. This vector can be remapped to P 

ariance maps over �x , 

 x ,p = vec −1 
x ,p ( d ) . (11) 
3 
or voxels with low information content, e.g. with zero proton den- 

ity, the posterior variance V x ,p equals the prior variance (specified 

y the diagonal of �1 ). For voxels with high information content 

here the parameters can be reliably recovered from the measure- 

ents, the posterior variance converges to the inverse Fisher infor- 

ation matrix. 

.1.4. Accelerated computation of variance maps 

Evaluation of TEUSQA for a map with 6 parameters per voxel 

nd size of 256 × 256 will require inversion of matrix of size 

6 × 256 × 256) 2 . Such matrix inversions take long computation 

ime and are inconvenient for repetitive use, often needed when 

esigning undersampling patterns and scan protocols. Thus, accel- 

rated computation is desirable. We propose the evaluations to be 

erformed in a downsampled parameter map, which leads to a 

maller patch of k-space �k,D . The evaluation of V x ,p is dominated 

y computation of I( ̃  θ, σ ) where the number of computations 

s given by 2 NL 2 = 2 C 
∑ 

q | �k,S 
q | (P | �x | ) 2 . Assuming | �x | = | �k | a

maller k-space would save computations by a factor | �k | 3 
| �k,D | 3 as well 

s avoid large matrix inversion by decreasing the size of I( ̃  θ, σ ) . 

We hypothesize that using relatively small patches of k-space 

s sufficient to capture all the relevant aspects involved in model- 

ased reconstruction. Even though a small k-space patch leads to 

 lower resolution image, the model and the acquisition settings 

emain pertinent in the computation. Moreover, small scale fea- 

ures in k-space translate into large-scale image features, and coil 

ensitivity maps vary smoothly in the spatial domain. Therefore, a 

elatively small patch of k-space is adequate to capture the varia- 

ions in the coil sensitivity maps, thus capturing the parallel imag- 

ng induced acceleration. However, the downsampling ratio should 

e limited to a factor that retains the variations in the coil sensi- 

ivity maps. 

Due to the downsampling, the undersampling pattern would 

iffer between the actual scan and the k-space considered by 

EUSQA. Assuming that the full-sized and downsized undersam- 

ling patterns are generated using the same pattern generation 

echnique, we provide an appropriate compensation factor that can 

e used to compensate for the difference. In the Eq. (6) , summa- 

ion is over the number of observations ( 2 N = 2 C 
∑ 

q | �k,S 
q | ). The

eduction in size of k-space | �k | would decrease the number of 

bservations. Assuming all observations have same SNR, the fac- 

or representing noise 1 
σ 2 should scale linearly with the number of 

bservations; therefore, the required scaling factor to be applied to 

( ̃  θ, σ ) is | �k | 
| �k,D | . 

.1.5. From posterior variance to time efficiency 

The variance maps predicted by CRLB can be used to 

uantify noise amplification using metrics such g-factor 

elikina et al. (2013) or d-factor Hu and Peters (2019) . Such met- 

ics consider the ratio between square root of variance predicted 

or an undersampled acquisition with that of a fully sampled 

cquisition. For verification of these metrics with an actual scan, 

 fully sampled scan is needed. However, that is impractical due 

o long scan times. Therefore, to facilitate comparison with actual 

cans, we propose to predict the coefficient of variation instead: 

V x ,p = 

√ 

V x ,p 

˜ θx ,p 

(12) 

here ˜ θx ,p represents ground truth values of the parameters in the 

orresponding voxel. We take the average CV x ,p over a region of 

nterest (ROI) �x,ROI ⊆ �x to aggregate the result for parameter p: 

 V p = 

∑ 

x ∈ �x,ROI 

C V x ,p 

| �x,ROI | . (13) 
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a 1 
his CV p depends on sequence settings as well as the undersam- 

ling pattern. To quantify the information gained per unit scan 

ime T , the final time efficiency metric TEUSQA is defined as 

p = 

1 

CV 

2 
p × T 

. (14) 

he inclusion of scan time in the metric allows comparison across 

ifferent acceleration factors, and facilitates analysing the trade-off

etween scan time and precision. 

.2. Undersampling patterns 

Scan time can be reduced by undersampling the two phase en- 

oding dimensions in 3D Cartesian acquisitions. So, we consider 

he frequency encoding dimension to be fully sampled. The num- 

er of possible undersampling patterns for the two phase encoding 

imensions and the contrast encoding dimension of a 3D cartesian 

cquisition is excessively large ( 2 P 1 ×P 2 ×Q , where P 1 and P 2 are size 

f the two phase encoding dimensions). Consequently, instead of 

rying to find an optimal pattern using TEUSQA, we propose an 

lternative approach. We compare several undersampling pattern 

eneration techniques using TEUSQA and using a geometric prop- 

rty called Discrepancy. We correlate the results of TEUSQA and 

iscrepancy to gain insights that could help design time efficient 

atterns. 

Fig. 1 shows a 8 × 8 patch of k-space generated by the patterns 

ith acceleration factor R = [2 , 3] and Q = 72 . In this visualisation,

ach pie slice corresponds to one readout and has a constant area. 

ence, the area of each pie corresponds to the number of times 

ith which that k-space position is sampled in the entire acquisi- 

ion. 

.2.1. Undersampling pattern generation techniques 

The following notation is used to define all k-space positions for 

ndersampling patterns: 

k,S 
q = 

{[
R 1 S 1 
S 2 R 2 

][
x 
y 

]
+ δ∀ x, y ∈ N 

}
(15) 

here R = [ R 1 , R 2 ] are acceleration factors with associated total

cceleration factor R = R 1 × R 2 , δ = [ δ1 , δ2 ] are translational shifts,

 = [ S 1 , S 2 ] are the shears applied to the k-space pattern in the

hase encoding 1 and phase encoding 2 dimensions respectively. 

