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Abstract
Purpose  The purpose of this study was to develop and validate a prediction model for 90-day mortality following a total 
knee replacement (TKR). TKR is a safe and cost-effective surgical procedure for treating severe knee osteoarthritis (OA). 
Although complications following surgery are rare, prediction tools could help identify high-risk patients who could be tar-
geted with preventative interventions. The aim was to develop and validate a simple model to help inform treatment choices.
Methods  A mortality prediction model for knee OA patients following TKR was developed and externally validated using 
a US claims database and a UK general practice database. The target population consisted of patients undergoing a primary 
TKR for knee OA, aged ≥ 40 years and registered for ≥ 1 year before surgery. LASSO logistic regression models were devel-
oped for post-operative (90-day) mortality. A second mortality model was developed with a reduced feature set to increase 
interpretability and usability.
Results  A total of 193,615 patients were included, with 40,950 in The Health Improvement Network (THIN) database and 
152,665 in Optum. The full model predicting 90-day mortality yielded AUROC of 0.78 when trained in OPTUM and 0.70 
when externally validated on THIN. The 12 variable model achieved internal AUROC of 0.77 and external AUROC of 0.71 
in THIN.
Conclusions  A simple prediction model based on sex, age, and 10 comorbidities that can identify patients at high risk of 
short-term mortality following TKR was developed that demonstrated good, robust performance. The 12-feature mortality 
model is easily implemented and the performance suggests it could be used to inform evidence based shared decision-making 
prior to surgery and targeting prophylaxis for those at high risk.
Level of evidence  III.
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Abbreviations
TKR	� Total knee replacement
OA	� Osteoarthritis
OMOP-CDM	� Observational Medical Outcomes Partner-

ship Common Data Model
EHR/EMR	� Electronic health/medical records
GP	� General practitioner
AUROC	� Area under receiver operator characteristic 

curve
TRIPOD	� Transparent reporting of a multivariate 

prediction model for individual prediction 
or diagnosis

EHDEN	� European Health Data and Evidence 
Network

Introduction

TKR surgery is generally a safe procedure with fewer 
than 10% of patients experiencing post-operative com-
plications. These adverse events include short-term (e.g. 
90-day) post-operative mortality [12, 15]. Mortality fol-
lowing TKR is low and has been declining over recent 
years [2]. However, there is a scarcity of data on who is 
at risk of post-operative death, and a related prediction 
tool or algorithm would help inform decisions for patients 
subjectively at risk of complications. For example, a high-
risk patient may opt-out of surgery as the long-term ben-
efits are outweighed by the cost. Providing a short-term 
mortality risk model could help inform decision making 
regarding whether to opt for the surgery and to help target 
preventative interventions.

To be clinically useful, covariates included in any model 
must be readily available at the time of model implemen-
tation. For this study this means pre-operatively. Current 
prediction model studies of post-operative outcomes after 
TKR have several limitations. In a recent review predicting 
post-operative infection after total joint replacement [9], 
most models were not externally validated, the process 
of applying a model in a new database to check if perfor-
mance transfers to new data, and none were ready for clini-
cal use due to issues with application (e.g. variables unob-
tainable at time of use) or insufficient performance. Some 
models were developed using data that were not routinely 
collected in observational data (e.g., floor of a patient’s 

bedroom, preoperative walking distance) and therefore 
validation of these models was infeasible using the data 
available in this study. Finally, most models had not taken 
full advantage of all data available in medical records. 
For example, using a comorbidity index [6] instead of all 
patient characteristics [8]. There is currently no TKR spe-
cific mortality prediction model.

A well performing robust model that predicts mortality 
could be used to aid in decision making for TKR as well as 
targeting interventions for high risk patients. As such the 
hypothesis of this study is that 90-day all-cause mortality 
is predictable using routinely collected data. This will be 
assessed by developing and externally validating a model 
using area under receiver operator curve.

Materials and methods

This retrospective cohort study used observational health-
care databases from the UK (The Health Improvement Net-
work (THIN) [3]) and US (Optum). Detailed information on 
these databases is available in Table 1. All databases used 
in this paper were mapped into the Observational Medical 
Outcomes Partnership Common Data Model (OMOP-CDM) 
[11]. The OMOP-CDM was developed for researchers to 
transform diverse datasets into a consistent structure and 
vocabulary. This means studies using these databases are 
more replicable increasing the clinical relevance of evidence.

