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Abstract
Background: Over the past decade, several artificial intelli-
gence (AI) systems are developed to assist in endoscopic as-
sessment of (pre-)cancerous lesions of the gastrointestinal 
(GI) tract. In this review, we aimed to provide an overview of 
the possible indications of AI technology in upper GI endos-
copy and hypothesize about potential challenges for its use 
in clinical practice. Summary: Application of AI in upper GI 
endoscopy has been investigated for several indications: (1) 
detection, characterization, and delineation of esophageal 
and gastric cancer (GC) and their premalignant conditions; 
(2) prediction of tumor invasion; and (3) detection of Helico-
bacter pylori. AI systems show promising results with an ac-
curacy of up to 99% for the detection of superficial and ad-
vanced upper GI cancers. AI outperformed trainee and expe-
rienced endoscopists for the detection of esophageal lesions 
and atrophic gastritis. For GC, AI outperformed mid-level 
and trainee endoscopists but not expert endoscopists. Key 
Messages: Application of artificial intelligence (AI) in upper 
gastrointestinal endoscopy may improve early diagnosis of 
esophageal and gastric cancer and may enable endoscopists 

to better identify patients eligible for endoscopic resection. 
The benefit of AI on the quality of upper endoscopy still 
needs to be demonstrated, while prospective trials are need-
ed to confirm accuracy and feasibility during real-time daily 
endoscopy. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

Accurate endoscopic detection of esophageal and gas-
tric cancers and their premalignant conditions, such as 
Barrett neoplasia, gastric atrophy, and intestinal metapla-
sia, is essential for the detection of these cancers at an 
early stage [1–4]. The challenge of endoscopic procedures 
lies in the real-time interpretation of endoscopic imagery, 
which is complex and sensitive to human error. Current 
endoscopic cancer screening and surveillance strategies 
encounter several pitfalls, including interobserver vari-
ability in the detection of lesions, time-consuming biopsy 
protocols, and biopsy sampling error [1, 5, 6]. Especially 
subtle and early (pre-)malignant lesions in the esophagus 
and stomach can easily be missed by endoscopists (Fig. 1). 
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Artificial intelligence (AI) technology has the potential to 
overcome these obstacles. AI models have been intro-
duced as a tool to aid in endoscopic detection, character-
ization, and delineation of premalignant and malignant 
lesions of the upper gastrointestinal (GI) tract [7–11]. 
Over the past decade, several AI systems have been devel-

oped to assist endoscopists in the detection and staging of 
lesions in the upper GI tract. In this review, we aimed to 
provide an overview of the possible indications of AI sys-
tems in upper GI endoscopy (shown in Fig. 2) and hy-
pothesize about potential challenges for its use in clinical 
practice.

a b
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Fig. 1. Endoscopic images of subtle early 
esophageal and gastric (pre-)malignant le-
sions of which detection rates can be in-
creased with assistance of AI. The (pre-)
malignant lesions are marked with a red 
rectangle. a Early BE neoplasia with WLE. 
b The same lesion as a with ME-NBI. c, d 
ESCC with WLE and ME-NBI. e, f EGC 
with WLE and ME-NBI. g, h GIM located 
at the angulus in the stomach with WLE 
and NBI. AI, artificial intelligence; BE, Bar-
rett’s esophagus; EGC, early gastric cancer; 
ESCC, esophageal squamous cell carcino-
ma; GI, gastrointestinal; GIM, gastric in-
testinal metaplasia; ME, magnified endos-
copy; ME-NBI, magnified endoscopy and 
narrow band imaging; NBI, narrow band 
imaging; WLE, white light endoscopy.
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Principles of AI

AI refers to a machine-based intelligence which mim-
ics human cognitive functions, such as learning and deci-
sion-making. Machine learning (ML) is a form of AI con-
sisting of a teaching algorithm to recognize data patterns 
and utilize data to predict new data. In order to predict 
outcomes, an ML algorithm needs to be exposed to dif-
ferent example datasets. Deep learning (DL) is an ad-
vanced ML method, which uses layers of artificial neural 
networks to hierarchically structure data and extract fea-
tures without human aid. Similar to the human brain, DL 
methods approach tasks by analyzing information from 
different concepts before assigning them to a specific 
class. Different from conventional ML algorithms that 
need human intervention to correct errors, DL has the 
ability to learn from its mistakes. This self-learning abil-
ity of DL technology makes it possible to increase its per-
formance as exposure to data increases.