, S, and δ could be constants, or functions of q . Regular In 

his most basic undersampling pattern, δ = [0 , 0] and S = [0 , 0] :
k,S 
q = { [ xR 1 , yR 2 ] ∀ x, y ∈ N } . Note that the same k-space positions 

re sampled for each contrast q . Translated Regular (Treg) 

To obtain complementary spatial encoding the regular under- 

ampling patterns can be translated with respect to each other 

or the different contrasts q . The translations we investigate are 

he patterns: �k,S 
q = 

{
[ xR 1 , yR 2 ] + δ∀ x, y ∈ N 

}
, δ2 = q mod R 2 , and 

1 = 

⌊ 
q 

R 2 

⌋ 
mod R 1 . Sheared Regular (Sreg) To vary aliasing pat- 

erns for the different contrasts, the shearing rate can be var- 

ed: �k,S 
q = { [ xR 1 + S 2 , yR 2 + S 2 ] ∀ x, y ∈ N } , S 2 = q mod R 2 , and S 1 = 

 

q 
R 2 

⌋ 
mod R 1 . Translated and Sheared Regular (TSreg) Both Treg and 

reg provide limited number of variation along the contrast dimen- 

ion and patterns get repeated along q . To increase the number of 

ariations, both translations and sharing rates are varied along the 

ontrast dimension: �k,S 
q = 

{
[ xR 1 + S 2 , yR 2 + S 1 ] + δ∀ x, y ∈ N 

}
, δ2 = 

 mod R 2 , δ1 = 

⌊ 
q 

R 2 

⌋ 
mod R 1 , S 2 = q mod R , and S 1 = 

⌊
q 
R 

⌋
mod R .

andom Random undersampling is know to produce incoherent 

ndersampling artifacts useful for reconstruction using compressed 

ensing ( Knoll et al., 2011 ). In this pattern, the k-space positions 

re sampled randomly for each contrast. For each contrast inde- 

endently the required number of samples | �k,S 
q | = | �k | / (R 1 R 2 ) is
4 
icked randomly without replacement from the pool of all k-space 

ositions ( �k ). 

Random sampling with Halton sequence (Halton) The Random 

ampling technique described above considers each contrast in- 

ependently and does not distribute the samples considering the 

ontrast dimension. Consequently, it generates areas with an un- 

ven density of sampled k-space positions within each contrast. 

o address these issues, we propose another random pattern 

eneration technique based on Halton sampling, a well-known 

ow-discrepancy sampling technique ( Wang and Hickernell, 20 0 0 ). 

peidel et al. (2018) used a similar low-discrepancy sequence 

o generate undersampling patterns for single-point imaging. The 

etails of the implementation are presented as pseudo code in 

ppendix B . 

.2.2. Discrepancy 

To study the patterns purely on the basis of their geometry, we 

ntroduce a measure called Discrepancy. Such measure can provide 

s insights that are useful for pattern generation without being 

pecific to an acquisition model. Discrepancy has been used to test 

hether a set of points is equidistributed in the field of integration 

heory ( Shirley, 1991 ). From the several ways to quantify Discrep- 

ncy we use the L 2 form, which quantifies the L 2 error when using 

he set of points when integrating some class of smooth functions 

 Heinrich, 1996 ), and is given by: 

 

2 = 3 

−d − 2 

1 −d 
m ∑ 

i =1 

v i 
d ∏ 

u =1 

(1 − x 2 i,u ) 

+ 

m ∑ 

i, j=1 

v i v j 
d ∏ 

u =1 

(1 − max (x i,k , x j,u )) (16) 

here d is the dimensionality of the pattern, including the two 

hase encoding dimensions and the contrast dimension, x i ∈ [0 , 1] d 

epresents a point, u indexes elements of x i and v i ∈ R defines a 

eight of each sampled point which we consider to be same for 

ll the points. 

. Methods 

We used two sequences for verification of TEUSQA: 1) 3D IP- 

SE; 2) 3D GRASE. In the main manuscript, we describe all experi- 

ents and results for 3D IP-FSE. The same information is presented 

or 3D GRASE in Appendix C . 

.1. Sequence and estimator details 

3D IP-FSE is used for joint T 1 and T 2 mapping QMRI protocol 

here each echo is considered as a different contrast. The parame- 

er vector θx = [ � (M 0 ) , � (M 0 ) , ln (T 1 ) , ln (T 2 ) ] , where � (M 0 ) , � (M 0 ) 

re real and imaginary component of the complex valued appar- 

nt proton density M 0 . The logarithm of T 1 and T 2 were taken, 

s it naturally limits the T 1 and T 2 to positive values and lets 

he Gaussian prior select the order of magnitude. We used se- 

uence settings in Table 1 where the TIs were selected accord- 

ng to Barral et al. (2010) which targets brain T 1 . The predic- 

ion function f q (θx ) performs extended phase graph (EPG) simu- 

ation ( Busse et al., 2006 ). In post processing the ln (T 1 ) and ln (T 2 )

aps were converted to T 1 and T 2 using principles of propaga- 

ion of uncertainty. This conversion was also applied in the time 

fficiency analysis. As prior we used: θ1 = [0 , 0 , ln (10 0 0) , ln (70)]

nd �1 = 

⎡ 

⎢ ⎣ 

20 2 0 0 0 

0 20 2 0 0 

0 0 ln (10) 2 0 

0 0 0 ln (7) 2 

⎤ 

⎥ ⎦ 

which corresponds to 

n a-priori 1 - σ interval for T of [100 , . . . , 10000] ms centered at 
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Fig. 1. Graphical representation of undersampling patterns for R = [2 , 3] , k-space size of 8 × 8 and number of contrasts Q = 72 . Legend: each row represents a set of contrasts, 

grouped together with according to contrast property such as inversion times. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

5 
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Table 1 

Acquisitions settings and scan protocols used in this work. Note that ground truth experiments use same settings accept a smaller Acquisition matrix and 

Field of View in PE 2 incase of 3D IP-FSE. 