Each site obtained institutional review board approval for 
the study or used de-identified data and therefore the study 
was determined not to be human subjects research. Informed 
consent was not necessary at any site.

Cohorts

Development target population cohort

The target population for model development and valida-
tion contained patients with knee osteoarthritis undergo-
ing TKR. The first recorded TKR procedure identified was 
considered the event of interest with the date of surgery as 
index date. Inclusion criteria required patients to have at 
least 1 year of continuous pre-index date recorded observa-
tion time. Individuals below the age of 40, those with prior 
evidence of knee arthroplasty, knee fracture, knee surgery 

Table 1   Database Information

Database Database acronym Country Data type Time period

Optum© De-Identified Clinformatics® Data Mart Database ClinFormatics US Claims 2000–2018
IQVIA Medical Research Data ([IMRD], incorporating data 

from The Health Improvement Network [THIN]
THIN UK General practice 2003–2018
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(except diagnostic procedures), rheumatoid arthritis, inflam-
matory arthropathies, or septic arthritis at any time before 
the index date were excluded. This is because these patients 
likely have a cause other than osteoarthritis for their surgery. 
Patients with spine, hip, or foot pathology observed in the 
365 days before index date were also excluded.

The target cohort for TKR is available at: TKR: http://​
atlas-​demo.​ohdsi.​org/#/​cohor​tdefi​nition/​17765​51.

Outcome cohorts

Mortality was defined as all-cause mortality based on 
records of date of death. This is well captured in THIN and 
in Optum until 2013, when a change in reporting means 
that the capture after this time is specific but less sensitive. 
Available at: http://​atlas-​demo.​ohdsi.​org/#/​cohor​tdefi​nition/​
17765​55.

Patients were considered at risk for mortality from the 
day after surgery up until day 90.

Candidate predictors

89,031 candidate predictors were derived from the observa-
tional healthcare data that existed on or prior to the target 
index date (TKR surgery date). These variables were demo-
graphics, binary indicators of medical events (e.g. GP visit, 
disease diagnosis, medication prescription) and counts of 
record types. The demographics were gender, 5 year age 
groups (40–45, 45–50,…,95+) and month of the target index 
date. Binary indicator variables for medical events were cre-
ated based on the presence or absence of each concept for a 
patient corresponding to the OMOP-CDM clinical domains 
of conditions, drugs, procedures or measurements. For con-
ditions binary predictors were created using the 30 days and 
365 days prior to index date. For example, there exists one 
covariate for each of ‘Diabetes mellitus’, ‘Hypertensive dis-
order’, and ‘Hypercholesterolemia’ (and similarly for other 
diseases that appear in the patient records), based on the 
occurrence of a diagnosis code for each condition in the 
365 days or 30 days preceding the index date. Drug covari-
ates were constructed similarly, but used time windows of 
30, 365, 1095 days and all time prior to target index date. 
Covariates representing counts of how many visits (e.g. pri-
mary care visit) a patient had in the 365 days and 1095 days 
prior to the target index date were also created. The follow-
ing existing risk scores (CHADS2, CHA2DS2VASc (both 
stroke risk models), Diabetes Complications severity index, 
Charlson Comorbidity Index) using all data prior to index 
were also calculated and used as candidate predictors.

Methodology for model development 
and validation

The study was initially conducted using the THIN and 
OPTUM datasets. Models predicting the 90-day mortality 
in the TKR target population were developed in both data-
bases. The interoperability of the OMOP-CDM was utilised 
to externally validate in the non-development database.

Model development followed the framework for the 
creation and validation of patient-level prediction (PLP) 
models presented in Reps et al. [13], a person ‘train-test 
split’ method was used to perform internal validation. In 
each development cohort, the random split sample (`training 
sample’) containing 75% of patients was used to develop the 
prediction models and the remaining 25% of patients (`test 
sample’) was used to validate the risk scores. The models 
were trained using least absolute shrinkage and selection 
operator (LASSO) regularised logistic regression, using a 
threefold cross validation technique in the training sample 
to learn the optimal regularisation hyper-parameter through 
an adaptive search [16]. LASSO regularization [17] helps to 
limit overfitting in model development. This process works 
by assigning a “penalty” to the inclusion of a variable, this 
variable must then contribute more to the performance than 
the penalisation. If this condition is not met then the coef-
ficient of the covariate becomes 0, which eliminates the 
covariate from the model, thus automating feature selection.

