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BACKGROUND: Molecular subtyping of bladder cancer has revealed luminal tumors generally have a more favourable prognosis.
However, some aggressive forms of variant histology, including micropapillary, are often classified luminal. In previous work, we
found long non-coding RNA (lncRNA) expression profiles could identify a subgroup of luminal bladder tumors with less aggressive
biology and better outcomes.
OBJECTIVE: In the present study, we aimed to investigate whether lncRNA expression profiles could identify high-grade T1
micropapillary bladder cancer with differential outcome.
DESIGN, SETTING, AND PARTICIPANTS: LncRNAs were quantified from RNA-seq data from a HGT1 bladder cancer cohort that was
enriched for primary micropapillary cases (15/84). Unsupervised consensus clustering of variant lncRNAs identified a three-cluster
solution, which was further characterised using a panel of micropapillary-associated biomarkers, molecular subtypes, gene
signatures, and survival analysis. A single-sample genomic signature was trained using lasso-penalized logistic regression to classify
micropapillary-like gene-expression, as characterised by lncRNA clustering. The genomic classifier (GC) was tested on luminal
tumors derived from the TCGA cohort (N= 202).
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Patient and tumor characteristics were compared between subgroups
by using X2 tests and two-sided Wilcoxon rank-sum tests. Primary endpoints were overall, progression-free and high-grade
recurrence-free survival, calculated as the date of high-grade T1 disease at TURBT till date of death from any cause, progression, or
recurrence, respectively. Survival rates were estimated using weighted Kaplan–Meier (KM) curves.
RESULTS AND LIMITATIONS: Primary micropapillary HGT1 showed decreased FGFR3, SHH, and p53 pathway activity relative to
tumors with conventional urothelial carcinoma. Many bladder cancer-associated lncRNAs were downregulated in micropapillary
tumors, including UCA1, LINC00152, and MALAT1. Unsupervised consensus clustering resulted in a lncRNA cluster 1 (LC1) with worse
prognosis that was enriched for primary micropapillary histology and the Luminal Unstable (LumU) molecular subtype.
Interestingly, LC1 appeared to better identify aggressive HGT1 disease, compared to stratifying outcomes using primary histologic
characteristics. A signature trained to identify LC1 cases showed good performance in the testing cohort, identifying seven cases
with significantly worse survival (p < 0.001). Limitations include the retrospective nature of the study and the lack of a validation
cohort.
CONCLUSIONS: Using the lncRNA transcriptome we identified a subgroup of aggressive HGT1 bladder cancer that was enriched
with micropapillary histology. These data suggest that lncRNAs can facilitate the identification of aggressive micropapillary-like
tumors, potentially improving patient management.
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INTRODUCTION
Micropapillary bladder cancer is an aggressive urothelial variant that
frequently co-occurs with conventional urothelial carcinoma of the

bladder [1]. When present, micropapillary histology has been
associated with aggressive clinical behaviour, often presenting
as more advanced disease [2]. While the clinical characteristics
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of micropapillary bladder cancer are well-established, the
molecular features of micropapillary bladder cancer are less well-
characterised [3, 4].
Molecular subtyping has advanced our understanding of muscle-

invasive bladder cancer (MIBC), showing potential utility in
predicting prognosis and treatment response [5–7]. At the highest
level, bladder cancer can be divided along an intrinsic basal
and luminal axis, with additional classifications providing refined
granularity [8–10]. More recently, efforts have been made to apply
molecular subtyping to non-muscle-invasive bladder cancer
(NMIBC), where most cases are found to have a luminal character
[11, 12]. In general, luminal tumors tend to have a more favourable
prognosis, although the luminal class does present with significant
heterogeneity at the molecular level [13]. Unexpectedly, certain
aggressive forms of variant histology, including micropapillary, tend
to be classified as luminal [3].
While most studies to date have focused on messenger RNA

(mRNA) expression to differentiate molecular subtypes of NMIBC,
the mammalian transcriptome is comprised of a diverse range of
coding (mRNA) and non-coding RNAs [14, 15]. Long non-coding
RNAs (lncRNAs) are mRNA-like transcripts that range in length
from 200 nucleotides to over 100 kilobases and lack open reading
frames. While it is unclear how many lncRNAs have biological
functions, their expression patterns can be specific to a particular
biological or disease state, including cancer [16]. In previous work,
we adopted lncRNA expression profiles to identify a subgroup of
luminal MIBC with favourable tumor biology [17]. These data
suggest that there might be an inherent utility in lncRNA
expression profiles for classifying subsets of bladder cancer with
unique biology in other disease stages or in variant histologies.
In the present study, we aimed to investigate whether lncRNA

expression profiles could be adopted for the identification and
molecular characterisation of high-grade T1 micropapillary blad-
der cancer.