Scans 3D IP-FSE phantom scans In-vivo scan 3D IP-FSE 3D GRASE scans 

Acquisition settings 

Acquisition matrix AP: 64 LR: 128 SI: 128 AP: 96 LR: 76 SI: 128 AP: 128 LR: 128 SI: 84 

Field of view (mm) PE 1 : 128 PE 2 : 128 FE: 128 PE 1 : 230 PE 2 : 182.4 FE: 307 FE: 204.8 PE 1 : 204.8 PE 2 : 134.4 

Number of coils (C) 8 8 32 

Acceleration factor (R) 32 32 16 (including calibration region) 

Scan time (64 ×128 ×∑ 

T R ) /R≈45 min. (96 ×76 ×∑ 

T R ) /R≈ 43 min. (128 ×84 ×T R ) /R≈ 20 min. 

Scan for calibration region 12× 12×4 ×∑ 

T R ≈24 min. NA 12× 12×T R≈5 min. 

Sequence settings 

Inversion delay (TI) 2400, 1100, 50, 400 (ms) 2400, 1100, 50, 400 (ms) NA 

Repetition time (TR) 2552 (ms) 2552 (ms) 1800 (ms) 

Echo train length (ETL) 18 32 32 

Echo spacing (ESP) 6 (ms) 6 (ms) 10 (ms) 

Flip angles (FA) 180 ◦ 180 ◦ 180 ◦

Contrasts (Q) 72 128 96 

Delay between Spin echo and Gradient echo ( 	t ) NA NA 2 (ms) 

Table 2 

The median values (ms) of T 1 and T 2 from test and re-test scans compared to nominal values of selected spheres. 

Nominal value T 1 Median T 1 test Median T 1 re-test Nominal value T 2 Median T 2 test Median T 2 re-test 

62.7 57.5 57 15.8 19.6 19.5 

89 79.8 80.5 23 29.1 28.9 

125.9 120.5 123.4 32 40 41.5 

244.2 282.5 272.7 45.7 54.2 54.4 

336.5 344.5 347.7 46.4 59.4 60.9 

458.4 468.2 468.1 64 81.7 81 

608.6 590.1 591.2 64.3 74.9 74.6 

801.7 764.7 753.1 90.3 117.7 118.9 

1044 923.3 934.4 96.9 113.8 113.2 
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 1 = 10 0 0 ms and for T 2 of [10 , . . . , 490] ms centered at T 2 = 70 ms.

he variance on M 0 depends on the intensities of the images 

hich scale arbitrarily between different acquisitions and have to 

e adjusted accordingly. The 1 - σ intervals for � { M 0 } and � { M 0 } of 

 −20 , . . . , 20] centered at � { M 0 } = � { M 0 } = 0 were about 5 times

he root mean square value present in the ground truth map used. 

.2. Verification of TEUSQA with numerical simulation 

.2.1. Acquisition of ground truth map 

To obtain realistic ground truth parameter maps we performed 

 fully sampled scan of the Eurospin II T05 (Diagnostic Sonar 

TD, Livingston, Scotland) with sequence settings described in 

ection 3.1 and a 3.0 T clinical scanner (Discovery MR750, GE 

ealthcare, Waukesha, WI) using an 8-channel head coil. As per- 

orming a fully sampled acquisition on both phase encoding direc- 

ions takes an impractically long scan time, the acquisitions were 

erformed with a reduced acquisition matrix of size 8 × 64 × 128 

n P E 2 (SI) × P E 1 (LR ) × F E(AP ) . Only the central slice of the reduced

 E 2 dimension was selected for further processing. This slice will 

e used as if it was acquired along the P E 1 and P E 2 dimensions

or the experiments in the following sections. The eight coil sensi- 

ivity maps C GT 
x ,c were computed from the first contrast of the fully 

ampled scans using the ESPIRIT technique ( Uecker et al., 2014 ) and 

he BART toolbox ( Uecker et al., 2016 ). Subsequently, the parameter 

aps used as ground truth, θGT 
x , were estimated by least squares 

tting of f q (θx ) to each voxel of the contrast images. 

.2.2. Time efficiency based on Monte Carlo simulation 

As validation of the time efficiency metric ηp we com- 

ared it to results from a Monte Carlo experiment. The 

orward model in Eq. (1) was used to generate MR sig- 

als in the k-space domain using the ground truth param- 
6 
ter map θGT 
x and coil sensitivity maps C GT 

x ,c . All the under- 

ampling patterns described in Section 2.2.1 with set of R:U= 

 [1 , 1] , [1 , 2] , [2 , 2] , [2 , 4] , [3 , 3] , [3 , 4] , [4 , 4] , [4 , 6] , [8 , 4] , [6 , 6] , 

[8 , 6] } were used. A complex Gaussian noise ( σ ) equivalent 

o the SNR of 50 was added in the 100 Monte Carlo iterations, 

here ‘signal’ was taken as the root mean square of the predicted 

ull k-space of all contrasts. The parameters were recovered using 

q. (5) for each noise realisation. A ROI was manualy drawn, se- 

ecting voxels inside the spheres for which nominal values were 

vailable. For each voxel inside the ROI the CV over the Monte 

arlo iterations was evaluated using Eq. (12) taking nominal value 

s ground truth. Subsequently Eq. (14) was used to compute ηMC 
p . 

ote that due to the limit of 100 Monte Carlo iterations, the 95 % 

onfidence interval is [0 . 74 , 1 . 29] ηMC 
p . 

.2.3. Computation of ηp 

The θGT 
x and C GT 

x ,c were downsampled to | �x,D | = 24 × 24 by ap- 

lying nearest-neighbor interpolation on each parameter map sep- 

rately while undersampling patterns were generated specifically 

or �x,D . Both the original and downsampled ground truth maps 

re shown in Fig. 2 . The ROI mask was obtained by applying the 

ame downsampling operation to θGT 
x , to the ROI mask used for 

onte Carlo simulation. The ηp for each voxel corresponding to 

oxels in the full-size map where nominal values are available was 

omputed according to Eq. (14) . 

