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Abstract: Intravascular ultrasound (IVUS) imaging offers accurate cross-sectional vessel information.
To this end, registering temporal IVUS pullbacks acquired at two time points can assist the clinicians
to accurately assess pathophysiological changes in the vessels, disease progression and the effect
of the treatment intervention. In this paper, we present a novel two-stage registration framework
for aligning pairs of longitudinal and axial IVUS pullbacks. Initially, we use a Dynamic Time
Warping (DTW)-based algorithm to align the pullbacks in a temporal fashion. Subsequently, an
intensity-based registration method, that utilizes a variant of the Harmony Search optimizer to
register each matched pair of the pullbacks by maximizing their Mutual Information, is applied. The
presented method is fully automated and only required two single global image-based measurements,
unlike other methods that require extraction of morphology-based features. The data used includes
42 synthetically generated pullback pairs, achieving an alignment error of 0.1853 frames per pullback,
a rotation error 0.93° and a translation error of 0.0161 mm. In addition, it was also tested on 11 baseline
and follow-up, and 10 baseline and post-stent deployment real IVUS pullback pairs from two clinical
centres, achieving an alignment error of 4.3± 3.9 for the longitudinal registration, and a distance
and a rotational error of 0.56± 0.323 mm and 12.4°± 10.5°, respectively, for the axial registration.
Although the performance of the proposed method does not match that of the state-of-the-art, our
method relies on computationally lighter steps for its computations, which is crucial in real-time
applications. On the other hand, the proposed method performs even or better that the state-of-the-art
when considering the axial registration. The results indicate that the proposed method can support
clinical decision making and diagnosis based on sequential imaging examinations.

Keywords: atherosclerosis; IVUS; stent; longitudinal registration; axial registration; image registration;
3D registration; ultrasound
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1. Introduction

Intravascular Ultrasound (IVUS) is an imaging technique for visualizing the internal
vascular structure in order to assist with the diagnosis of the atherosclerotic disease giving
information about the stenosis, as well as the plaque composition in the arterial wall. IVUS
pullbacks are obtained using an ultrasound transducer attached to a catheter which is
mechanically dragged inside the arterial vessel (from the distal to the proximal position).
IVUS can be used in a temporal fashion to assess physiological changes. In addition, IVUS
2D cross-sectional vessel images can also be used to reconstruct a 3D representation of the
vessel. Comparison of IVUS pullbacks acquired at two time points enable the estimation of
the disease progression over time. In order for this to be achieved, it is often the case that
two IVUS pullbacks need to be compared by the healthcare professional, which is a time
consuming process.

On the other hand, temporal IVUS image pullbacks suffer from artifacts and image
variations that are caused by cardiac pulsation, which can complicate their analysis ren-
dering the comparison of temporal datasets hard. First, the transducer is affected by an
oscillation in the longitudinal axis, due to the periodic cardiac muscle contraction and
expansion. Such oscillations result in some vessel’s cross-sections to be sampled multi-
ple times during one pullback, which can be observed as sawtooth-like artifacts in the
longitudinal reconstruction of the pullback [1], as seen in Figure 1. In addition, heart
contraction causes a non-rigid deformation of the vessel due to its compliance. As a result
the appearance of a given IVUS cross-section depends on the sampling instant with respect
to the heart cycle. Therefore, to compare the same cross-section of the vessel over time, it
is essential to select the corresponding frames with regard to the cardiac cycle. Moreover,
due to the catheter being withdrawn through the blood vessel, its axial position with
respect to the vessel is not fixed and the catheter freely moves inside it leading to rotational
inconsistencies between temporal acquisitions. As a consequence, some vessel sections may
be captured multiple times while several frames might be misaligned both longitudinally
and axially.

Figure 1. Sagittal views of an IVUS pullback prior to the sub-sampling of the frames corresponding to the end-diastolic
cardiac phase.