METHODS
Patient populations
For the present study, we selected cases with complete clinical data from a
previously published retrospective cohort [4], resulting in a total of 84
high-grade T1 bladder tumors, including 15 cases with high micropapillary
component (primary micropapillary) and 7 cases with secondary micro-
papillary histology. Archival FFPE tissue specimens were collected at the
time of TURBT confirming the diagnosis of high-grade T1 bladder cancer.
Informed consent was provided by each subject and the use of the tissue
was approved by the Ethics Committee of the Dana Farber Cancer
Institute, Hospital del Mar, and Hospital Vall d’Hebron and all research
complied with local ethics guidelines. Gene expression data of the T1
cohort have been uploaded to GEO (GEO: GSE136401).

Pathology
All specimens were reviewed by two pathologists, who assessed the
percentage of micropapillary histology, depth of tumor invasion, lympho-
vascular invasion, and presence of carcinoma-in situ (CIS). A two-tier system
was used to assess the depth of lamina propria invasion; T1a when tumor
involved the subepithelial connective tissue superficial to muscularis
mucosae (MM); T1b when tumor was found at the level or beyond the
MM. Of note, patients with T1b substaging underwent re-TURBT after BCG
therapy as per institutional approved protocol. Primary micropapillary cases
contained >50% micropapillary component. For the secondary micropapillary
cases, only tumors with at least a > 10% of micropapillary component,
measured by a semiquantitative (visual) estimation of the micropapillary
component percentage, were included. However, when coring, the
micropapillary component could not have been included. Only high-grade
T1 tumors with a visible, clearly identifiable, and disease-free muscularis
propria and micropapillary high-grade T1 on which both pathologists concur
on the presence of micropapillary component (>10%) were included in this
study. Pathology review of tumor regions of interest (ROI), where tumor
cellularity was in excess of 70%, were annotated by the two pathologists.
Up to 5 × 0.6mm cores were punched from FFPE tissue blocks within the

tumor-rich ROI. Every effort was made when sampling micropapillary areas to
ensure that micropapillary histology was present throughout the thickness of
the tissue core.

Gene expression profiling
RNA extraction, quality control, quantification using the Quant-iT Ribo-
Green assay and RNA-Seq library preparation have been previously
described for this cohort. For the current study, gene expression profiles
were matched to the Decipher array platform using quantile normalization
(R package preprocessCore). To facilitate future applicability of our results
to multiple RNA expression platforms, we pre-selected genes that were
present at the Quant-iT RiboGreen assay, the Decipher bladder assay, and
the Illumina HiSeq assay (The Cancer Genome Atlas), as the initial gene list
for our analyses (19970 genes). The Cancer Genome Atlas cohort has been
previously described [17].

Unsupervised clustering using lncRNAs
For unsupervised clustering analysis (R package ConsensusClusterPlus), the
normalized gene expression data for N= 84 samples (T1 cohort), including
expression of 1271 available lncRNAs, was pre-processed by filtering low-
variance genes, selecting the 160 lncRNAs with the highest median
absolute deviation (R package MADS) (Table S1). The expression clustering
analysis was performed by a consensus partitioning around medoids
(PAM) approach, using Pearson correlations as the similarity metric, the
Ward algorithm for clustering, running 5000 iterations with 0.95 random
fraction of samples used in each iteration.

Classification of tumors into molecular mRNA subtypes
To assign tumors to the consensus bladder cancer (basal/squamous (Ba/
Sq), luminal papillary (LumP), luminal non-specified (LumNS), luminal
unstable (LumU), stroma-rich, and neuroendocrine-like (NE-like)) molecular
subtypes [10], we downloaded and applied the centroid-based models as
described [10].

Gene expression analyses
We created heatmaps and boxplots to visualize differences between tumors
from lncRNA and mRNA subtypes, regarding the expression of (I) individual
genes, (II) gene signatures, and (III) hallmark gene sets from the molecular
signature database hallmark gene set collection (MSigDB). We applied our
lncRNA-based genomic classifier that was developed to identify a subgroup
of luminal MIBC tumors characterised by distinct biologic activity, including
high FGFR3 activity. FGFR3 activity, hedgehog signaling, basal and luminal
signature score calculations have been described previously [8, 17]. We
employed R package Limma to perform differential gene expression analyses
and created volcano plots using R package EnhancedVolcano.