.2.4. Ratio of ηMC 
p to ηp 

The resulting ηMC 
p maps were downsampled to �x,D with 

earest-neighbor interpolation. The ratio of ηMC 
p to ηp was com- 

uted voxel-wise and results were plotted as box plot for compar- 

son. 
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Fig. 2. The ground truth maps acquired from a fully sampled acquisition of the Eurospin II TO5 phantom used in the Monte Carlo simulations are shown on the left, and 

downsampled version of the map for computation of TEUSQA is shown on the right. 

7 
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Fig. 3. Results from Monte Carlo simulation for evaluation of TEUSQA for T 1 . The box plots are grouped together according to the undersampling patterns shown by the 

vertical line separating the figure. The box plots are colored according to the respective acceleration factor shown in the legend. Each box plot represents the distribution of 

ηMC 
p /ηp over voxels within the ROI of the phantom for a particular acceleration factor. The ratio is shown for range [0 , 2] . 

Fig. 4. Results from Monte Carlo simulation for evaluation of TEUSQA for T 2 . The box plots are grouped together according to the undersampling patterns shown by the 

vertical line separating the figure. The box plots are colored according to the respective acceleration factor shown in the legend. Each box plot represents the distribution of 

ηMC 
p /ηp over voxels within the ROI of the phantom for a particular acceleration factor. The ratio is shown for range [0 , 2] . 
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.3. Comparison of undersampling patterns 

For the selection of an appropriate pattern for a prospec- 

ive acquisition and to gain insight into the relation between ηp 

nd Discrepancy, ηp was computed for all patterns described in 

ection 2.2.1 and acceleration factors in set U . The downsampled 

arameter map θD 
x and coil sensitivity maps C D x ,c were used along 

ith the noise level equivalent to SNR of 50 for computation of 

EUSQA. The Discrepancy of the patterns was also computed for 

omparison. 

.4. Verification of TEUSQA with prospective acquisition 

To compare TEUSQA on actual acquisitions, we performed test- 

etest variability of a prospectively undersampled acquisition. 

.4.1. Prospective acquisition 

The Halton pattern with the acceleration factor R = 32 was se- 

ected for a prospective acquisition of the ISMRM model 130 phan- 

om ( Jiang et al., 2017 ) using the same system as the ground truth

ap acquisition. Sequence settings equal to Table 1 were used 
8 
ith the acquisition settings given in Table 1 . An additional patch 

f k-space of size 12 × 12 was acquired in the center of k-space 

s calibration region for generating coil sensitivity maps. This re- 

ion was acquired for all echoes even though only one is needed. 

e use only the first contrast ( q = 1 ) for computing coil sensi-

ivity maps, we acquired additional patches for all echoes. These 

ere used for estimation, however they were ignored in the com- 

utation of ηp as we do not consider it as part of the under- 

ampling pattern and hypothesize that its inclusion in the esti- 

ation brings negligible difference between ηp and observed time 

fficiency. 

Two scans were performed in the same scan session to measure 

he CV in the acquisitions. The coil sensitivity maps were com- 

uted using the calibration region for each slice in the FE direc- 

ion. The noise level was computed from a patch of 10 × 20 × 20 

t the edge of k-space, across all coil channels and image con- 

rasts. Specifically, the noise level was set to the standard deviation 

f the difference between the two acquisitions across all sampled 

ositions of k-space in that patch divided by 
√ 

2 . The parameter 

stimation was performed separately for each slice in the FE di- 

ension to allow the parallel processing of slices. 
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Fig. 5. (a and b) ηp computed for T 1 and T 2 for all evaluated undersampling pat- 

terns and acceleration factors. (c) Discrepancy of downsampled undersampling pat- 

terns used for time efficiency computation.. 
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.4.2. Time efficiency based on prospective acquisition 

The phantom has multiple layers of sphere arrays with a range 

f specific T 1 , T 2 , and proton density values ( Jiang et al., 2017 ). Us-

ng the given sequence settings we cannot accurately map spheres 

aving T 1 and T 2 values that lie outside the range: first TI ≤ T 1 ≤
ast TI and second TE ≤ T 2 ≤ last TE respectively. These spheres 

ere excluded during the manual ROI selection. For each param- 

ter, a map of the difference between the two acquisitions was 

omputed. The voxels within each ROI of the difference map were 

ivided by their nominal value and divided by 
√ 

2 . The standard 

eviation with its 95% confidence bounds assuming a normal dis- 

ribution was computed for all voxels (in all ROIs) of the resulting 

ap to obtain the CV of the prospective scan. The CV, along with 

ower and upper bounds, was used to compute the time efficiency 

enoted as ηACQ 
p using Eq. (14) . 

.4.3. Computation of ηp 

The ηp was computed for each slice independently in the FE 

irection using the estimated map from the first acquisition. Tak- 

ng ˜ θx one slice at a time, the parameter maps and coil sensitivity 

aps were downsampled using nearest-neighbor interpolation to 

2 × 32 . The Halton pattern was generated for these downsampled 

imensions. 

.5. In-vivo scan 

The Halton pattern was used to perform a healthy volunteer 

can targetting the brain. Informed consent was obtained after re- 

iew by our Institutional Review Board. The same sequence set- 

ings were used as phantom; however, the ETL was increased to 

2 to account for higher T 2 values observed in human brain. (Gray 

atter: 104 - 134 ms white matter: 70 - 84 ms) ( Wansapura et al.,

999 ). The acquisition settings are shown in Table 1 resulting in 

 = 128 . In order to get coil sensitivity maps from the scan, one

f the contrasts was used to sample only a small patch of k-space 

rom the center. We selected q = 78 based on an experiment in 

hich, for each q , TEUSQA was evaluated without samples in echo 

 . 