To enable the efficient comparison of temporal IVUS pull-back sequences, longitudinal
and axial registration is required to allow the clinicians to effectively assess any physiologi-
cal changes. Currently, there are limited studies focusing on IVUS longitudinal registration
while small datasets are used. In addition, most registration methods related to IVUS
pullbacks usually deal with either longitudinal [2,3] or axial registration [4,5] exclusively.
Longitudinal registration is commonly accomplished using the Dynamic Time Warping
(DTW) algorithm [2,3]. In [6], temporal and axial registrations are combined into a single
pipeline using a 3D DTW algorithm, which focuses on finding not only the corresponding
images between the IVUS pullbacks, but also the rotation angle that aligns the matched
images. All methods that utilize the DTW algorithm use a cost function to calculate the
similarity between two frames. Such cost function may be based on features derived from
vessel or lumen areas [7] or vessel’s bifurcations [8]. The extraction of these features is based
on segmenting and analyzing the morphological properties of such areas [9]. In addition,
instead of using only shape related features or intensity-based methods [4], a combination
of them can be used [6] for longitudinal or axial registration. Apart from the DTW, several
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researchers utilize other mathematically-oriented methods, such as splines [8] or likelihood
estimation [10] of possible correspondences between the two pullbacks for longitudinal
registration. In the axial registration, the comparison is estimated via features [7], pixel
intensity [4] or both [8]. In addition, a recent study proposed an unsupervised method
based on deep learning to axially register pairs of IVUS pullbacks [5].

In this study, we propose a method for the longitudinal and axial registration of pairs
of IVUS pullbacks, with emphasis in prior and post stent IVUS matching. The first step
regards the longitudinal registration and is based on a variation of the DTW algorithm,
which matches each pair of corresponding frames in the pullbacks with one another.
The second step regards the 2D axial image registration of each matched pair of images,
and is formulated as an optimization problem. Although the longitudinal registration
performs worse than the state-of-the-art (see Table 1 for a quantitative comparison), it still
achieves a mean alignment error of 4.3± 3.9 frames per pullback which is comparable
to [7]. On the other hand, the axial registration performs outperforms the state-of-the-
art (see Table 2 for a quantitative comparison), with a distance error of 0.56± 0.323 mm
and a rotational error of 12.4°± 10.5°. The results show that the longitudinal and axial
registration can be achieved up to a significant extent without the need for laborious and
time-consuming preprocessing steps or morphology-based feature extraction, utilizing
a simple similarity function at the pixel level. The novelty of this study is that unlike
other methods that require computationally heavy preprocessing and morphology-based
feature extraction, our method is lightweight, which is a requirement for online IVUS-IVUS
pullback examination, relying on a simple noise filtering and two global image-based
features (i.e., cross correlation measurement for the longitudinal registration and mutual
information measurement for the axial registration). In addition, we propose a fully
automated method, which incorporates the registration on both the longitudinal and
axial axis.

Table 1. Alignment error of longitudinal registration compared to other studies.

Reference Error

Ours 4.3± 3.9

[2] 1.43± 0.68

[3] 1.53± 0.92

[7] 4.51

[10] 0.57± 1.52

Table 2. Distance and rotational error of axial registration compared to other studies.

Reference ∆L (mm) ∆Φ◦

Ours 0.56± 0.323 12.4± 10.5

[6] 0.75± 1.22 9.27± 13.52

[7] - 16.2

2. Problem Formulation
2.1. Data Preparation

As discussed in the introduction, the contraction and expansion of the heart muscles
lead to periodical deformations of the vessel structures as well as to longitudinal oscillation
of the IVUS catheter. As a result, the captured imaging sequences suffer from time varying
deformations and repetitive frames across the entire section of the vessel, which depend
on the cardiac cycle (Figure 1). In order to reduce these effects and address the heart
cycle dependent vessel appearance, a downsampling method on the IVUS pullback is
applied through a gating method. The rationale is that by sampling frames at a given point
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of the cardiac cycle, the resulting pullbacks convey more consistent vessel morphology
information [1]. Various gating methods based on electrocardiogram (ECG) signals have
been developed and effectively applied to such pullbacks. By analyzing the ECG signal
either during the procedure (online) or afterwards (offline), the heart cycle can be accurately
determined and frames that correspond to a particular point of the cardiac cycle can be
selected [11]. When the ECG signals cannot be obtained or when they are noisy and
thus do not perform well, a ECG-like signal can derive by analyzing the IVUS pullbacks
themselves [12]. Finally, when none of the above signals are present, the sub-sampling
can be performed manually by an expert physician. In this study, for the pullbacks, the
reference time point of the heart cycle was the end-diastolic phase, during which the heart
is almost stationary, while those images that did not correspond to the end-diastolic phase
of the cardiac cycle were not included in the dataset. As a result, the coronary arteries,
which are located on the surface of the heart, are relatively immobile at the end-diastolic
phase. Having achieved this important data preparation step, the proposed algorithm
is designed to address the remaining problems regarding multiple frames of the same
anatomical area and rotational inconsistencies.