The most widely known DL method in endoscopy is 
based on convolutional neural network (CNN) and con-
sists of a neural network architecture which is mainly 
used for image recognition and classification. To achieve 
sufficient diagnostic accuracy, a DL system needs to be 
trained and validated with large amounts of labeled data 

during different steps (shown in Fig. 3). First, the algo-
rithm is subjected to a large dataset of mostly nonendo-
scopic labeled images. These labeled images are often ob-
tained from open access databases, such as ImageNet 
[12]. Second, the algorithm needs to be trained and vali-
dated with a dataset of labeled endoscopic images. Last, 
when performance is sufficient, the algorithm needs to be 
tested. Computer-aided detection (CAD) systems in GI 
endoscopy are ML methods specifically developed to as-
sist endoscopists to improve accurate detection and stag-
ing of pathology, including early stages of disease and se-
lection of optimal biopsy sites.

Esophagus

Neoplasia in Barrett’s Esophagus
The incidence of esophageal adenocarcinoma (EAC) 

is rapidly increasing in Western society [13, 14]. Barrett’s 
esophagus (BE) is a precancerous condition, which may 
progress to EAC [15]. Therefore, guidelines recommend 
endoscopic surveillance of BE in order to diagnose neo-
plastic progression in early stages. Endoscopic assess-
ment of the esophagus with high-definition (HD) white 
light endoscopy (WLE) is advised to optimize the detec-

• Detection of early ESCC
• Prediction of
 invasion depth

• Detection and delineation
 of BE neoplasia
• Selection of biopsy site

• Detection of EGC
• Prediction of
 invasion depth

• Detection of gastric
 precancerous lesions
– GIM and HP
– CAG

Fig. 2. Application of AI in upper GI en-
doscopy – topics that are addressed in this 
review. AI, artificial intelligence; BE, Bar-
rett’s esophagus; CAG, chronic atrophic 
gastritis; EGC, early gastric cancer; ESCC, 
esophageal squamous cell carcinoma; GI, 
gastrointestinal; GIM, gastric intestinal 
metaplasia; HP, Helicobacter pylori.
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tion of dysplastic Barrett mucosa [1, 2]. Chromoendos-
copy can be utilized to aid in detection of lesions; how-
ever, additional value to WLE has not been proven [16]. 
Given the low progression rate among BE patients, which 
is estimated at 0.5% per year, the majority of gastroenter-
ologists never encounter dysplasia and therefore may be 
less familiar with the mucosal changes associated with 
presence of neoplasia [17]. Visible neoplastic lesions, in-
cluding early EAC, may remain undetected, especially 
when endoscopic surveillance is performed by endosco-
pists with limited experience in the recognition of early 
neoplastic lesions [18, 19]. Low-grade dysplasia may 

present itself with very subtle mucosal changes and is 
therefore easily missed [6]. To increase the diagnostic 
yield of dysplasia, guidelines recommend taking 4-quad-
rant biopsies at each 2-cm interval of the Barrett segment, 
known as the Seattle protocol [20]. Combined with WLE, 
it is estimated that up to 90% of high-grade dysplasia 
(HGD) and EAC cases are detected [21]. Nevertheless, 
adherence to this protocol is poor as it is a time-consum-
ing procedure, especially in patients with a long-segment 
BE [22].

AI in the Detection of Barrett Neoplasia
Several ML methods were developed to aid in diagno-

sis of BE neoplasia (Table 1). The majority of studies eval-
uated diagnostic performance of CNN algorithms in 
WLE images [7, 10, 23–27]. Hashimoto et al. [25] devel-
oped an algorithm based on CNN technology to aid in the 
detection of Barrett neoplasia by image annotation of ar-
eas suspect for neoplasia. The pretrained algorithm was 
trained with 916 images of BE patients with HGD and 
early EAC. The CNN then analyzed 225 images of dys-
plastic BE and 233 of nondysplastic Barrett’s esophagus 
(NDBE) images with 95% accuracy. The ARGOS consor-
tium performed several studies with AI algorithms to aid 
in the detection, characterization, and delineation of BE 
neoplasia and to improve the selection of biopsy sites [7, 
23, 27, 28]. De Groof et al. [7] developed an AI model 
based on prospectively collected WLE images for the de-
tection and delineation of BE neoplasia with a sensitivity, 
specificity, and accuracy of 95%, 85%, and 92%, respec-
tively. Application of CAD in detection of Barrett neopla-
sia is also being explored in NBI images and videos [25, 
26, 28]. Struyvenberg et al. [28] developed a CAD system 
using 30,021 NBI video frames (average video consisted 
of 250 fragments obtained during 10 s of video) and de-
tected BE neoplasia with accuracy of 83%.