Performance of the model was assessed in terms of dis-
crimination and calibration. Discrimination assesses how 
well the model can distinguish which patients experience 
the outcome and calibration assesses whether the predicted 
risks are in alignment with the observed risks. Discrimina-
tion was measured using the Area Under Receiver Operator 
Characteristic Curve (AUROC). An AUROC of greater than 
0.70 is considered to be a reasonable candidate for external 
validation. The model calibration was assessed by plotting 
the predicted and observed risks across deciles of predicted 
risk. Calibration assessment is then performed visually 
rather than using a statistic or numeric value as this provides 
an impression of the direction and scale of miscalibration 
[7]. Summary statistics were reported from the test samples.

External validation [14] was performed by applying the 
final prediction models in the dataset not used for develop-
ment. The external validation was analysed in the same way 
as internally.

Model parsimonisation

When using a data-driven approach to model development, 
generally the final models contain a large number of covari-
ates. The full model assesses what is in principle the best 
possible performing model. However, the large number 

http://atlas-demo.ohdsi.org/#/cohortdefinition/1776551
http://atlas-demo.ohdsi.org/#/cohortdefinition/1776551
http://atlas-demo.ohdsi.org/#/cohortdefinition/1776555
http://atlas-demo.ohdsi.org/#/cohortdefinition/1776555
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of covariates can create a barrier to implementation and 
understanding.

Models were therefore created that could be candidates 
for the clinical implementation by performing further anal-
yses to reduce the number of features in the final model 
(improving parsimony). This analysis investigated what the 
performance loss is when using fewer covariates.

The approach involved analysing the covariates selected 
by the final model and then using clinical expertise to 
attempt to combine multiple of these covariates that cor-
respond to a similar illness, into a single covariate. Often, 
LASSO logistic regression models include multiple covari-
ates which are clinically related, for example a model might 
select the same condition occurrence but in different time 
periods predating the index date (e.g. ‘diabetes − 30 days to 
0 days prior to index’ and ‘diabetes 365 days to 0 days prior 
to index’). These could be simplified to an aggregate covari-
ate of “History of Diabetes”, rather than multiple covariates 
specifying the specific time frame of the occurrence.

The procedures for developing both the full and parsi-
monious models will be identical except for the covariates. 
Definitions of the aggregated covariates are available in 
Appendix 2.

All statistical analysis was performed using R (version 
3.5.1) and the Patient-Level Prediction. This study was con-
ducted and reported according to the Transparent Reporting 
of a multivariate prediction model for Individual Prediction 
or Diagnosis (TRIPOD) guidelines [10]. All the analysis 
code used for the development of the models is available 
on github at https://​github.​com/​OHDSI/​Study​Proto​colSa​
ndbox/​tree/​master/​morta​lityV​alida​tion as well as the devel-
oped mortality models themselves for external validation at: 
https://​github.​com/​ohdsi-​studi​es/​TkrPr​edict​Simple.

Results

The target population included 40,950 (THIN) and 152,665 
(Optum) patients. 90-day mortality occurred in 0.20% 
(THIN)–0.23% (Optum) of patients (Table 2).

The 90-day mortality model trained using OPTUM 
obtained internal AUROC above 0.7 (Table 2). The exter-
nal validation of the 90-day mortality models developed 
on OPTUM and THIN ranged between 0.68 and 0.86 and 

are presented in Table 2. Details of the distribution of key 
covariates can be found in Appendix 1.

The OPTUM 90-day mortality model performed better 
than the THIN 90-day mortality model both internally and 
across the external validation (Table 2). The OPTUM 90-day 
mortality model achieved a slightly increased performance 
(AUROC 0.69) in the THIN dataset compared to the internal 
validation of the THIN developed model (AUROC 0.68). 
For the 90-day mortality OPTUM model, 102 of 89,031 can-
didate variables were selected into the final model. The full 
model is available in Appendix 3.