2.2. IVUS Pullbacks Registration

In order to compensate for the remaining incoherencies, two registration steps are
followed (longitudinal and axial registration), after the selection of the end-diastolic frames
of each sequence. Although downsampling the sequences and the selection of the end-
diastolic frames partially addresses the issue of the oscillations of the catheter, a longitudinal
alignment of the captured IVUS sequences of a particular vessel is still mandatory. There
are two main reasons regarding the need for longitudinal registration: (i) the beginning
and ending frames of two corresponding IVUS sequences may represent different regions
within the vessel. Thus, one needs to align the sequences so that such starting and ending
points of one sequence match with the corresponding points of the other one (Figure 2).
This may lead to partial overlapping, (ii) due to the periodical oscillations of the catheter,
a particular cross-section may be captured more than once. Thus, a one-to-one image
correspondence between the two sequences may not be always possible and an image
frame from one sequence may correspond to multiple frames in another sequence.

Figure 2. Pre stent IVUS series (left) and post stent IVUS series (right). It is obvious that the two
pullbacks differ in length, due to them either having different starting and ending points or some
regions of the vessel having been captured multiple times.
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Following the longitudinal registration step, a 2D axial registration between the
matched frames of the sequences needs to be performed, due to the misalignment of
the corresponding frames of the two pullbacks in the 2D plane caused by rotational
displacements of the catheter while moving freely within the vessel during pullback, as
previously discussed. Notably, since non-rigid, time-varying deformations have been
eliminated by the downsampling method of selecting only the images corresponding to the
end-diastolic phase of the cardiac cycle, we focus on rigid registration techniques instead
of more complex ones, such as affine and non-rigid ones.

3. Proposed Registration Pipeline

In this section we present the pipeline of the proposed methodology (Figure 3), which
consists of three stages:

1. Data Preprocessing: Image processing methods are employed for the removal of
unnecessary artifacts and noise.

2. Longitudinal Registration: The corresponding image pairs of the two IVUS image
sequences are selected.

3. Axial Registration: Axial alignment of the corresponding images using rigid image
registration is performed.

Figure 3. IVUS pullbacks registration pipeline.

3.1. Data Preprocessing

The proposed pipeline includes a preprocessing stage, prior to the registration stage.
In particular, two filtering operations are applied on each image of each pullback. First,
a thresholding operation is applied to eliminate the low-intensity artifacts, such as those
due to the illumination of the blood or the catheter’s probe. The threshold value was set
to the 90th percentile of the Cumulative Distribution Function (CDF) histogram leading
consistently to improved image appearance. In addition, an anisotropic diffusion filter was
applied [13,14], to reduce the speckle noise without blurring important image information
such as its edges, as the Gaussian filtering would do [15]. This way, IVUS images become
less noisy and more homogeneous which is important for improving the performance of
the automated registration method proposed.

3.2. Longitudinal Registration

For the longitudinal registration, a DTW based algorithm is applied. Although DTW
was first introduced as a method for time series alignment [16], it can be used on longitudi-
nal imaging sequences, with the proper adaptation of the cost function. For the formulation
of a mathematical cost function that can be used with imaging data, we utilize the Cross
Correlation (CC) to measure the similarity between the two images in question. The cost
function is calculated as in (1) and its values are in the [0,1] range.

d(i, j) = 1− |CC(i, j)|, (1)

where i, j are the i-th and the j-th frames of the first and second IVUS pullbacks respectively.
The reason for using this dissimilarity metric is to remove the need for further image
processing such as segmentation of the lumen or the atherosclerotic plaque, which can be
computationally costly and time-consuming. Finally, the DTW matrix, D, is computed:

D(i, j) = d(i, j) + min(D(i, j− 1) + C, D(i− 1, j) + C,

D(i− 1, j− 1)),
(2)
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where C is an added regularization cost, which is used in order to favor the diagonal
options of the warping path instead of the vertical and horizontal ones. Doing so, less
frames of one sequence match with multiple frames of the other and the smoothness of the
output warping path increases. The full description of the algorithm is beyond the scope of
this paper and its detailed description can be found in [3].