. Results 

.1. Verification of TEUSQA with numerical simulations 

Figs. 3 and 4 show the box plots of ratio between ηMC 
p and ηp 

or T 1 and T 2 respectively for all undersampling patterns and accel- 

ration factors. Each box represents the 25 th and 75 th percentile of 

he distribution of all the voxels for a particular acceleration factor 

nd undersampling pattern. Observe that for both T 1 and T 2 , with 

reg, TSreg, Random and Halton undersampling patterns, the boxes 

ie within 0.85 and 1.15 with the exception of two cases where 

 = [8 , 6] . This was not the case for Regular and Sreg particularly

or high acceleration factors R ≥ [2 , 4] . Note that due to the finite

umber of Monte Carlo iterations the box size is expected to be 

.9 to 1.09. 

The computation time of ηp for the fully sampled scan was 1.4 

inutes for one slice and always lower for undersampled scans on 

 workstation with a 3.8 GHz Intel Core i7-1065G7 Processor, 16 

B RAM, Windows 10 and Matlab R2020b. 

.2. Comparison of undersampling patterns 

Fig. 5 shows the time efficiency computed for all the consid- 

red undersampling patterns as a function of acceleration factors 

nd reciprocal of Discrepancy. All pattern generation techniques 

howed a decline in time efficiency with increasing acceleration 

actor. Some patterns, such as Regular and Sreg, showed a steeper 
9 
ecline than others. Note that these undersampling patterns also 

howed a difference between ηMC 
p and ηp in the Monte Carlo sim- 

lation. The Halton pattern showed the lowest decline or the high- 

st time efficiency with few exceptions. 

Comparing the Discrepancy with time efficiency, the patterns 

ith high Discrepancy showed lower time efficiency. Regular and 

reg were two patterns that showed the highest Discrepancy, also 

howed the lowest time efficiency. The other four patterns have a 

imilar level of Discrepancy and showed a similar level of time effi- 

iency. From these, the Halton pattern had the lowest Discrepancy 

nd the highest time efficiency. 
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Fig. 6. T 1 measured in the selected spheres plotted against their nominal values. Green boxes indicate test acquisition and magenta boxes indicate retest. More details are 

presented in Table 2 . 

Fig. 7. T 2 measured in the selected spheres plotted against their nominal values. Green boxes indicate test acquisition and magenta boxes indicate retest. More details are 

presented in Table 2 . 
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Given these results, the Halton pattern with acceleration factor 

2 was chosen for the prospective acquisition, obtaining the best 

aps within 60 minutes of scan time. 

.3. Verification of TEUSQA with prospective acquisition 

Fig. 8 shows the difference in estimated T 1 and T 2 maps for the 

est and retest acquisition. We select the spheres where the nom- 

nal T 1 and T 2 values are expected to be mapped correctly by the 

equence settings. In these spheres the mean difference between 

aps from test and retest is close to zero. Outside of these spheres 

arge differences can be observed. The bias in the T 1 and T 2 esti- 

ates compared to the nominal values was on average about 5% 

nd 28% respectively in the selected spheres. A detailed compar- 

son with the nominal values is presented in the Figs. 6 and 7 .

ollowing this we computed ηACQ 
p over the selected spheres which 

as found to be 0.221 with 95% confidence bounds [0 . 201 , 0 . 241]

or T 1 and 0.122 with [0 . 111 , 0 . 134] 95% confidence bounds for

 2 . The predicted ηp for T 1 and T 2 were 0.254 and 0.125, respec- 

ively. The predicted ηp for T 1 was within 12% of the observed ηACQ 
p 

hile for T 2 it was within the 95% confidence bounds of observed 

ACQ 
p . 
10 
.4. In-vivo scan 

Fig. 9 shows the T 1 and T 2 map of the in-vivo acquisition. The 

econstruction was performed for each FE line along the SI orien- 

ation. All the FE lines were reconstructed successfully. There are 

o visible artefacts related to undersampling and T 1 and T 2 maps 

re in the range expected in the human brain. 

. Discussion 

We derived TEUSQA as a function of the QMRI sequence set- 

ings, undersampling pattern, and scan time. We verified the ap- 

licability of TEUSQA with Monte Carlo simulations and actual ac- 

uisitions. 

The results show that predictions from TEUSQA match with 

hose observed in QMRI experiments. There was a difference in 

p observed in the Monte Carlo simulations and acquisition for 

ome undersampling patterns with low time efficiency. For such 

ow-time efficiency patterns, the model’s nonlinearity becomes rel- 

vant, and the estimator in the Monte Carlo simulation produces 

iased results. Hence the mismatch for these patterns is not un- 

xpected. For patterns with high time efficiency, TEUSQA predicts 
MC 
p to within 15%. Out of the mismatch, 10% can be attributed 
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Fig. 8. Test-retest difference maps for T 1 (left) and T 2 (right) estimates in the T 1 (top) and T 2 array (bottom) of the ISMRM model 130 phantom ( Jiang et al., 2017 ) (units in 

ms). Scans were made using prospective undersampling using the Halton pattern with acceleration factor R = 32 . 
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o standard error due to limited number of realisations in Monte 

arlo simulation. The ηp computed by TEUSQA from the downsam- 

led map matched to those observed in actual acquisitions, ηACQ 
p , 

o within 12% . 

We repeated the experiments for verifying TEUSQA with simu- 

ation and prospective acquisition for 3D GRASE sequence (for T 2 
nd B 0 mapping), which is summarized in Appendix C . Similar re- 

ults were obtained in both cases, demonstrating the generic ap- 

licability of TEUSQA. 

The undersampling pattern influences the effect of the prior in- 

ormation on the estimates. Currently, TEUSQA is formulated with 

eneral multivariate Gaussian priors but evaluated with an inde- 

endent prior per parameter. As this prior contains no spatial de- 

endencies, the uniform undersampling provided by the evaluated 

chemes seems optimal. When TEUSQA could be extended to have 

parsity constraints as prior ( Haldar and Kim, 2019 ), variable den- 

ity patterns might be more favorable. 