The models and performance on the test and external 
validation sets are available to explore interactively at http://​
data.​ohdsi.​org/​TKROu​tcome​sExpl​orer/.

The prevalence of a selection of covariates included in 
the 90-day mortality model developed using OPTUM, when 
assessed in multiple databases can be found in Appendix 1.

This analysis shows that the covariate prevalence varies 
between the different databases, suggesting the databases 
have different underlying characteristics. As the models 

Table 2   Performance and population sizes for the mortality models

Dataset Target population 90-Day mortality

Size AUROC

OPTUM 152,665 353 (0.23%) 0.78
THIN 40,950 81 (0.20%) 0.68

Table 3   Parsimonious model with covariates and coefficients for pre-
dicting 90-day mortality following TKR

Covariate Value

Intercept − 6.64376
Age group
40–44 − 4.40718
45–49 − 5.72523
50–54 − 0.61149
55–59 − 0.25853
60–64 − 0.21392
65–69 − 0.01862
70–74 (reference) 0
75–79 0.60808
80–84 1.08846
85–89 1.88595
90–94 − 1.42352
Gender
Male 0.36173
Female (reference) 0
History of
Cancer (excl non-melanoma skin cancer) − 0.21177
COPD 0.44467
Gout 0.45821
Heart failure or atrial fibrillation 1.25532
Hypertension − 0.12567
Kidney disease 0.5571
OA − 0.4513
T2DM 0.27827
Opioid use − 0.35781
Psycholeptics use 0.17227

https://github.com/OHDSI/StudyProtocolSandbox/tree/master/mortalityValidation
https://github.com/OHDSI/StudyProtocolSandbox/tree/master/mortalityValidation
https://github.com/ohdsi-studies/TkrPredictSimple
http://data.ohdsi.org/TKROutcomesExplorer/
http://data.ohdsi.org/TKROutcomesExplorer/
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maintain performance despite these differences, it suggests 
that the model is robust to variability in the distribution of 
the covariates.

The 90-day Optum mortality was then parsimonised. 
The creation of these aggregate covariates and their defini-
tions are available in Appendix 2. This model is detailed in 
Table 3.

When the analysis was performed with these covariates, 
the AUROC was 0.77 internally and 0.71 in THIN. The 
results are available in Table 4. The calibration plot for the 
internal validation and the THIN validation are presented in 
Fig. 1. Figure 1 shows that, for the majority of patients, the 
model is well calibrated internally with the ideal line always 
appearing within the confidence interval. For the external 
validation in THIN, the model is well calibrated however for 
patients at higher risk there is some overestimation of risk 
in the highest risk groups. For example, a predicted risk of 
0.02 corresponds to an observed risk of 0.015. The model 
could potentially benefit from recalibration in this setting.

Discussion

The main finding of this study is the predictability of post-
operative 90-day mortality following TKR. The AUROC 
of LASSO logistic regression model was found to be 0.78 
in the OPTUM database. Validating this model against the 
other databases resulted in AUROC values of 0.68 (THIN) 
indicating that the model is fairly robust. The high number of 
features (102) in this model presents a barrier to implemen-
tation in clinics. A parsimonious model was therefore cre-
ated, containing 12 variables. This model achieved AUROC 
of 0.77 in the training data and 0.71 in the external valida-
tion in the THIN database. The calibration was adequate 
although there appeared to be an overestimation of risk for 
patients at higher risk when assessed in THIN. As the parsi-
monious model achieved similar or better performance and 
is more implementable, it is preferred.

The desired operating characteristics when applying the 
parsimonious OPTUM 90-day mortality model to classify 

Fig. 1   Calibration plot showing 
the calibration of the parsimoni-
ous model internally (Optum) 
and externally (THIN). The plot 
shows the agreement between 
the observed and predicted risk 
for patients. This is calculated 
by fitting loess regression
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patients into those who will die and those who will not 
within 90 days of the surgery can be picked based on the 
prediction threshold, see Table 3. As an example, if a female 
patients aged 75 presented to a clinician whilst she had 
COPD and T2DM, then her raw score would be

Which maps to a predicted risk of 0.5%. When compared 
to the outcome prevalence of 0.2% this shows the patient is 
twice as likely as average to die following this surgery.