3.3. Axial Registration

Given the longitudinally registered sequences, each matched pair of images must
be registered with respect to one another in the spatial 2D pixel domain. We follow an
intensity-based registration method, which is formulated as an optimization problem
whose purpose is to estimate the optimal rigid transformation needed to align each pair of
images. In particular, our method estimates the transformation that maximizes the Mutual
Information between a pair of images by using a variant of Harmony Search (HS) as an
optimizer [17].

3.3.1. Mutual Information

Mutual Information (MI) [18] has been used extensively in image registration as a
similarity metric. Unlike other metrics, e.g., Cross Correlation, MI does not assume a linear
relationship between the two sets of data and is described as in Equation (3):

MI(T(F), R) = ∑
f∈F,r∈R

pRF( f , r) log
pRF( f , r)

pR(r) · pF( f )
, (3)

where F,R are the floating and reference image respectively, f , r are the pixel intensities
of the floating and reference image respectively and T describes the transformation of the
floating image. The mathematical function of MI is highly non-convex, which makes it
difficult to find the optimum transformation, i.e., the transformation that aligns the images.
The optimization method must be simple and efficient and therefore, the Harmony Search
optimizer was used.

3.3.2. Harmony Search Optimizer

Harmony Search is a relatively simple meta-heuristic optimization method. It con-
structs each new solution (i.e., transformation matrix) by utilizing elements either from
existing solutions in the current candidate population (i.e., its memory) or by using random
elements sampled from the search space, Equation (4).

new_sol[i] =


k[i], with probability h(1− p)
k[i] + e, with probability hp

U(Mini, Maxi) with probability (1− h)
, (4)

where i is the i-th element of the solution, k is a randomly chosen solution from the current
population, e is a random step for slight tuning, h is the probability to use a solution from
the current population, p is the probability to slightly change an element from a chosen
solution, U(Mini, Maxi) is a uniform distribution whose upper limit is the Maximum
value of the i-th element and the lower limit is the minimum value of the i-th element.

By constructing a new solution based on multiple previous ones, Harmony Search can
produce more possible solutions than other optimization methods can. In addition, due to
the use of the Uniform Distribution, Harmony Search avoids converging to local minima
while it quickly converges to the global minimum [17].

In this work, a variant of Harmony Search is used [17] for faster convergence. The
random step e is replaced with a step that is calculated using aspects of the A.L.O.P.E.X
algorithm [19,20] which combines the advantages of Simulated Annealing and Gradient
Descent. Additionally, the values of h and p gradually increase until a certain maxi-
mum value, which facilitates exploration of the search space rather than exploitation, for
faster convergence.
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4. Results

The method was tested on IVUS data from 21 patients from two clinical centres, i.e.,
University Hospital of Ioannina, Greece and Erasmus EMC, Netherlands. The data of
10 patients consisted of two IVUS pullbacks, corresponding to a pre- and a post-stent
deployment (immediately after the procedure) pullbacks respectively. For the remaining 11
patients, the first pullback was from a pre-stent deployment examination and the second
one from a follow-up IVUS examination (after a few months). As a result the dataset used
was heterogeneous which was a prerequisite for testing the robustness of the proposed
method. The mean pullback length was 118 frames. In this study, two different experiments
were conducted. The first experiment regarded the evaluation of the method on synthetic
data, for which the ground truth information for each registration stage was available.
The second experiment was based on the in-vivo data, for which ground-truth frame
correspondence was available for the longitudinal registration based on the presence of
specific landmarks (i.e., bifurcations and calcifications), which were easy to be detected
across IVUS examinations. These landmarks were annotated by an expert cardiologist
based on careful examination of each pullback pair. In addition, the location of each
landmark was marked using a manual annotation tool by the expert cardiologist to be used
as ground truth when evaluating the axial registration. Figure 4 presents an example of
corresponding frames with two annodated landmarks (a bifurcation and a calcification).

(a) (b) (c) (d)
Figure 4. Two corresponding pairs of annotated frames based on the presence of a bifurcation (a,b) and calcification (c,d),
which are highlighted with a red box in the images.