The comparison among the undersampling patterns for 3D IP- 

SE and 3D GRASE shows that patterns with low-discrepancy have 

igher time efficiency. This was shown to be true also for se- 

uences with less contrasts (32) which has been described in 

ppendix D . Discrepancy quantifies the uniformity of the sampling 

attern in the spatial dimensions as well as along contrast. So, uni- 

ormity of the pattern seems to be a desirable property. The met- 

ic proposed in Levine and Hargreaves (2018) can also take spa- 

ial as well as contrast dimensions into account. In the dynamic 

maging experiment, where the temporal dimension was part of 

he pattern, the resulting pattern produced better results than 

seudo-random patterns such as poison-disk and uniform patterns 
11 
 Levine and Hargreaves, 2018 ). The upper bound for the time ef- 

ciency at any acceleration factor is given by its value in a fully 

ampled scan. For the Halton patterns, these were within 25% of 

his bound up to an acceleration factor of 32. 

TEUSQA has been derived for 3D acquisitions, but it is also ap- 

licable to 2D acquisitions, assuming a 3D volume in which one 

f the dimensions has size 1. However, different k-space sampling 

atterns should be designed in that case. Furthermore, TEUSQA, al- 

hough derived as general framework, is limited to Cartesian acqui- 

itions in the current work. For non-cartesian (spiral, radial) acqui- 

itions, the frequency encoding dimension needs to be considered 

n the computation. 

The prospectively undersampled phantom maps showed good 

epeatability, corresponding to the prediction of TEUSQA, within 

he range of T 1 and T 2 where the sequence was expected to map 

he values correctly. Large differences between the estimates were 

bserved outside the selected spheres where the sequence is not 

ccurate. Therefore, those regions were excluded from the evalua- 

ion. However, these regions with large differences did not prevent 

he estimation in the selected spheres to be accurate. 

We demonstrated T 1 and T 2 mapping on a healthy volunteer 

nd a test-retest experiment using a high acceleration factor. Nev- 

rtheless, our primary focus was on the verification of TEUSQA. 

urther optimisation of sequence setting and targeting particular 

arameters, for example, T 2 , could enable a shorter T R and conse- 

uently scan time. 

In this work, we focused on finding good undersampling pat- 

erns using TEUSQA; however, TEUSQA can potentially be benefi- 

ial also to find optimal scan settings such as TE, TR, and flip an- 
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Fig. 9. Sagittal (left), coronal (center) and axial (right) view of T 1 map (Top) and T 2 map (Bottom) (ms) of a healthy volunteer obtained with an 32-fold accelerated 3D IP-FSE 

scan. The green line shows the slice selected in each of the three dimensions.The SI (FE) dimension is cropped to focus on the Subject’s head. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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les similar to previously proposed metrics ( Leitão et al., 2021; De- 

ni et al., 2003; Crawley and Henkelman, 1988; Assländer et al., 

019; Zhao et al., 2019; Poot et al., 2010; Jones et al., 1996; 

rihuega-Moreno et al., 2003 ). Compared to these work the main 

enefit is the inclusion of the undersampling pattern and hence 

hat was the main focus of our investigation. 

TEUSQA, in its present form, is only applicable for reconstruc- 

ion techniques that directly estimate tissue parameters from un- 

ersampled k-space measurements. Most of the approaches for 

ime-resolved images for cardiac or perfusion acquisitions use a 

wo step approach where contrast images are reconstructed fol- 

owed by estimation of parameters ( Ahmad et al., 2015 ). As such 

EUSQA is not directly applicable to such dynamic acquisitions. 

owever, given a forward model that relates perfusion or cardiac 

arameters directly to under sampled kspace, TEUSQA would be 

pplicable. 

. Conclusion 

The proposed metric takes into account essential aspects 

eeded to accelerate Q-MRI scans, such as parallel imaging, se- 

uence settings, and the k-space undersampling pattern. The met- 
12 
ic can be used to inform sequence design and sample pattern op- 

imisation in quantitative MRI studies, assuming a reconstruction 

echnique is used that directly estimates tissue parameters from 

ndersampled k-space measurements. We used the metric to eval- 

ate undersampling patterns for multi-contrast QMRI acquisitions 

n silico . With our metric we showed that low-discrepancy is a de- 

irable design property when searching for a time efficient under- 

ampling pattern. Overall the patterns produced with Halton sam- 

ling showed the best time efficiency. The accelerated acquisitions 

sing 3D IP-FSE and 3D GRASE were reconstructed successfully 

nd showed a time efficiency close to the value predicted with 

EUSQA. In-vivo scan of a healthy volunteer with acceleration fac- 

or of 32 using 8-channel coil and 128 contrasts produced artefact 

ree T 1 and T 2 maps. As such TEUSQA could be useful for decreas- 

ng scan time of other multi-contrast QMRI acquisitions in the fu- 

ure. 
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ppendix A. Derivation of posterior distribution 

In this section we derive posterior distribution for the parame- 

ers with the addition of a prior distribution. Using Bayes theorem, 

he posterior distribution is given by: 

p(θ| Z, σ ) ∝ p( Z| θ, σ ) .p(θ| θ, �)= 

e −
1 

2 σ2 || Z−μ(θ) || 2 

(2 πσ 2 ) N 
. 
e −

1 
2 (θ−θ̄) T �−1 (θ−θ̄)√ 

( 2 π) 
L det �

(A.1) 

aking, only the arguments of the first exponential in Eq. (A.1) , 

− 1 
2 σ 2 || Z − μ(θ) || 2 

= − 1 
2 σ 2 [ Z 

T Z − Z 

T μ(θ) − μ(θ) T Z + μ(θ) T μ(θ)] 

Substituting the first order approximation of Taylor series 

(θ) ≈ μ( ̃  θ) + J( ̃  θ) 
{ 
θ − ˜ θ

} 
where ˜ θ is the ground truth. In the rest

f the section we denote J( ̃  θ) as J and μ( ̃  θ) as μ for notational

onvenience: 

= − 1 
2 σ 2 

[ 
K + 

(
−Z 

T J + μT J − ˜ θT J T J 

)
θ + θT J T Jθ

+ θT 
(
−J T Z + J T μ − J T J ̃  θ

)] 
here K = Z 

T Z − Z 

T μ + Z 

T J ̃  θ − μT Z + 

˜ θT J T Z + μT μ − μT J ̃  θ −
˜ T J T μ + 

˜ θT J T J ̃  θ contains all elements not dependent on θ. 