Discovery of a micropapillary-like classifier
The current cohort was used to train a genomic signature to predict
aggressive bladder cancer that is associated with micropapillary biology, as
was identified by lncRNA consensus cluster 1 (LC1). The initial gene list
(19970 features) was used for differential gene expression analysis within
the training cohort, comparing LC1 (N= 16) to the rest of the cohort (N=
68). Using R package Limma, we first selected the top 500 differentially
expressed features (genes). Next, these 500 genes were further filtered
based on an expression level standard deviation of greater than 0.3,
resulting in the final input set of 69 genes. These genes were used for the
training of a 100 × 10-fold cross-validated, lasso (α= 0) penalized logistic
regression model (R package GLMNET) in the training cohort. For this
model, input gene features were grouped into coefficients by cutting a
dendrogram that was constructed by clustering all input genes, making
the model more generalisable for external dataset testing. This signature
was evaluated using distribution density plots where a probability
threshold of 0.44 was selected for classifying positive predicted model
cases (MP+). As a last step, we applied the signature to the testing (N=
202, TCGA luminal) cohort. The TCGA RNA-seq data was available as part of
the TCGA research network (http://cancergenome.nih.gov/).

Statistical analyses
Statistical analyses were performed using R statistical software (R
Foundation for Statistical Computing, Vienna, Austria). Patient and tumor
characteristics were compared between subgroups by using X2 tests and
two-sided Wilcoxon rank-sum tests. P values in boxplot figures represent
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results of Kruskal–Wallis rank sum tests when comparing multiple groups,
and Wilcoxon rank sum tests when comparing two groups. Primary
endpoints were overall, progression-free and high-grade recurrence-free
survival, calculated as the date of high-grade T1 disease at TURBT till date
of death from any cause, progression, or recurrence, respectively. Disease
progression was defined as progression to MIBC or development of
metastasis. Disease recurrence was defined as recurrence of high-grade
NMIBC. Patients who were lost to follow-up were censored at the date of
last contact. The Kaplan-Meier method was used to estimate the statistical
significance of differences between survival curves for patient subgroups,
using the log-rank test. Statistical code was either trivial or is available
based upon reasonable request (partner@decipherbio.com).

RESULTS
The clinical characteristics of the study cohort are reported in
Table 1. Patient age, sex, lamina propria invasion, and presence
of CIS, were similar for both micropapillary and conventional
high-grade T1 bladder tumors. P-values in Table 1 represent
comparisons between micropapillary and conventional histology,
using X2 tests for categorical variables and two-sided Wilcoxon
rank-sum tests for continuous variables.

Micropapillary tumors have unique gene expression profiles
Application of the consensus molecular subtyping model resulted in
most of the tumors being classified as a ‘luminal’ subtype (LumP,
LumU, or LumNS). Significant differences in the distribution of
molecular subtypes between urothelial and micropapillary tumors
(p < 0.001) were found, with micropapillary tumors being enriched
for the ‘LumU’ class (9/15) (Table 1). Both urothelial and
micropapillary tumors showed higher luminal signature scores, with
lower scores for the basal signature (Fig. S1). However, no significant
differences were observed for either signature between groups.
Further, we observed significant differences in progression-free (PFS)
or overall survival (OS) when stratifying by subtype (Ba/Sq, LumP,
LumNS, LumU, Stroma-rich; Fig. S2).
Differential gene expression analyses comparing micropapillary

and urothelial tumors found many luminal markers were upregu-
lated in primary micropapillary cases, including UPK1B, UPK3A, and
KRT20. Genes associated with micropapillary disease (i.e., MUC1,
MUC4) were also upregulated in the primary micropapillary cases
(Fig. 1a). Interestingly, many of the downregulated genes were

lncRNAs. Comparing only the lncRNA profiles, we found several
lncRNAs previously associated with bladder cancer were significantly
downregulated in micropapillary tumors, including UCA1 [18],
LINC00152 [19], and MALAT1 [20] (Fig. 1b).

A long non-coding RNA-based genomic classifier identifies
FGFR3 active tumors
In previous work, we developed a lncRNA-based single-sample
genomic classifier to identify muscle-invasive bladder tumors with
activated FGFR3 (FGFR3+) and less aggressive tumor biology [17].
Application of the lncRNA classifier to the study cohort revealed
seven FGFR3+ cases with enhanced SHH activity, higher p53
pathway activity, lower FGFR3 pathway activity, and lower EMT
scores. Notably, none of the micropapillary cases were classified as
FGFR3+, but showed decreased SHH and p53 signature scores,
with higher EMT activity (Fig. 2). The OS of patients with FGFR3+
tumors were similar to the rest of the cohort (p= 0.94, Fig. S3).