4.1. Experiments on Synthetic Data

Pairs of sequences were synthetically generated by modifying a single pullback in
order to create IVUS pairs. Since there were two pullbacks for each of the 21 patients,
42 synthetic pullback pairs were generated. To generate the synthetic images we applied
combinations of the following distortions:

1. Amplitude distortion, by adding random zero-mean Gaussian noise to the image.
2. Partial overlapping, by discarding a subset of the pullback at its beginning and its

ending. The length of the overlap was between 60–80% of the original size, randomly
sampled based on the uniform distribution.

3. Longitudinal distortion, by randomly repeating an image of the pullbacks to simulate
the longitudinal oscillation of the probe. Each image in the pullback had a 10%
probability to be repeated, and the times of that repetition was randomly sampled
between 1–4 based on the uniform distribution.

4. Rigid distortion, by randomly translating and rotating an image to simulate the
circumferential movement of the probe. The rotation range was [−15°, 15°], the trans-
lation range is [−5, 5] pixels and both are sampled based on the uniform distribution.

An intuitive example of the longitudinal distortions (i.e., steps 2 and 3) is illustrated
in Figure 5.
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(a) (b) (c)

Figure 5. Example of the synthetic data. Blue line is the reference pullback, orange line is the synthetic pullback and green
lines indicate the correspondences. (a) Original pullbacks with original 1-1 correspondences, (b) after applying overlapping
distortion, (c) after repetition of some frames.

To evaluate the performance of the method the alignment error regarding the longitu-
dinal registration was computed, i.e., the average distance between the reference and the
computed warping path. In addition, we computed the error of the rigid transformation
(rotation and translation) between each pair of corresponding images, to evaluate the axial
registration on the synthetic dataset.

The results for the longitudinal registration are presented in Table 3, alongside with
the performance results of other methods applied on synthetic datasets reported in the
literature. In fact, our method outperformed other studies, with an alignment error 0.0942
on a similarly developed synthetic dataset regarding the longitudinal registration (i.e., only
considering distortions 1–3), as seen in Table 3. However, it should be pointed out that
such a direct comparison should be done with caution, due to heterogeneous datasets
between the studies. Overall, the method presented in this paper achieved an average
alignment error a 0.1853 frames per pullback for a mean pullback length of 118 frames,
a rotational error 0.93°± 2.3° per frame and a translational error in terms of Euclidian
distance of 0.67± 1.53 (in pixels) and 0.0161± 0.0367 (in millimeters) per frame on the
synthetic dataset with all distortions applied.

Table 3. Performance results on synthetic data.

Alignment Error Rotational Error Translational Error

Reference Distortions 1–3 Distortions 1–4 Distortions 1–4

Ours 0.0942± 0.3882 0.1853± 0.1644 0.93°± 2.3°
0.67± 1.53 (pixels)

0.0161± 0.0367 (mm)

[2] 0.93± 0.44 - - -

[3] 0.76± 0.29 - - -

4.2. Experiments on In-Vivo Data

Regarding the evaluation of the longitudinal registration on the in-vivo data, Table 4
presents the alignment error in frames based on the landmark pairs annotated by the expert
cardiologist. The proposed method was able to successfully detect and match most of
the annotated frames with a mean alignment error 4.3± 3.9 frames per pullback. The
higher mean frame errors were observed on pullbacks where the number of frames of the
registered pullback was also large. That is why Table 4 also includes a normalized error
metric defined as the ratio of the mean error to the length of the registered pullback. In
addition, Table 5 presents the distance and rotational error regarding the axial registration
between the frames with the annotated landmarks. The axial registration achieved a mean
distance error of 0.56 mm and a rotational error of 12.4°.

In addition, we computed the Mutual Information (MI) metric in three different settings:

1. Mean MI of the corresponding frames in the overlap of the unregistered end-diastolic
IVUS pullbacks starting from the first frame of each sequence. (blue)

2. Mean MI of the matched frames of the longitudinally registered sequences. (red)



Diagnostics 2021, 11, 1513 9 of 17

3. Mean MI of the 2D (axially) registered frame pairs of the longitudinally registered
sequences. (grey)

The results are presented in Figure 6. The increase of the mean image similarity
between the corresponding frames of the pre- and post-stent IVUS pullbacks in all patients
across the three experiment settings further indicated that each registration stage improved
the alignment of the longitudinal image pairs. On average, the mean MI increased by 2.23%
after the longitudinal registration, and by an additional 4.67% after the axial registration.

Table 4. Alignment error of longitudinal registration on in-vivo data. The normalized alignment error is computed with
reference to the number of registered frames.