Similarly taking the second exponential term from Eq. (A.1) and 

ince θT �−1 θ = θ
T 
�−1 θ, 

1 
2 
(θ − θ) T �−1 (θ − θ) = 

1 
2 

(
θT �−1 θ − 2 θ

T 
�−1 θ + θ

T 
�−1 θ

)
. (A.2) 

ombining the two exponential terms of Eq. (A.1) gives 

 + B θ + θT Cθ, (A.3) 

where A = − 1 
2 σ 2 K + − 1 

2 
θ̄−T �−1 θ̄, 

B = 

1 
σ 2 

(
Z 

T J − μT J + 

˜ θT J T J 

)
+ θ

T 
�−1 

and C = − 1 
2 

(
1 
σ 2 J 

T J + �−1 
)
. 

The derivative of Eq. (A.3) with respect to θ can be equated to 

 to find its maximum value. Since our prior is conjugate for the 

ikelihood function, the posterior distribution should also be nor- 

ally distributed. Therefore, the location of the maximum is the 

ean θ̆ of the posterior distribution. That is, 

˘ = − 1 

C −1 B 

T (A.4) 

2 

13 
 

[
1 
σ 2 J 

T J + �−1 
]−1 
[ 

1 
σ 2 

(
J T Z − J T μ + J T J ̃  θ

)
+ �−1 θ

] 
(A.5) 

ow the Equation of posterior distribution using the mean θ̆ and 

ssuming the covariance matrix of this distribution to be �̆ is given 

y, 

p(θ| ̆θ, �̆) = 

e −
1 
2 (θ−θ̆) T �̆−1 (θ−θ̆) √ 

(2 π) L det �̆
(A.6) 

Since Eq. (A.6) and A.1 give the same distribution, taking the 

rgument of exponential in the numerator in Eq. (A.6) and then 

rranging in the form shown in Eq. (A.3) , we get C = −�̆/ 2 . Hence,

˘ −1 = �−1 + I( ̃  θ, σ ) (A.7) 

ith I( ̃  θ, σ ) = 

1 
σ 2 J 

T J from Eq. (7) in the main manuscript. 

ppendix B. Pseudo code for Halton undersampling pattern 

The pseudo code Algorithm 1 shows the implementation of the 

Algorithm 1: Halton undersampling pattern, INPUT: k 1 (size 

of P E 1 ), k 2 (size of P E 2 ), Q . 

NS ← Q(k 1 × k 2 ) /R 1 R 2 
S 1 ← Halton sampling: generate NS samples ∈ [0 , 1] with 

base 2 

S 2 ← Halton sampling: generate NS samples ∈ [0 , 1] with 

base 3 

for q = 1 to Q do 

SamplesPerContrast ← (k 1 × k 2 ) /R 1 R 2 
while SamplesPerContrast > 0 do 

x 1 = S1 .next , x 2 = S2 .next 

if Umask (� x 1 ∗ k 1 � , � x 2 ∗ k 2 � , q ) == 0 then 

Umask (� x 1 ∗ k 1 � , � x 2 ∗ k 2 � , q ) ← 1 

end 

SamplePerContrast = SamplePerContrast - 1 

end 

end 

alton undersampling pattern. The code generates a binary under- 

ampling mask Umask where sampled positions are 1. The Halton 

ampling function used is based on the implementation of Wang 

t al. Wang and Hickernell (20 0 0) . 

ppendix C. Verification of TEUSQA with 3D GRASE 

1. Sequence and estimator details 

To evaluate the generalisability of TESUQA, an additional eval- 

ation was performed with a 3D GRASE sequence. 3D GRASE ac- 

uisitions can be used in a joint T 2 and 	B 0 mapping QMRI pro-

ocol, by considering each echo as a different contrast, and fit- 

ing the model as described by Jovicich and Norris (1998) . To re- 

uce the number of parameters, we assume 	t to be small, such 

hat T 2 ′ and T 2 decay between gradient and spin echo can be 

gnored. Thus, the parameter vector we use for a single voxel 

s θx = [ � (M 0 ) , � (M 0 ) , ln (T 2 ) , 	B 0 ] , where � (M 0 ) , � (M 0 ) are real 

nd imaginary component of the complex valued apparent pro- 

on density M 0 . Similar to the 3D IP-FSE, the logarithm of T 2 was

aken. No reference 	B 0 map was acquired in these experiments 

nd hence we only present the evaluation of T 2 . 

We used sequence settings in Table 1 . The prediction func- 

ion f q (θx ) performs EPG simulation Busse et al. (2006) , addition- 

lly, the gradient echoes were adjusted according to the model 
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Fig. C.10. Results from Monte Carlo simulation for evaluation of TEUSQA for T 2 using 3D GRASE. The box plots are grouped together according to the undersampling patterns 

shown by the vertical line separating the figure. The box plots are colored according to the respective acceleration factor shown in the legend. Each box plot represents the 

distribution of ηMC 
p /ηp over voxels within the ROI of the phantom for a particular acceleration factor. The ratio is shown for range [0 , 2] . 
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Fig. C.11. (a) ηp computed for T 2 for all evaluated undersampling patterns and ac- 

celeration factors. (b) Reciprocal of Discrepancy of undersampling patterns.. 

s

3

escribed in Jovicich and Norris (1998) . In post processing the 

n (T 2 ) maps were converted to T 2 using principles of propagation 

f uncertainty. This conversion was also applied in the time effi- 

iency analysis. As prior we used: θ1 = [0 , 0 , ln (70) , 0] and �1 =
 

 

 

20 2 0 0 0 

0 20 2 0 0 

0 0 ln (7) 2 0 

0 0 0 (π ) 2 

⎤ 

⎥ ⎦ 

. 