Recently, the first prospective studies during live en-
doscopic procedures were performed by de Groof et al. 
[24] and Ebigbo et al. [10]. De Groof et al. [23] trained 
their CAD model with 1,704 high-resolution images of 
669 patients with histologically confirmed Barrett neo-
plasia or NDBE. Algorithm performance was externally 
validated with separate datasets, each containing 80 im-
ages which were also scored for the presence of dysplasia 
by 53 general endoscopists. The CAD system classified 
images as dysplastic or nondysplastic with 90% sensitiv-
ity, 88% specificity, and 89% accuracy. The AI model out-
performed the endoscopists in detection of early Barrett 
neoplasia in another dataset containing 80 images as the 
sensitivity, specificity, and accuracy of the CAD system 

Pretraining

Purpose: to learn the model
dicriminative basic features

Dataset of labelled
(non-)endoscopic images

Training

Purpose: (re)development
of the model

Dataset 1

Testing

Purpose: to evaluate performance
of the model

Preferably in a different dataset

Validation

Purpose: fine-tuning of the model

Preferably in a different dataset

Insufficient
performance

Sufficient
performance

Fig. 3. Visual steps in the development of an AI model: pretraining, 
training, validation, and testing. AI, artificial intelligence.
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and endoscopists was, respectively, 93% versus 72%, 83% 
versus 74%, and 88% versus 73% [23]. The CAD model 
was tested during real-time endoscopy with an accuracy 
of 90% [24]. Ebigbo et al. [26] developed a CAD-DL sys-
tem based on 148 HD-WLE and NBI images of 33 early 
EAC and 41 NDBE areas in one database and 100 HD-
WLE images of 17 early EAC and 22 NDBE areas in a 
second database. Based on the images in these two datas-
ets, the AI model reached a 92–97% sensitivity and 88–
100% specificity for WLE images and 94% sensitivity and 
80% specificity for NBI images. Afterwards, the devel-
oped CNN-CAD algorithm was tested during real-time 
daily endoscopy in 14 patients with BE neoplasia with an 
accuracy of 89.9% [10]. The majority of previous men-
tioned studies showed high accuracy of AI models in the 
detection of BE neoplasia. Main limitations of these stud-
ies were the retrospective design and small sample size.

Esophageal Squamous Cell Carcinoma
Squamous cell carcinoma remains the predominant 

histologic type of esophageal cancer (EC), which accounts 
for 80% of the cases worldwide [29, 30]. The incidence 
rates of esophageal squamous cell carcinoma (ESCC) vary 
strongly among geographic regions, with highest rates in 
Eastern Asia [29]. Most ESCC are detected in advanced 
stages and therefore associated with a poor 5-year sur-
vival rate of merely 20% [31]. The prognosis of early 
ESCC is considerably better, since the risk of lymph node 
and distant metastasis is associated with the tumor inva-
sion depth [32]. Additional lugol’s iodine staining or 
WLE and NBI can be used to increase the detection of 
subtle esophageal lesions [33, 34]. The combination of 
magnification and NBI during endoscopy (ME-NBI) al-
lows visualization of the microvasculature of the esopha-
geal epithelium, which can be classified according to the 
intrapapillary capillary loop (IPCL) classification [35]. 
This classification can help differentiate dysplasia from 
nondysplasia in daily clinical practice [36].

AI in the Detection of ESCC
Most studies that investigated AI for the early detec-

tion of ESCC derive from Asian countries [29, 37–43]. AI 
models based on CNN during WLE are mostly investi-
gated to detect squamous dysplasia and early ESCC 
(shown in Table 2) [37–41]. Horie et al. [9] developed a 
CNN-CAD system for the detection of EC (both ESCC 
and EAC; 8,428 images for system development and 1,118 
images for validation). This study showed that CNN-
CAD can correctly detect EC cases, including both super-
ficial and advanced cancers with a sensitivity of 98%. Fur-

thermore, the CNN-CAD system was accurately able to 
detect small cancerous lesions <10 mm that can be easily 
missed, even by experienced endoscopists. Shimamoto et 
al. [41] compared the use of DL during WLE and during 
NBI for the accurate detection of the invasion depth in 
ESCC. The accuracy was higher in WLE than that in ME-
NBI (98.7% vs. 89.2%) [41]. Ohmori et al. [37] showed 
that their AI system had a high sensitivity for the detec-
tion of ESCC using non-ME NBI and high accuracy for 
the differentiation of ESCC from noncancerous lesions.