Patient # of Frames
Pullback 1

# of Frames
Pullback 2

# of Registered
Frames

# of
Landmarks Error (Frames) Normalized

Error

1 155 118 118 5 7.4± 0.5 0.063

2 27 36 30 3 3± 0.8 0.1

3 84 49 59 5 9.8± 3.5 0.166

4 133 113 115 6 1± 0 0.009

5 100 82 84 6 3± 2.8 0.036

6 77 64 77 5 2.4± 0.8 0.031

7 149 152 151 5 2.6± 0.5 0.017

8 142 154 140 6 3.7± 1.1 0.026

9 83 95 91 9 2.88± 2.7 0.032

10 107 93 98 7 1.6± 0.7 0.016

11 117 122 117 5 2.2± 0.4 0.019

12 98 104 100 6 1± 0.8 0.01

13 169 186 169 7 7.9± 2.5 0.047

14 115 111 116 5 1.6± 0.7 0.014

15 173 144 146 7 8.5± 1.8 0.058

16 161 170 139 6 0± 0 0

17 212 127 127 5 10± 0 0.079

18 143 133 137 7 11.3± 2.7 0.082

19 95 121 95 0 - -

20 67 124 84 5 1.2± 1.5 0.014

21 140 108 76 5 4± 2 0.053

An example from a longitudinal registration (DTW algorithm) from one case on which
the method performed very well is presented in Figure 7, while Figure 8 present the worst
case among the dataset. We can observe that, although the maximum error for the patient
18 was 13 frames, its total number of frames was also twice the number of frames of
patient 6 (i.e., ≈140 vs. ≈70), which made the longitudinal registration step more difficult
and prone to error. In addition, the sagittal vessel views across each registration step of
another case are shown at Figure 9. By observing the sagittal view of the unregistered
pullbacks (Figure 9a), it becomes evident that the longitudinal registration step (Figure 9b)
matched the corresponding vessel regions highlighted (with an orange eclipse) in the
unregistered pair in Figure 9a. Although longitudinal correspondence was established,
there was still a need to account for rotational inconsistencies and this was achieved in the
axial registration step.
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Figure 6. Boxplots of Mutual Information (MI) similarity metric across patients at all registration stages.

Table 5. Distance and rotational error of axial registration on in-vivo data.

Patient ∆L (mm) ∆Φ◦

1 0.437± 0.136 12.1± 3.2

2 0.408± 0.12 7.16± 3.76

3 0.478± 0.11 7.55± 4.05

4 0.96± 0.15 33.7± 12.14

5 0.6± 0.109 10.36± 2.74

6 0.414± 0.0108 13.2± 0.5

7 0.588± 0.041 24.5± 1.71

8 0.69± 0.358 28.78± 14.9

9 0.626± 0.325 15.8± 12.4

10 0.308± 0.22 3.13± 3.8

11 0.618± 0.48 16.7± 14.2

12 0.348± 0.184 7.61± 6.31

13 0.256± 0.091 4.46± 2.26

14 0.839± 0.135 14.426± 5.31

15 0.495± 0.34 12± 11.6

16 0.389± 0.121 5.6± 3.1

17 0.486± 0.141 6.9± 4.9

18 0.999± 0.313 20.12± 6.6

19 No landmarks

20 0.368± 0.232 9.44± 4.9

21 0.5658± 0.207 9.22± 5.28

In Figure 10, an explanatory result of the axial registration step following longitudinal
registration for a pair of IVUS images of the two pullbacks is presented. Figure 10a,b
present longitudinally registered frames of the first and second pullbacks of patient 6
(patient 18), respectively, while Figure 10c is the result of the axial registration between
(a) and (b). Two other similar examples are depicted in Figures 11 and 12. The result
showed that the images were further aligned and the anatomical correspondence of the
vessels structures was improved. The match was not perfect due to the existence of non-
linear changes in the vessels such as extension of the vessel after stent deployment or
increase of the size of the plaque, which could not be fully aligned with rigid registration
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techniques. Another reason is that the end-diastolic matched pairs may not depict exactly
the same area, but rather neighboring ones. The reason for using rigid registration was
because we wanted to achieve an overall alignment of the frames without altering the
actual shape of the vessel’s structures as a non-rigid deformation would do. To this end, the
obtained results as highlighted in Figure 9–12, demonstrated that the proposed registration
framework was a fast and robust tool to establish a more intuitive comparison in temporal
IVUS pairs.