2. Verification of TEUSQA with numerical simulation 

The ground truth parameter maps obtained using a 

ully sampled scan of the ISMRM model 130 phantom 

iang et al. (2017) with sequence settings described in 

ection C.1 and a 3.0 T clinical scanner (Discovery MR750, GE 

ealthcare, Waukesha, WI) using a 32-channel head coil. The 

cquisitions were performed with a reduced acquisition matrix of 

ize 128 × 84 × 128 in P E 2 (SI) × P E 1 (AP ) × F E(LR ) . The coil maps

ere computed using ESPIRIT technique ( Uecker et al., 2014 ) and 

ART toolbox ( Uecker et al., 2016 ). 

The ratio of ηMC 
p to ηp were computed in similar way as de- 

cribed for 3D IP-FSE in Section 3.2 . The box plot showing the ratio

f ηMC 
p to ηp is shown in Fig. C.10 . 

The results show that the ratio of ηMC 
p to ηp is higher than those 

bserved for 3D IP-FSE in some cases. First, for undersampling pat- 

erns that have low time efficiencies, such as Regular and Sreg. 

econd, for acceleration factors greater than R = [4 , 4] . Apart from 

hese, the Random undersampling pattern also shows a slightly 

igher ratio for 3D GRASE than in the case of 3D IP-FSE. These 

an be because of the lower SNR used for the simulation and the 

reater degree of model mismatch. 

For time-efficient undersampling patterns and to an accelera- 

ion factors that have sufficient measurements, TEUSQA can predict 

ime efficiency of 3D GRASE scans for mapping T 2 and 	B 0 . 

3. Selection of undersampling pattern 

Comparision of different undersampling patterns was done 

or various acceleration factors similarly as described for 3D IP- 

SE in Section 2.2.1 . Result from the comparison are shown in 

ig. C.11 where shows the TEUSQA and shows the reciprocal of Dis- 

repancy. 
14 
The Halton undersampling pattern with low-discrepancy 

howed the best time efficiency similar to what was observed for 

D IP-FSE. 



R. Byanju, S. Klein, A. Cristobal-Huerta et al. Medical Image Analysis 78 (2022) 102390 

Fig. C.12. T 2 measured in the selected spheres in T 1 array plotted against their nom- 

inal values. Green boxes indicate test acquisition and magenta boxes indicate retest. 

More details are presented in Table C.3 . 

Fig. C.13. T 2 measured in the selected spheres in T 2 array plotted against their 

nominal values. Green boxes indicate test acquisition and magenta boxes indicate 

retest..More details are presented in Table C.3 . 

Table C.3 

The median values (ms) of T 2 from test and re-test scans 

compared to nominal values of selected spheres. 

Nominal value T 2 Median T 2 test Median T 2 re-test 

22 19.4 19.1 

32 53.1 53.5 

46 47.7 48.4 

64 72.8 72.6 

97 95.4 95.3 

133 163.2 159.5 

190 284.9 282.8 

278 325.34 34.8 

C

s

s

d

t

s

T

i

o

u

t

F

Fig. C.14. Test-retest difference maps for T 2 (left) and 	B 0 (right) estimates 

in the T 1 (top) and T 2 array (bottom) of the ISMRM model 130 phantom 

Jiang et al. (2017) (units in ms). Scans were made using prospective undersampling 

using the Halton pattern with acceleration factor R = 16 . 
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4. Verification with prospective scan 

With the seclected Halton undersampling pattern, a test-retest 

can was performed on a ISMRM model 130 phantom, with the 

ame scan settings as shown in Table 1 and acquisition settings 

escribed in C.1 , but with acceleration factor of 16. 

Fig. C.14 shows the difference in estimated T 2 and 	B 0 maps for 

he test and retest acquisition. Similar to the case of 3D IP-FSE, the 

pheres where nominal values of T 2 are within the range [second 

E, last TE] the mean difference between maps from test and retest 

s close to zero. Outside of these spheres large differences can be 

bserved. 

The bias in the T 2 estimates compared to the nominal val- 

es was on average about 17% in the selected spheres. A de- 

ailed comparison with the nominal values is presented in the 

igs. C.12 and C.13 . Following this we computed ηACQ 
p over the se- 
15 
ected spheres which was found to be 0.0196 with 95% confidence 

ounds [0 . 018 , 0 . 021] for T 2 . The predicted ηp for T 2 was 0.020.

he prediction was within the 95% confidence bounds of observed 

ACQ 
p . 

ppendix D. Comparison of undersampling patterns for FSE 

ith 32 echoes 

In this experiment, we compare the undersampling pattern 

eneration techniques for a sequence with fewer contrasts than 

he 3D IP-FSE and 3D GRASE sequence and check if the low dis- 

repancy is still desirable for such shorter sequences. For this pur- 

ose, we select an FSE sequence with 32 echoes and echo spac- 

ng of 10 ms and T R = 1800 . The ground truth for this experiment

as a checkered board pattern that had T 2 values of 50 ms and 

00 ms. The coil maps were taken from acquisition described in 

ection 3.2.1 . We used acceleration factors upto 24. 

Fig. D.15 a shows the TEUSQA, and Fig. D.15 b shows the re- 

iprocal of Discrepancy computed for each undersampling pat- 

ern and undersampling factors from 1 to 24. Patterns gener- 

ted using Halton have the highest TEUSQA score and lowest 

iscrepancy. 

We conclude from this experiment that the low-discrepancy is 

till desireable for lower number of contrasts. 
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Fig. D.15. (a) ηp computed for T 2 for all evaluated undersampling patterns and ac- 

celeration factors. (b) Reciprocal of Discrepancy of undersampling patterns.. 
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