Endoscopic screening and detection of ESCC remains 
challenging partly because it is liable to the interobserver 
variability between endoscopists [35]. Early-stage ESCC 
are difficult to detect, especially for trainee endoscopists 
(sensitivity of NBI for ESCC detection in trainee vs. ex-
pert endoscopists: 53% vs. 100%) [45]. Several studies 
compared diagnostic parameters of developed AI models 
to endoscopists [37–42, 44]. Cai et al. [38] developed a 
CNN-CAD system based on WLE (2,428 images from 
746 patients for training and 187 images from 52 patients 
for validation) which was compared to 3 groups of endos-
copists (seniors with >15 years of experience, mid-levels 
with 5–15 years of experience, and juniors with <5 years 
of experience). Sensitivity of AI for detection of ESCC ap-
peared to be higher, even for the experienced endosco-
pists. The sensitivity of the AI system versus senior, mid-
level, and junior endoscopists was 97.8% versus 86.3%, 
78.6%, and 61.9%, respectively. Zhao et al. [42] developed 
a CAD model based on ME-NBI to investigate the auto-
mated classification of IPCLs. The mean diagnostic ac-
curacy of the CAD system was higher than that of mid-
level and junior endoscopists for the detection of malig-
nant esophageal lesions (p < 0.001). Fukuda and colleagues 
[44] divided the diagnostic process into 2 parts: detection 
(identify suspicious lesions) and characterization (differ-
entiate cancer from no cancer). The developed CNN-DL 
system had a better diagnostic performance than the ex-
pert endoscopists [44]. Major limitations of these studies 
included the small sample size of images used for both 
training [38, 42] and validation [37, 38, 42, 44]. Further-
more, the samples of participating endoscopists with dif-
ferent levels of endoscopic experience were relatively 
small, ranging from 4 to 15 endoscopists per subgroup.

AI in Prediction of Invasion Depth of ESCC
The tumor invasion depth is an important prognostic 

factor in ESCC [46]. Accurate endoscopic detection of the 
invasion depth is essential for decision-making between 
endoscopic resection or proceeding to esophagectomy 
with lymphadenectomy [47]. To optimize endoscopic 
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prediction of invasion depth, the role of AI was studied 
[39–41]. Shimamoto et al. [41] developed an AI system 
on WLE and NBI images from endoscopic videos to esti-
mate the invasion depth, which was compared to experi-
enced endoscopists (7–25 years of experience). The AI 
model outperformed the endoscopists in both non-ME 
and ME-NBI with a sensitivity, specificity, and accuracy 
of AI versus endoscopists using ME-NBI of 71%, 95%, 
and 89% versus 42%, 97%, and 84%, respectively. Tokai 
and colleagues [40] developed an AI model to predict the 
ESCC invasion depth on 1,751 images, which was vali-
dated on 291 images. The diagnostic accuracy of the AI 
model outperformed 12 out of 13 endoscopists [40].

Stomach

Gastric Precancerous Lesions and Early Gastric Cancer
Helicobacter pylori (HP) infection can cause chronic 

atrophic gastritis (CAG) and gastric intestinal metaplasia 
(GIM), which are both precancerous conditions associ-
ated with an increased risk of gastric cancer (GC) devel-
opment [3, 48]. GC is often diagnosed in an advanced 
stage, with an estimated 5-year survival rate of 20% [30]. 
Endoscopic surveillance is offered to patients with CAG 
and GIM to detect GC in an early stage as detection of 
early GC (EGC) improves survival [3]. Current surveil-
lance strategies consist of adequate inspection of the gas-
tric mucosa and standardized random biopsy sampling 
according to the Sydney protocol for topographic map-
ping [3]. Guidelines recommend use of HD-chromoen-
doscopy in GC surveillance as it improves optical diagno-
sis of precancerous lesions and EGC [3, 49–51]. The treat-
ment strategy is determined by the invasion depth, which 
is an important prognostic factor in EGC [3, 30]. In early 
cases, diagnosis of EGC can be difficult as features can be 
subtle and EGC is easily missed in the presence of other 
pathology such as gastritis. AI models may improve the 
diagnostic accuracy by locating areas suspect for cancer 
and aid the endoscopist in detection and staging of gastric 
pathology.