Figure 7. Longitudinal registration outcome for patient 6.

Figure 8. Longitudinal registration outcome for patient 18.
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(a) (b)

Figure 9. Sagittal vessel view corresponding to the (a) unregistered pullbacks (b) longitudinally
registered pullbacks of patient 3. The left image of each subfigure corresponds to the pre-stent
deployment pullback, and the right one to the post-stent deployment pullback. The red circles
indicate the corresponding parts of the vesels.

(a) (b) (c)
Figure 10. The alignment of a bifurcation can be observed under the marked area. (a) a frame from the first pullback of
patient 6, (b) its corresponding frame from the second pullback of patient 6, (c) the axially (2D) registered frame from
Figure 10b with respect to Figure 10a.
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(a) (b) (c)
Figure 11. The alignment of the landmarks can be observed under the marked areas. (a) a frame from the first pullback of
patient 18, (b) its corresponding frame from the second pullback of patient 18, (c) the axially (2D) registered frame from
Figure 11b with respect to Figure 11a.

(a) (b) (c)
Figure 12. The alignment of the landmarks can be observed under the marked areas. (a) a frame from the first pullback
of patient 3, (b) its corresponding frame from the second pullback of patient 3, (c) the axially (2D) registered frame from
Figure 12b with respect to Figure 12a.

5. Discussion
Method, Novelty and Results

In this paper we propose a two-stage registration method, unlike some other studies [2–4],
in order to both longitudinally and axially (2D) align a pair of IVUS pullbacks. First, the
frames that correspond to the end-diastolic phase of the heart cycle were sampled by a
physician due to the lack of syncrinous ECG aquisition. Then, we developed a DTW-based
algorithm to longitudinally align the pullbacks. While comparison with previous methods
is hard due to the lack of a common benchmark dataset, we performed a detailed review of
previous similar methods and compared our results as much as it was possible.

Another novel part of this study regards the use of a highly heterogeneous dataset,
consisting of pullbacks captured prior to and immediately after the stent deployment
but also follow-up examinations after a few months of the procedure. Notably, even if
the time interval of the pre-stent and follow-up IVUS examinations is quite long (e.g.,
12 months which is typical in a clinical setting), our method performs comparably better
to the pre- and post-stent examinations, having a mean alignment error 3.5 frames for the
long interval examinations in contrast to the short intervals which have a mean alignment
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error 5.3 frames. That indicates that the proposed method is robust and that the structural
changes in the vessels that occur between the pre-stent and follow-up examinations do not
affect its performance.

Table 6 presents information related to the dataset’s size, the availability of ground
truth and synthetic data while it is also compared to the datasets used in related studies. It
is evident that the dataset used in this study is comparable to those used in other related
studies, both in terms of its size as well as the availability of ground truth information,
however an advantage compared to the state of the art is that the conducted experiments
have been additionally applied on synthetic data.

Table 6. Dataset comparison with other studies.