In contrast to previous studies, the focus of this research 
was to develop the best performing predictive model on 
basis of all clinical and demographic data recorded in the 
observational databases and to then assess how close to this 
performance a reduced feature set model could come. The 
predictors included in the final model were mostly already 
known to be related to the outcome, what this study adds is to 
provide a quantitative relationship between the combination 
of these and the probability of the outcome. This was done by 
performing a regression analysis using these covariates. The 
selection of these predictors speaks to the robustness of the 
methods. Previous prediction models in the context of knee 
replacement have focussed on patient-reported outcomes or 
revision surgery/implant survivorship, with little focus on 
complications or post-operative mortality, meaning com-
parison to these is difficult [1]. When considering common 
mortality predictors such as the American College of Sur-
geons National Surgical Quality Improvement Programme 
comparisons are difficult using observational data as “Func-
tional status” is not well captured in observational studies. 
Further, the Revised Cardiac Risk Index generally performs 
with a median AUROC of 0.62 showing lower performance 
than the model developed in this study [4].

Hunt et al. report an incidence of mortality (0.37%) in 
their study on 45-day mortality following knee replace-
ment surgery [5]. This is high compared with our reported 
incidence of mortality, which could be due to the limitation 
of the mortality capture in the databases studied. The low 

− 6.64376(intercept) + 0.60808(age = 75)

+ 0.44467(COPD) + 0.27827(T2DM) = −5.31274.

incidence of death (around 0.2%) following TKR necessi-
tates large datasets with accurate recording of mortality. The 
reported 90-day mortality predictive model may be used as a 
complementary element for screening of high-risk patients 
and better preparation before surgery. It could also allow the 
patient and clinician to be better informed about the potential 
benefit-risk of elective TKR. Given that all-cause mortality 
was considered, the mortality is not necessarily caused by 
the TKR, however if the patient is deemed to be at a high 
risk of mortality in the 90-day post-operative period then the 
surgery is still likely inadvisable due to the costs to both the 
patient and the healthcare system without providing benefit.

Limitations of this study include the low number of out-
comes in some of the analyses meaning that estimates are 
potentially unreliable, as well as potential misclassifica-
tion of covariates in the data. The recording of death in the 
THIN database is very reliable but in Optum is known to be 
specific but lacking some sensitivity because in 2013 report-
ing of death stopped being mandatory. This could lead to an 
underestimation of the number of deaths following a TKR in 
this study. Further limitations are that although large numbers 
of covariates are included in the analysis, some covariates are 
poorly captured in the data used. Known predictors such as 
surgeon skill and volume are not available in routinely col-
lected healthcare data and as such have not been included. 
As with all observational studies, the models can only be 
assessed on the predictors available and as such any predic-
tors which are not in the source data, will be missed by the 
models.

Limitations of the phenotypes include: (1) there is a 
potential contamination issue in the TKR cohort as prior 
to ICD-10 coding, TKR cohorts will have UKR cases as 
the same ICD procedure code was valid for both (2) if a 
patient were to have bilateral TKR only the first surgery 
would be included in our target cohort and the second would 
be excluded.

A major strength of this study is that the model is already 
externally validated, demonstrating its robustness and trans-
portability, a process typically taking 3-years (12). The low 

Table 4   Internal and external validations of the full and parsimonious (reduced) feature models

Development 
database

Validation database Model type AUROC Test population Outcome count in test popula-
tion (incidence in cases per 100 
patients)

OPTUM OPTUM Full 0.78 38,166 88 (0.23)
OPTUM THIN Full 0.70 57,897 121 (0.30)
THIN THIN Full 0.68 10,237 20 (0.20)
OPTUM OPTUM Reduced 0.77 38,157 88 (0.23)
OPTUM THIN Reduced 0.71 57,897 121 (0.30)
THIN OPTUM Full 0.68 152,665 353 (0.23)
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number of features of this model is a significant advantage 
to implementation.

Conclusion

In conclusion, a model was developed and externally vali-
dated for 90-day mortality after a TKR. This prediction 
model has both good discrimination performance and cali-
bration which was maintained across the external validation. 
Thus, this model is a strong candidate for impacting clinical 
decision making.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00167-​021-​06799-y.
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