AI in the Detection of EGC
The application of AI for the detection of EGC has 

been investigated in WLE images [52–57] and optic chro-
moendoscopy images (Table  3) [8, 58–63]. Li et al. [8] 
developed a CNN model on 386 images of benign lesions 
and 1,702 images of EGC for model development and 171 
images of noncancerous lesions, and 170 EGC images to 
test the models’ performance. The AI model had a diag-

nostic accuracy of 91% versus 87% when used by experts 
and 70–74% for nonexpert endoscopists. Horiuchi et al. 
[59] tested a CAD system to detect EGC using 174 NBI 
videos that contained 87 cancerous lesions. The CAD sys-
tem was trained with 2,570 images containing cancerous 
and noncancerous gastric lesions. The performance of the 
CAD system was benchmarked against 11 endoscopists 
with experience in NBI and showed varying results. Only 
2 endoscopists were outperformed by the CAD system. 
Similar results were found in the study of Ikenoyama et 
al. [55] that assessed the application of AI in detecting GC 
with both WLE and NBI.

AI in Prediction of Invasion Depth of EGC
Few research groups have developed CAD systems to 

assess the invasion depth of EGC [52, 56, 60]. Nagao et al. 
[60] developed a CNN-CAD system by using 16,557 im-
ages of 1,084 GC cases that underwent endoscopic resec-
tion or radical surgery, to study if invasion depth of EGC 
can be determined. Prediction of invasion depth was ana-
lyzed in both WLE and NBI modality. The CAD system 
predicted the invasion depth with a sensitivity of 84% and 
75%, specificity of 99% and 100%, and accuracy of 94% 
and 94% during WLE and NBI images, respectively. Yoon 
et al. [52] analyzed 11,539 images of both GC (T1a and 
T1b) and non-EGC and predicted the invasion depth with 
an AUC of 0.85. However, in case of undifferentiated his-
tology, the accuracy of the AI model was significantly low-
er. Despite the high performance of the CAD systems, 
only images were used to train and calculate performance 
of the algorithm, and video analysis has yet to be tested.

AI in Detection of Gastric Precancerous Lesions and 
HP Infection
Recent AI systems developed to enhance endoscopic 

detection of gastric precancerous lesions and HP are shown 
in Table 4 [11, 64–71]. In 2 studies, AI models were com-
pared to endoscopists with different levels of experience in 
detection of CAG [11, 64]. Zhang et al. [64] designed a 
CNN model to detect CAG by using 5,470 antrum images 
of 1,699 patients. Images were classified as mild, moderate, 
and severe CAG. CAG was histologically confirmed in 
3,042 images. The performance of the CNN model was 
compared to 3 expert endoscopists. The model outper-
formed the endoscopists with a sensitivity, specificity, and 
accuracy of 95%, 94%, and 94%, respectively. Highest de-
tection rate was seen in severe CAG, with an accuracy of 
99%. Guimarães et al. [11] showed similar results and re-
ported a 93% accuracy for the detection of CAG in WLE 
images of the proximal stomach. Yan and colleagues [65] 
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developed a CNN-CAD model for the detection of GIM 
with ME-NBI. The AI model reported a diagnostic accu-
racy of 89% with an accuracy of 84% for expert endosco-
pists with 10 years of endoscopic experience (p = 0.42).

Zheng et al. [67] developed a CAD system to deter-
mine HP infection status, based on endoscopic images. In 
total, 15,484 gastric images of 1,959 patients of which 
1,157 with a HP infection were used. This study aimed to 
investigate whether the AI model could accurately diag-
nose HP infection during endoscopy without the need for 
biopsies. The CNN system showed a high performance 
with an accuracy of 92%. Nakashima et al. [69] used a DL 
model to diagnose HP infection with the use of WLE and 
blue light imaging (BLI). The research group conducted 
a single-center prospective study with 222 participants of 
which 105 had a confirmed HP infection. The DL model 
had an AUC of 0.96 with BLI. However, with WLE im-
ages, the AUC of the AI model decreased to 0.66.