LncRNA-based unsupervised clustering identifies aggressive
micropapillary cases
Unsupervised consensus clustering of 160 highly variant lncRNAs
resulted in a three-cluster consensus solution (LC1-3) (Fig. S4A).
Comparing the clustering solution with the cohort histology, we
found LC1 contained 16 cases, of which 12 were micropapillary
histology, meaning LC1 was significantly enriched for primary
micropapillary histology cases (p < 0.001). The remaining four LC1
cases were all T1b disease. The remaining three micropapillary
histology cases were among LC2 (Fig. S4B). Only one of the seven
conventional urothelial carcinoma cases with secondary micro-
papillary histology was clustered in LC1. Given the enrichment of
primary micropapillary histology in LC1, we decided to character-
ise this cluster in detail, which we named the “Micropapillary
LncRNA Consensus Cluster (MP-LncCC)”.
Survival analysis of the cohort stratified by histological subtype

(micropapillary vs urothelial), found no significant difference in
outcome for either recurrence- or progression-free survival (p=
0.95 and p= 0.4, respectively), but significant differences in overall
survival (p= 0.04, Fig. 3a–c). When stratified by MP-LncCC
differences in recurrence-free survival were not observed (p=
0.49), but MP-LncCC cases had significantly worse PFS and OS (p <
0.001 for both; Fig. 3d–f). Unsupervised lncRNA-based clustering

Table 1. Clinicopathological characteristics of the high-grade T1 study cohort.

Variables Conventional n (%) Micropapillary n (%) p-value

Total 69 (100%) 15 (100%)

Age Median [IQR] 69 [61–74] 70 [61–78] 0.54

Sex Female 10 2

Male 59 13 1

Lamina propria invasion T1a 19 6

T1b 50 9 0.52

Secondary MP histology Present 7 ..

Absent 62

Carcinoma in situ Absent 49 8

Present 20 6 0.48

Unknown 0 1

Consensus subtype Basal/squamous 4 0

Luminal-papillary 46 2

Luminal non-specified 6 4

Luminal unstable 12 9

Stroma-rich 1 0 <0.001

P-values represent comparisons between micropapillary and conventional histology, using X2 tests for categorical variables and two-sided Wilcoxon rank-sum
tests for continuous variables.
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showed results that were superior to primary histological character-
istics with respect to progression free survival but were similar with
respect to overall survival. Table S2 lists Cox proportional hazard
models for recurrence-free, progression-free, and overall survival
outcomes, revealing MP-LnCC as a significant predictor for
progression-free survival on multivariable analyses.
To characterise the MP-LncCC tumors, we used a set of genes

previously associated with micropapillary disease [3], finding
similar expression patterns (Fig. 4). Genes such as MUC1, MESP1,
and CLDN3 were upregulated in the MP-LncCC group, but down-
regulated in the remaining tumors. Other genes, such as KRT5,
were downregulated in the MP-LncCC cases, but were highly
upregulated in the remaining tumors, particularly in those
classified as Ba/Sq by the consensus classifier (Fig. 4).

A micropapillary-like gene expression signature
To provide clinical utility to our findings, we developed a single-
sample genomic signature to identify aggressive bladder cancer that
is associated with micropapillary biology (MP+). To evaluate the

performance of this micropapillary signature, we downloaded gene
expression data for the TCGA cohort (MIBC, Radical Cystectomy, n=
405). As most of the cases in the training cohort had a luminal
expression profile, we selected only the luminal tumors (n= 202)
from the TCGA cohort for testing the model. Here, we identified 7/
202 (3.4%) MP+ cases, which were all classified as LumU. The gene
expression patterns of micropapillary-associated genes for the MP+
cases were consistent with our previous findings (Fig. 5a). The MP+
cases also had lower P53-, SHH- and FGFR3 signature scores, but
higher EMT activity (Fig. 5b–e). Importantly, patients with MP+
tumors showed significantly worse survival than other luminal
cancer patients (Rest) or FGFR3+ cases (p < 0.001; Fig. 5f).