Ref Dataset Task
Ground

Truth
Synthetic

Data
Morphological

Feature Extraction
Stent

Ours 21 IVUS-IVUS Longitudinal and Axial Registration Yes Yes No Yes

[2] 13 IVUS-IVUS Longitudinal Registration Yes Yes Yes Yes

[3] 21 IVUS-IVUS Longitudinal Registration Yes Yes Yes Yes

[4] 14 IVUS-Histology Axial Registration Yes No Yes No

[6] 29 VH IVUS-VH IVUS Longitudinal and Axial Registration Yes No Yes No

[7] 12 VH IVUS-OCT Longitudinal and Axial Registration Yes No Yes No

[8] 31 IVUS-IVUS Longitudinal and Axial Registration No No Yes No

[10] 28 IVUS-IVUS Longitudinal and Axial Registration Yes No Yes Yes

Tables 1 and 2 present a comparison between the performance of our method and that
of other reported studies. Regarding the longitudinal registration, our method has a three
times higher alignment error than the state-of-the-art which can be partly attributed to some
cases being very hard to register (e.g., patients 15 and 18) as well as to the heterogeneity of
the dataset. However, regarding the axial registration, our method outperforms the state-
of-the-art regarding the mean distance error by 0.187 mm, while achieving comparable
performance regarding the mean rotational error with a difference 3.33°. These comparative
results should be however examined with care due to the lack of a common benchmark
dataset which renders direct comparison hard. One unknown factor is the degree of
data heterogeneity in other studies since the complexity of our dataset was very high
containing pullbacks of patients after stent deployment as well as pullbacks captured after
a long period of time in a follow-up examination where the morphology of the vessel’s
structures may have changed significantly. Based on the above considerations, our method
results in a satisfactory performance while it does not require computationally heavy
preprocessing and morphology-based feature extraction prior to the registration step, as
the other methods do. For this reason, the presented method can be a simple and fast
diagnostic aid tool for cardiologists to better compare temporal IVUS sequences and assess
the progression of the disease.

IVUS sequences are often compared in order to assess the intervention outcome
in terms of e.g., lumen size, blood flow, stent positioning etc. While the necessity of a
comparison tool to facilitate and enhance the comparison of temporal IVUS sequences is an
unmet clinical need, only a limited number of studies have been presented to date. This is
due to the fact that IVUS sequences suffer from inherent acquisition variability and noise as
described in detail in the introduction of this paper, rendering the automated registration a
hard task.

In most of the previous works, the methods relied on morphology-based feature
extraction to work while the datasets used were homogeneous. The proposed method
presents a fast and robust framework to aid clinicians to compare pullbacks acquired at
different time points more efficiently. The presented results on the synthetic data demon-
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strate much better alignment performance than the state-of-the-art, while the experiments
on in-vivo data resulted in a worse longitudinal registration performance (see Table 1) but
even or better axial registration performance than the state-of-the-art (see Table 2). This
performance drop between the synthetic and in-vivo experiments could be attributed to the
heterogeneity of the data, especially since our data came from two clinical sites. Notably,
other studies do not report such heterogeneity in their datasets. Additionally, there was an
increased image similarity after applying the two-stage registration process regardless the
time interval between the baseline and follow-up examinations.

The proposed method allows the utilisation, analysis and integration of arterial imag-
ing data facilitating the accurate evaluation of the arterial changes, the disease progress
and the treatment approach. This method has been integrated in the 3D reconstruction and
plaque characterization tool, a dedicated software tool used for the creation of 3D arterial
models. The tool is part of the InSilc platform in silico pipeline, employing novel multi-
disciplinary and multi-scale prediction models of stent performance in the acute, short and
medium/long term, serving the in silico clinical trials vision and future application.

However, a limitation of this study regards the data and its ground truth. Due to the
nature of the data, it is hard, even for a well-trained clinician, to provide accurate one-
to-one frame correspondence between pullbacks. Similar to the other studies [2,3,6–8,10],
the longitudinal ground truth of our dataset does not infer a one-to-one correspondence
between all frames of each pair of pullbacks, but regards some frames with annotated
landmarks, such as bifurcations and calcification areas.

Another limitation is that the longitudinal registration step utilizes a cost function that
is based on the pixel intensities and does not take into consideration structural information
of the vessel. This was based on our design principle to develop a fast registration method
that does not depend on any computational demanding morphology-based feature extrac-
tion mechanism, but comes with the disadvantage of not being able to match longitudinal
performance when compared to the state-of-the-art (see Table 1), which may be due to
the use of image-based measurements. However, in order to examine if indeed the worse
performance is caused by the exclusion of morphological features and not due to the
heterogeneity of the data, we plan to extend this method in future work by incorporating
structural information into the computation of the DTW cost function, such as the lumen’s
or adventitia’s contour analysis in order to investigate if the accuracy and robustness of the
method can be significantly increased.

6. Conclusions

In this study, a method for registering two IVUS pullbacks both longitudinally and
axially has been proposed. It was tested on a heterogeneous dataset of 21 pairs of pullbacks
from 21 patients, of which 10 consisted of pullbacks corresponding to pre- and post-stent
deployment (immediately after the intervention) IVUS examinations and 11 consisted of
pullbacks corresponding to pre-stent and follow-up (after 12 months of the stent inter-
vention) IVUS examinations. The proposed method achieved a mean alignment error 4.3
(0.1853) frames per pullback, a rotational error 12.4° (0.93°) and a distance error 0.56 mm
(0.0161 mm) regarding the in-vivo (and synthetic) data. In addition, qualitative results
have been presented to understand the results of each registration stage of the method.
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