Conclusion and Potential Challenges of 
Implementing AI Upper Endoscopy into Clinical 
Practice

In this review, we have shown that AI systems have 
been applied in upper GI endoscopy for several indica-
tions: (1) detection, characterization, and delineation of 

esophageal and GC and their premalignant conditions; 
(2) prediction of tumor invasion; and (3) diagnosis of a 
HP infection. The current status of AI models for each 
indication in upper GI endoscopy is shown in Table 5. So 
far, all AI studies in upper GI endoscopy have shown 
promising results with high performance for accurate 
detection and staging of (pre-)malignant lesions in both 
the esophagus and stomach. The benefit, especially on 
the quality of endoscopy by the use of AI in upper GI 
however, still needs to be demonstrated and may differ 
between endoscopists based on their skills and experi-
ence.

The use of AI in upper GI endoscopy may be of addi-
tional value for clinical practice for different reasons. AI 
has the potential to provide real-time assistance by red 
flagging cancers that remained undetected by endosco-
pists and may improve the yield of biopsies by indicating 
the optimal biopsy sites during live endoscopic proce-
dures. More accurate prediction of tumor invasion of ear-
ly-stage cancers may improve the selection of patients 
eligible for endoscopic resection and may prevent unnec-
essary invasive surgery. And more accurate endoscopic 
diagnosis of HP infection and gastric precancerous le-
sions by AI models may replace gastric biopsies.

To date, most AI models in upper GI endoscopy are 
developed in an ideal setting with high-quality imagery. 
This setting does not always reflect real-life endoscopy, 

Table 5. Current status of (the development of) AI systems per upper GI indication

Indications for AI in upper GI 
endoscopy

Current status of AI systems

BE neoplasia
Detection, characterization, and 
delineation of BE neoplasia
Selection of biopsy site

Algorithms are trained and validated with a dataset of labeled endoscopic images
Prospective studies during live endoscopic procedures have been performed in small groups of 
patients
Next step: Validation of AI algorithms in large groups of patients during live endoscopic 
procedures. Assess AI performance when used by endoscopists with different levels of experience

ESCC
Detection of early ESCC
Prediction of invasion depth

Algorithms are trained and validated with a dataset of labeled endoscopic images
Retrospective studies with high quality images or videos haven been performed
Next step: Prospective data collection of images and videos

EGC
Detection of EGC
Prediction of invasion depth

Algorithms are trained and validated with a dataset of labeled endoscopic images
Retrospective studies with high quality images or videos
Next step: Prospective data collection of images and videos

Gastric precancerous lesions
GIM and HP infection
CAG

Algorithms are trained and validated with a dataset of labeled endoscopic images
Prospective data collection with high quality images
Next step: Prospective studies during live endoscopic procedures

AI, artificial intelligence; BE, Barrett’s esophagus; CAG, chronic atrophic gastritis; EGC, early gastric cancer; ESCC, esophageal 
squamous cell carcinoma; GI, gastrointestinal; GIM, gastric intestinal metaplasia; HP, Helicobacter pylori.
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where good visualization of the mucosa depends on the 
experience and skills of the endoscopists, which is essen-
tial for optimal performance of AI. Although several 
studies compared AI models to endoscopists, studies re-
porting on the diagnostic performance of AI models for 
each experience level of endoscopists are scarce. The out-
come of these studies will better illuminate for which in-
dication AI may be of additional value in relation to en-
doscopist’s own experience and skills. For example, in 
GC, AI outperformed mid-level and trainee but not ex-
pert endoscopists. Besides studies linking the perfor-
mance of AI models to endoscopists with different levels 
of experience, studies that investigate AI during real-time 
upper GI endoscopy are still very scarce. To date, no AI 
systems have been validated in large groups of patients 
during live endoscopic procedures. Large prospective tri-
als are awaited for to validate the additional value and 
confirm the clinical significance of AI models during real-
life endoscopy.

In conclusion, AI models in upper GI endoscopy 
showed high diagnostic performance for the detection, 
characterization, and delineation of upper GI lesions. In 
addition, AI shows promising results in the prediction of 
the tumor invasion depth and diagnosis of HP. The ben-
efit of AI correlated to endoscopist skills and experience 

need to be further addressed, while prospective studies 
are needed to confirm its accuracy and feasibility during 
real-time daily endoscopy.
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