DISCUSSION
Molecular subtyping of bladder cancer using transcriptome
profiling has shown promise for predicting outcomes and
response to therapy [5–7]. In 2019, the Bladder Cancer Molecular
Taxonomy Group put significant effort to harmonise existing
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subtyping models, reporting on a consensus classifier comprised
of six subtypes of MIBC [10]. Molecular subtyping of NMIBC is also
underway, where these tumors appear to be enriched for the
luminal subtype [11, 12]. However, the majority of these efforts
have invested in mRNA-based subtyping, which actually repre-
sents only a minority of the full transcriptome [15]. In 2017, the
TCGA demonstrated the non-coding transcriptome could be used
to stratify the luminal subtype into subgroups with distinct
prognoses [6]. This finding was subsequently confirmed, resulting
in the development of a lncRNA-based single-sample classifier
that identifies luminal tumors with improved outcomes [17]. Taken
together, these studies suggest the lncRNA transcriptome may
provide a sensitive read on specific luminal disease states.
Reports describing the molecular characterisation of variant

tumors, including micropapillary, are somewhat limited [21, 22]. In
2016, Guo et al. reported on a set of unique molecular features
associated with micropapillary MIBC, including differences in
cellular pathways such as transformation, cell cycle regulation,
DNA damage repair, and signal transduction [3]. Likewise, HGT1

micropapillary bladder cancer has a unique transcriptome profile,
with increased immune, metabolic and cell cycle pathway activity
[4]. Moreover, molecular subtyping, using either RNA- or IHC-
based methods, has shown the majority of micropapillary bladder
tumors are classified as a luminal subtype [4, 21, 22].
In the present study, we focused on the lncRNA transcriptome,

building on our previous work in identifying subsets of luminal
bladder tumors using a unique lncRNA-based FGFR3+ classifier
[17]. This classifier identifies a subset of luminal MIBC tumors
(called FGFR3+ by the model) with improved outcomes that have
enhanced FGFR3 activity and improved outcomes. When this
classifier was applied to the current cohort, we did not identify any
micropapillary cases as FGFR3+, as was anticipated given the
unique molecular profile for micropapillary tumors. Using
differential gene expression analysis, we found that selected
lncRNAs were downregulated in micropapillary compared to
urothelial tumors. These data suggested that micropapillary
tumors may have a unique lncRNA expression profile with
potential to serve as a novel biomarker.
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Using consensus clustering we identified a group of tumors (LC1)
showing gene expression patterns consistent with the micropapil-
lary disease, including upregulation ofMUC1 and MESP1 [3]. Most of
these tumors had primary micropapillary histology with four only
being conventional urothelial carcinoma. Survival analysis compar-
ing LC1 revealed poor outcomes suggesting lncRNA expression
patterns may identify tumors with aggressive clinical characteristics,
independent of the histological presentation. Other studies on

bladder cancer with variant histology have reported similar
findings. The most well-characterised of these is the NE-like
subtype, where the NE-like tumors have genomic and clinical
characteristics that are nearly identical to histological small cell
tumors, yet typically present as conventional urothelial carcinoma
[23, 24]. Taken together, these data may support the hypothesis
that a variant-specific expression profile may precede the presence
of the variant morphology itself [25].
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As a proof of concept, we adopted the lncRNA transcriptome to
develop a genomic classifier for identifying aggressive MP-like
tumors (MP+). This classifier was tested on a subset of luminal
(LumP, LumNS, and LumU) tumors from the TCGA cohort [6], finding
7/201 cases were MP+. These MP+ tumors had micropapillary-like
gene expression patterns, lower FGFR3, SHH, and p53 signature
scores, and extremely poor outcomes. While further development
and testing are necessary for clinical application, these initial
findings demonstrate the potential utility of the lncRNA transcrip-
tome for the development of novel biomarkers identifying
aggressive micropapillary bladder cancer.
The retrospective nature and lack of a validation cohort are

among the limitations of this study. Tumors with micropapillary
histology are also rare, limiting the sample size for the development
of a validated classifier, which limits the immediate clinical utility of
this model for prospective validation studies.

CONCLUSIONS
In summary, using the lncRNA transcriptome, we identified a
subgroup aggressive T1 bladder cancer that was associated with
micropapillary histology. Genomic analyses revealed significant
downregulation of lncRNAs for micropapillary bladder cancer, a
variant that is consistently classified as a luminal molecular subtype.
These data demonstrate further utility in lncRNA transcriptome
profiling for molecular bladder cancer classification.

DATA AVAILABILITY
Gene expression data of the T1 cohort have been uploaded to GEO (GEO:
GSE136401). The TCGA RNA-seq data was available as part of the TCGA research
network (http://cancergenome.nih.gov/).
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